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ABSTRACT
Changes in altitude have a long-term and profound impact on mountain forest
ecosystems. However, there have been few reports on changes in soil carbon, nitrogen,
and phosphorus contents (SCNPC) along altitudinal gradients in subtropical karst
mountain forests, as well as on the factors influencing such changes. We selected
five Pinus massoniana forests with an altitudinal gradient in the karst mountain area
of Southwest China as research objects and analyzed the changes in SCNPC along
the altitudinal gradient, as well as the influencing factors behind these changes. Soil
organic carbon, total nitrogen, and available nitrogen contents first increased and
then decreased with increasing altitude, whereas the contents of total phosphorus and
available phosphorus showed no obvious trend. In the karst mountain P. massoniana
forest, SCNPC in the topsoil is most significantly affected by total glomalin-related soil
protein (TG) and soil moisture content (SMC) (cumulative explanatory rate was 45.28–
77.33%), indicating that TG and SMC are important factors that affect SCNPC in the
karst mountain P. massoniana forest. In addition, the main environmental factors that
affect SCNPC in the subsoil showed significant differences. These results may provide a
better scientific reference for the sustainable management of the subtropical mountain
P. massoniana forest.

Subjects Soil Science, Forestry
Keywords Mountain ecosystems, Pinus massoniana forest, Forest soil, Altitude

INTRODUCTION
The effects of altitudinal changes on the biodiversity and environmental factors ofmountain
ecosystems are a hot topic in ecological research (Körner, 2007; Zhang et al., 2022a; Zhang
et al., 2022b). Altitudinal gradients have been used as ‘‘natural experiments’’ to understand
the influence of temperature, light, rainfall, and other environmental factors on soil
physicochemical properties in mountain ecosystems (Maja, Ranko & Bishal, 2011; Wu
et al., 2013). In particular, altitude is one of the most important factors that determines
micro-climatic conditions (temperature and precipitation) that impact plant/microbe
distribution and growth (Pan et al., 2009; Zhang et al., 2022a; Zhang et al., 2022b), which
eventually impacts soil carbon, nitrogen, and phosphorus contents (SCNPC) in mountain
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forests (Körner, 2007). It is of great importance to understand the changes in and factors
influencing SCNPC in mountain forest soils at different altitudes to reveal the interaction
between biogeochemical cycles and altitudinal gradients (Njeru et al., 2017; Zhang et al.,
2019a; Zhang et al., 2019b). However, the trend of SCNPC in mountain forests along
altitudinal gradient remains debatable. Previous studies have shown that with an increase
in altitude, SCNPC in forests can show an increasing (He et al., 2022; He et al., 2021a;
He et al., 2021b; Qiu, Lin & Wang, 2022), unimodal (Chen et al., 2010; Li et al., 2017; Yang
et al., 2018), or decreasing trend (Bhandari & Zhang, 2019; Maja, Ranko & Bishal, 2011;
Wilcke et al., 2008) or have no correlation (Tan &Wang, 2016; Zhu et al., 2022). Thus, the
variation in SCNPC in mountain forests with an altitudinal gradient can greatly differ
or be quite uncertain prior to the analysis of the given forest. Moreover, the variation
in SCNPC in mountain forests is often affected by natural and anthropogenic factors,
such as soil physicochemical properties (e.g., soil parent material (Pichler et al., 2021),
soil texture (Giardina et al., 2001), soil bulk density (Manrique & Jones, 1991), soil pH
(Zhou et al., 2019), and glomalin-related soil protein (Li et al., 2022), topographic factors
(e.g., altitude (He et al., 2016) and slope (Bangroo, Najar & Rasool, 2017), climatic factors
(e.g., temperature (Tashi et al., 2016) and rainfall (Austin & Sala, 2002), biological factors
(e.g., plant De Feudis et al., 2016), animal (Haimi, 2000), and microbial communities
(Nottingham et al., 2019), and disturbance factors (e.g., forest management (Karla &
Leopoldo, 2021), forest fire (Certini, 2005), and human activity (Ahmedin & Elias, 2022;
Zhao et al., 2015)). Therefore, strengthening our knowledge of the distribution of soil
carbon, nitrogen, and phosphorus along altitudinal gradients as well as the mechanism
influencing relevant trendswill be helpful for achieving a better understanding and scientific
management of mountain forest ecosystems (Bangroo, Najar & Rasool, 2017; Feng, Bao &
Pang, 2017; Njeru et al., 2017).

The karst mountains in Southwest China have large topographical differences, habitat
fragmentation, high spatial heterogeneity, and a fragile eco-environmental system (He
et al., 2022; Yuan, 2006; Liu et al., 2022a; Liu et al., 2022b; Zhang et al., 2012), and in
addition, the soil in karst areas are low in quantity with, low rate of parent rock soil
formation, high content of calcium and magnesium, high exposure rate of bedrock, and
high risk of underground leakage (Smith et al., 2013; Bai et al., 2020). Improvement and
rational utilization of karst soils are important for soil sustainability and productivity,
and hance, vegetation restoration has become an important measure to prevent stone
desertification and promote ecological sustainability in karst mountains (Zhong et al.,
2022). Pinus massoniana, as a pioneer tree species that is currently involved in the vegetation
succession in this region, has rapid organic matter accumulation and superb adaptability
to harsh environments. The P. massoniana forest constitutes the main forest vegetation
type in southern China and plays an important role in the karst mountain forest ecosystem
of this region (Huang et al., 2020; Lei et al., 2018; Zhang et al., 2022a; Zhang et al., 2022b).
Research on the characteristics of vertical variation of soil nutrients and their influencing
factors in subtropical mountain horsetail forests with different altitudinal gradients is
important to enhance the scientific management of regional forests in this region. The
widely distributed P. massoniana forest in Southwest China provides a natural experimental
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object that is well-suited for studying the changes in SCNPC in a single forest type along an
altitudinal gradient. Therefore, this study selected P. massoniana forests along an altitudinal
gradient (1,200-1,600 m a.s.l.) in the mountains of central Guizhou as the research object,
with the specific aims to: (1) reveal the changes of SCNPC along an altitudinal gradient
in the P. massoniana forest of a karst mountain ecosystem; (2) analyze the main factors
influencing differences in SCNPC; and (3) explore the quantitative relationship between
SCNPC and its main influencing factors. This study will improve our understanding of
soil nutrient cycling and major drivers in fragile karst forest ecosystems, and provide a
theoretical basis for forest management especially in terms of forest soil carbon neutrality
in the context of global climate change.

MATERIALS AND METHODS
Study area
Longli County (26◦21′∼26◦41′E, 106◦51′∼107◦11′N), located in the center of Guizhou
Province, is a mountainous area in southern China with karst topography and an altitude
of 765–1,766 m a.s.l. (Fig. 1). The terrestrial vegetation in this region mostly consists of
evergreen broad-leaved forest. And the coniferous and broad-leaved mixed forest mostly
grows in less-disturbed areas with limestone soil (Li et al., 2008). These forests mainly
include P. massoniana, and secondary Quercus fabri, and Cunninghamia lanceolata forests.
The main climate type is a subtropical monsoon humid climate, with a mean annual
precipitation of approximately 1,100 mm, a mean annual temperature of 15.0 ◦C, a mean
temperature of the coldest month (January) of 4.8 ◦C, a mean temperature of the hottest
month (July) of 23.5 ◦C, and a mean annual sunshine duration of approximately 1,160 h
(Luo et al., 2019).

Plot design and sampling
Five altitudes were selected every 100 m from 1,200 m a.s.l. to 1,600 m a.s.l. at the Longli
Forest Farm. At each altitude, three independent replicate sampling plots (20 m × 20 m)
of relatively consistent stand age were created as replicates. The development time of the
P. massoniana forest at 1,200–1,500 m a.s.l. was the same, and the average age of the P.
massoniana forest was 40–53 a. However, owing to the limited distribution of extant P.
massoniana forests in the 1,600-m altitudinal gradient range of the study area (close to the
upper altitude limit of the natural distribution of subtropical P. massoniana), the stand
age selected for this study consisted mainly of young P. massoniana of approximately 10
a (Fig. 1). Basic environmental information for each sampling plot was recorded, and a
vegetation survey was carried out.

From each sampling plot, soil samples were taken from six random points using a soil
drill (diameter, 4.5-cm), to collect the topsoil (0–20 cm) and subsoil (20–40 cm). Soil
samples from the same depth were consolidated and thoroughly mixed into one sample
per plot. Each consolidated sample was air-dried, ground, and sieved through a two mm
mesh sieve to measure its basic physicochemical properties. Additionally, three soil core
samples (0–20 cm) were collected from each sampling plot to determine the soil bulk
density (SBD) and soil moisture content (SMC).
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Figure 1 Location of the study area and the sampling plot.
Full-size DOI: 10.7717/peerj.15198/fig-1

Soil physicochemical proprieties analysis
Soil organic carbon content (SOC) was obtained using the K2Cr2O7-H2SO4 oxidation
method (ISSCAS, 1978). Soil total nitrogen content (TN) was measured using the Kjeldahl
digestion procedure, and soil available nitrogen content (AN) was determined using
the alkaline hydrolysis diffusion method (ISSCAS, 1978). Soil total phosphorus content
(TP) was measured using a UV-2600 spectrophotometer (Shimadzu, Kyoto, Japan) after
H2SO4–HClO4 digestion, and soil available phosphorus content (AP) was determined
using the HCl-H2SO4 extraction solution colorimetric method (ISSCAS, 1978). Soil
exchangeable calcium (eCa) was measured using Shimadzu AA7000 atomic absorption
spectrophotometer (Shimadzu, Kyoto, Japan) after NH4OAc extraction (ISSCAS, 1978).
The soil pH was measured in the suspension (soil/water = 1:2.5) using a pH meter (Sheng
et al., 2021). After the soil was dried in an oven for 12 h at 105 ◦C, the SBD was determined
as the dry weight per unit volume of soil core, and SMC was determined gravimetrically
by weighing. All the 28 soil samples were analyzed using the laser diffraction method
for their soil particle size distribution using a Bettersizer 2,600 laser particle size analyzer
(Bettersize Instruments Ltd, Liaoning, China), and the percentages of clay (<0.002mm), silt
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(0.002–0.05mm) and sand (0.05–2mm)were calculated according to the US soil taxonomy
classification system (Zhang et al., 2022a). The pre-treatment was done by adding 10 mL
of 10% hydrogen peroxide (H2O2) and 10% hydrochloric acid (HCl) to remove organic
matter and carbonates. In addition, 10 mL of Calgon ((NaPO3)6) with a concentration
of 0.05 mol L −1 was added and then stirred to fully separate the primary soil particles.
Before laser diffraction analysis, ultrasonic dispersion for 30 min was applied to samples.
Based on the differences in the availability and turnaround time of glomalin-related soil
proteins (GRSP) in soil, they can be divided into easily extractable glomalin-related soil
proteins (EEG) and total glomalin-related soil proteins (TG). In this study, EEG and TG
were determined separately using a modified Kormas Brilliant Blue colorimetry method
(Gao, Peng & Wu, 2019; Li et al., 2022).

Statistical analysis
All statistical analyses and mapping were conducted using R 4.2.1 software. The Kruskal–
Wallis H test (KWH) was employed to identify the differences in SCNPC in the P.
massoniana forest along the altitudinal gradient. If significant effects (P < 0.05) were
observed by KWH, comparison among the means was performed using Dunn’s test.
The Mann–Whitney U test was used to identify the differences in SCNPC between the
topsoil and subsoil in the P. massoniana forest. To investigate the variation in SCNPC
along the altitudinal gradient, the curve-fitting regressions of SOC, TN, AN, TP, and
AP with altitude were analyzed using the ggtrendline package. Spearman’s correlation
analysis was performed to identify correlations between several environmental variables
(e.g., altitude, slope, pH, SMC, SBD, clay, silt, sand, TG, and EEG) and SOC, TN, AN,
TP, and AP. Correlations among these variables were also assessed. When more than one
variable was available within a component, it was necessary to consider themulticollinearity
caused by the significant correlation between environmental variables (Jagadamma et al.,
2008). The relationships between SOC, TN, AN, TP, or AP and environmental variables
were then obtained using multiple regression analysis according to the stepwise method,
using environmental variables as independent variables and SOC, TN, AN, TP, and AP
as dependent variables (Maja, Ranko & Bishal, 2011; Wang, Wang & Ouyang, 2012). The
rdacca.hp package contains two main functions: rdacca.hp and permu.hp. The former
conducts both variation and hierarchical partitioning for canonical analysis without
limiting the number of predictors (ormatrices of predictors), whereas the latter implements
significance testing for individual predictor (or a matrix of predictors) contribution
using a permutation test (Lai et al., 2022). Therefore, it was used to calculate the relative
explanatory rate of each environmental factor retained in the stepwise multiple regression
model to the explainable part of the total variance in SCNPC (Kong et al., 2022; Lai et al.,
2022).

RESULTS
Changes in SCNPC in the P. massoniana forest at different altitudes
In the P. massoniana forest of the karstmountains in the study area, the SCNPC significantly
differed at the five altitudinal gradients. The SOC, TN, AN, and TP of the topsoil and subsoil
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Figure 2 Characteristics of soil carbon, nitrogen and phosphorus content (SCNPC) in the Pinus mas-
soniana forest at different altitudes. SOC, soil organic carbon; TN, soil total nitrogen content; AN, soil
available nitrogen content; TP, soil total phosphorus content; AP, soil available nitrogen content; topsoil,
0–20 cm soil; subsoil: 20–40 cm soil. Different capital letters above the box indicate significant differences
between altitude at the same soil layer, and different lowercase letters above the box indicate significant
differences between soil layer during the same altitude (p < 0.05).

Full-size DOI: 10.7717/peerj.15198/fig-2

at 1,500 m a.s.l. were significantly higher than those at other altitudes (P < 0.05), but there
was no significant difference in AP among the five altitudes (P > 0.05, Fig. 2). The fitted
results of SCNPCwith altitude showed that the SOC, TN, and AN in the topsoil and subsoil
first increased and then decreased with increasing altitude (Figs. 3A–3C, P < 0.05), whereas
TP and AP did not significantly change (Figs. 3D & 3E). In addition, compared to the
SCNPC in the topsoil, that in the subsoil was significantly reduced, showing clear surface
accumulation phenomenon (P < 0.05, Fig. 2).

Correlation between SCNPC and environmental factors in the
P. massoniana forest
There was a significant correlation between SCNPC and environmental factors at different
altitudes in the P. massoniana forest. Among them, the SOC, TN, AN, and TP of the
topsoil in the P. massoniana forest had a significantly positive correlation with eCa, SMC,
clay, silt, EEG, and TG (R > 0.272), and a significantly negative correlation with SBD and
sand (R < −0.396, P < 0.05, Fig. 4). The SOC, TN, AN, and TP of the subsoil in the P.
massoniana forest were positively correlated with SMC, EEG, and TG (R > 0.339), and
negatively correlated with SBD (R <−0.422, P > 0.05). The AP of the P. massoniana forest
was negatively correlated with the SMC of the topsoil (R = −0.104) and the TG of both
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Full-size DOI: 10.7717/peerj.15198/fig-3

the topsoil (R = −0.122) and subsoil (R = −0.042). In addition, there are also significant
correlations among various environmental factors, such as altitude (Alt) and slope (Slp),
pH, Silt, TG, etc.

Relationships between SCNPC and environmental factors in the
P. massoniana forest based on stepwise multiple regression analysis
The ten stepwisemultiple regression equations, between SCNPC and environmental factors
in the topsoil and subsoil of the P. massoniana forest, were significant (P < 0.05, Table 1).
The main influencing factors of SCNPC differed significantly among different soil layers
(Fig. 5). In the topsoil, the environmental variables retained in the five regression equations
jointly explained 86.56, 77.59, 67.96, 73.67, and 15.95% of the vertical variability of SOC,
TN, AN, TP, and AP contents vertical variability, respectively (Table 1). Among them, the
cumulative explanatory rates of TG, SMC, Silt, SBD, and Alt to the explainable part in
the SOC, TN, AN, TP, or AP of the topsoil were all greater than 88.72%. The cumulative
explanatory rates of TG and Alt to AP of topsoil were equal to 93.25%. The cumulative
explanatory rates of TG and SMC to the explainable part of SOC, TN, AN, TP and AP
in the topsoil amounted to 45.28–77.33% (Fig. 5). These results indicate that TG, soil
physical properties (SMC, Silt, and SBD), and Alt may be important factors influencing
the variation in SCNPC of topsoil in the P. massoniana forest of karst mountains along an
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altitudinal gradient, with TG and SMC being the main influencing factors. In the subsoil,
the environmental variables retained in the five regression equations jointly explained
68.82, 69.72, 64.52, 72.63, and 8.06% of the vertical variability SOC, TN, AN, TP, and AP
contents, respectively (Table 1). Among them, the cumulative explanatory rates of SMC
and EEG to the explainable part of SOC and TN was greater than 92.95%. The cumulative
explanatory rates of SMC and TG to the AN was 86.89%. The cumulative explanatory rates
of SMC (>25.99%), Slp, silt, SBD, and clay to TP was greater than 10%, while AP was only
explained by the TG (Fig. 5). These results indicate that there are significant differences
in the main influencing factors of subsoil C, N, and P, where SMC, TG, and EEG are
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Table 1 Stepwise multiple regression equation of SCNPC versus environmental factors in the topsoil
and subsoil in the P. massoniana forest.

Soil layers Stepwise multiple regression equation R 2 P

topsoil SOC=−141.80+ 55.06TG+ 0.052Alt+ 0.36SMC
−4.01pH+ 18.52SBD+ 0.12Silt+ 0.73Clay+ 0.24Slp

0.8656 <0.001

topsoil TN=−8.36+ 2.59TG+ 0.0023Alt+ 0.017SMC+ 0.28pH
+ 0.83SBD+ 0.016Silt

0.7759 <0.001

topsoil AN=−653.40+ 245.42TG+ 0.18Alt+ 0.42SMC+
40.83pH+ 0.97Silt

0.6796 <0.001

topsoil TP=−1.22+ 0.23TG+ 0.0003Alt+ 0.0031SMC+
0.065pH+ 0.16SBD+ 0.0021Silt

0.7367 <0.001

topsoil AP= 3.66−2.14TG−0.0009Alt+ 1.1EEG 0.1595 = 0.017
subsoil SOC=−20.52+ 0.15SMC+ 62.56EEG

−1.88pH+0.0077Alt
0.6882 <0.001

subsoil TN=−1.32+ 0.0093SMC+ 0.00044Alt+ 2.46EEG 0.6972 <0.001
subsoil AN=−56.83+ 0.49SMC+ 0.039Alt+ 159.85TG

−9.59pH
0.6452 <0.001

subsoil TP=−0.82+ 0.0031SMC+ 0.00025Alt+ 0.15TG+
0.0057Slp+ 0.028pH+ 0.16SBD−0.013Clay+ 0.0025Silt

0.7263 <0.001

subsoil AP= 1.06−1.07TG 0.0806 = 0.044

Notes.
topsoil, 0–20 cm soil; subsoil, 20–40 cm soil; SOC, soil organic carbon; TN, soil total nitrogen content; AN, soil available
nitrogen content; TP, soil total phosphorus content; AP, soil available nitrogen content; Alt, altitude; Slp, slope; SBD, soil
bulk density; SMC, soil moisture content; Clay, percentages of soil clay (< 0.002 mm); Silt, percentages of soil silt (0.002–
0.05 mm); EEG, easily extractable glomalin-related soil protein; TG, total glomalinrelated soil protein; R2, coefficient of de-
termination; P, p value.

important factors that affect SCNPC of subsoil in P. massoniana forests of karst mountains
along an altitudinal gradient (Fig. 5).

DISCUSSION
Changes in SCNPC of the P. massoniana forest at different altitudes
In the karstmountainP. massoniana forests in central Guizhou, the soil carbon andnitrogen
contents showed a unimodal trend (that is, there is only a single highest point of 1,500
m a.s.l.) with increasing altitude (Figs. 3A–3C), whereas the that of phosphorus content
showed no obvious trend (Figs. 3D & 3E). This is consistent with the research results in
karst mountain ecosystems (Liu et al., 2022a; Liu et al., 2022b) and other ecosystems (Guo
et al., 2022;Hou et al., 2019). Previous studies have shown that there is an obvious covariant
relationship between soil carbon and nitrogen (Tashi et al., 2016; Yin, Wang & Zhou, 2022).
As the surface runoff in karst areas is small, the scouring and leaching effect of runoff on
the topsoil is weakened, and hance, the storage of soil carbon and nitrogen is determined
by the balance between carbon and nitrogen inputs from net primary productivity and
outputs through microbial decomposition (Schlesinger, 1990).

As hypothesized by Reich & Oleksyn (2004), low temperatures slow down biogeo-
chemical cycles (e.g., carbon cycle). As altitude increases, soil temperature decreases, water
content increases, microbial and soil animal activity decreases, decomposition of apoplastic
matter decreases, thereby weakening the mineralization of organic carbon and nitrogen
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Figure 5 The contribution rate of environmental factors to the explained variation in SCNPC in the
topsoil and subsoil. SOC, soil organic carbon; TN, soil total nitrogen content; AN, soil available nitrogen
content; TP, soil total phosphorus content; AP, soil available nitrogen content; Alt, altitude; Slp, slope;
SBD, soil bulk density; SMC, soil moisture content; Clay, percentages of soil clay (< 0.002 mm); Silt,
percentages of soil silt (0.002–0.05 mm); EEG, easily extractable glomalin-related soil protein; TG, total
glomalin-related soil protein.

Full-size DOI: 10.7717/peerj.15198/fig-5

and increasing the input of organic compounds, thus increasing SOC (Bangroo, Najar &
Rasool, 2017; Reich & Oleksyn, 2004). However, this assumption is based on the fact that
the input of net primary productivity is essentially the same at all altitudes. Therefore, the
reason for the unimodal trend of soil nutrients along an altitudinal gradient may be mainly
caused by altitude changes and differences in organic matter inputs. At 1,200–1,500 m
a.s.l., the forest development time (approximately 50 a) and stand age were the same, and
the net primary productivity inputs to soils were the same, and hance, the low apoplastic
decomposition rate and low soil mineralization based in altitude eventually made the
inputs of carbon and nitrogen increase with altitude. At 1,600 m a.s.l., the growth of P.
massoniana may be affected by the lower average annual temperature and winter frost at
the top of the mountain, and there is an obvious upper altitude limit (Zhou, 2001; Qi et
al., 2016) and the development time of the forest community is approximately 10 a, and
hance, the primary productivity is significantly lower than that of the forest at 1,200–1,500
m a.s.l., and the input of organic matter such as apoplankton is extremely low. Therefore,
the soil carbon and nitrogen of the forest community decreased abruptly when the altitude
increased to 1,600 m a.s.l.. Therefore, the soil carbon and nitrogen in the karst mountain
P. massoniana forest showed a trend of increasing first and then decreasing. In contrast
to carbon and nitrogen, which are mainly derived from plant photosynthetic fixation
(Samanta et al., 2011) and atmospheric deposition (Galloway et al., 2004), respectively, the
phosphorus in ecosystems is mainly derived from rock weathering (Walker & Syers, 1976).
Therefore, compared with carbon and nitrogen, the phosphorus cycle in the pedosphere
and biosphere is a relatively closed and slow process (Wu et al., 2013), which may explain
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why the phosphorus cycle in the mountain forest ecosystem had no obvious law related to
the variation in altitude.

Factors influencing SCNPC in the P. massoniana forest
Although the effects of silt, SBD, and Alt cannot be ignored, TG (Li et al., 2022; Percivall et
al., 2022) and SMC (McLauchlan, 2006; Qian, Pan & Sun, 2013; Sheng et al., 2021) may be
the main environmental factors influencing SCNPC of topsoil in the karst P. massoniana
forest. Our study showed that, in the topsoil, the cumulative explanatory rates of TG, SWC,
silt, SBD and Alt to the explainable part of SOC, TN, AN, TP and AP were all greater than
88.72%, and the cumulative explanatory rates of TG and SMC reached 45.28–77.33%,
which were consistent with the results of existing studies (Cai, 2021; Zhang et al., 2019a;
Zhang et al., 2019b). As a metabolite of arbuscular mycorrhizal fungi, TG is an indirect
way for plant and microbial communities to affect soil properties (Li et al., 2015), and
it is beneficial for soil aggregation, quality improvement, and SCNPC storage (Zhang et
al., 2023; Li et al., 2015), which are the main influencing factors effecting SCNPC (Zhong
et al., 2017). Although P. massnoiana is a typical ectomycorrhizal fungal host, a large
number of arbuscular mycorrhizal host plants coexist in P. massoniana forest (Zhang et
al., 2021); therefore, TG has a non-negligible importment effect on SCNPC in topsoil of P.
massoniana forest at different altitudes. Soil moisture is one of the main influencing factors
of hydrologic process and plant growth and recovery, it is also the carrier of substance
circulation in the soil system (Liu et al., 2021; Laio et al., 2001). In this study, there was a
highly significant correlation between SMC and SCNPC, and it is the main factor affecting
SCNPC, which is consistent with the results of existing studies in karst areas (Cai, 2021).
It has been shown that soil moisture and SCNPC have an obvious coupling relationship,
and soil moisture may affect the nutrient restitution process of plants and microorganisms
and the mineralization and nitrification rates of carbon and nitrogen, which in turn have
important effects on SCNPC (Liu et al., 2010; O’Brien et al., 2010; Otieno et al., 2010). In
addition, although the study area receives more than 1,100 mm of rainfall throughout the
year, short-term drought often occurs in the karst areas of the region during the forest
growing season (You et al., 2022), and SMC exerts a critical limiting influence on the
process of elemental biogeochemical cycling in karst forest ecosystems at this time (He et
al., 2021a; He et al., 2021b). Meanwhile, the total soil volume in the study area is small,
and the soil moisture holding capacity is low, and the spatial and temporal variability
of water is high, the influence of SMC should not be neglected. So, soil moisture is the
main factor affecting the vertical variation of SCNPC of topsoil in karst P. massoniana
forest. Silt and SBD are important physical properties that affect the transformation and
effectiveness of soil nutrients such as soil carbon, nitrogen, and phosphorus (Hassink, 1997;
Zhang et al., 2015). SBD and Silt may affect SOC, TN, AN, and TP in topsoil by affecting
the soil moisture (Zhang et al., 2016). Finally, altitude is an important factor influencing
SCNPC in karst P. massoniana forest because it can alter microclimatic conditions such as
temperature and precipitation (Shamsher et al., 2019), which in turn affects soil physical
properties, plant and microbial community structure (Pan et al., 2009; Rezaei & Gilkes,
2005) and ultimately SCNPC (Zhao et al., 2015; Siles et al., 2017).
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In the subsoil, the environmental factors affecting SCNPC are different. SOC and TN
were mainly influenced by SMC and EEG, AN was mainly influenced by SMC and TG,
TP was influenced by several environmental factors, and AP was only influenced by TG.
As with the topsoil, SMC is still the main factor influencing SOC, TN, AN and TP in
the subsoil. However, compared with the topsoil, the main sources of nutrients in the
lower soil are the leaching of nutrients from the upper layer and some plant root-microbial
activities (Liu, Wang & Dai, 2019;Zhao, Zhou & Yan, 2010), so the subsoil is still influenced
by soil moisture. Meanwhile, EEG is also the main factor affecting SOC and TN in the
subsoil, probably because the distribution of AMF roots is much less in the subsoil and the
accumulation and turnover of GRSP is much lower than that in the topsoil, so the newly
produced GRSP (i.e., EEG) has more influence on soil carbon and nitrogen content.

In addition, many studies have shown that a variety of organic acids produced during the
decomposition of P. massoniana apoplast can increase the acidity of the soil (Tong & Ding,
2012). Meanwhile, the decrease in pH facilitates the dissolution of insoluble Ca-P in the
soil, thus increasing the AP (Perez, Smyth & Israel, 2007). However, our study found that
soil pH and Ca were not significantly correlated with AP and stepwise regression analysis
did not reveal significant effects of pH and Ca on SCNPC, suggesting that inorganic
phosphorus in the form of Ca-P may not be the main source of AP in Sargassum pine soils
at different altitudes of karst mountains (Bai, Zhang & Wang, 2001).

CONCLUSIONS
This study revealed significant differences in the SCNPC (SOC, TN, AN, and TP) of the
P. massoniana forest along an altitudinal gradient in the karst mountains of Southwest
China. SOC, TN, and AN showed a significant unimodal model along the altitudinal
gradient, whereas TP and AP showed no defined trends. TG and SMC may be the main
factors affecting the SCNPC of the P. massoniana forest topsoil at different altitudes, while
the main influencing factors of each environmental factor of SCNPC in the subsoil are
significantly different. These findings provide a reference for a better understanding of the
changes in soil properties at different altitudes in karst mountain forest ecosystems, along
with their influencing mechanisms. It is necessary to strengthen research on the feedback
mechanisms of vegetation–soil interactions under altitude gradients to better understand
the altitudinal patterns of soil nutrients in subtropical montane forest ecosystems and
understand their influencing mechanisms.
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