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ABSTRACT

Background. Diabetes and thyroid dysfunction are two closely related endocrine
diseases. Increasing evidences show that gut microbiota plays an important role in
both glucose metabolism and thyroid homeostasis. Meanwhile, copy number variation
(CNV) of host salivary a-amylase gene (AMY1) has been shown to correlate with
glucose homeostasis. Hence, we aim to characterize the gut microbiota and CNV of
AMYT in type 2 diabetes (T2D) patients with or without subclinical hypothyroidism
(SCH).

Methods. High-throughput sequencing was used to analyze the gut microbiota of
euthyroid T2D patients, T2D patients with SCH and healthy controls. Highly sensitive
droplet digital PCR was used to measure AMY1 CN.

Results. Our results revealed that T2D patients have lower gut microbial diversity, no
matter with or without SCH. The characteristic taxa of T2D patients were Coriobac-
teriales, Coriobacteriaceae, Peptostreptococcaceae, Pseudomonadaceae, Collinsella, Pseu-
domonas and Romboutsia. Meanwhile, Escherichia/Shigella, Lactobacillus_Oris, Parabac-
teroides Distasonis_ ATCC_8503, Acetanaerobacterium, Lactonifactor, uncultured bac-
terium of Acetanaerobacterium were enriched in T2D patients with SCH. Moreover,
serum levels of free triiodothyronine (FT3) and free thyroxine (FT4) in T2D patients
were both negatively correlated with richness of gut microbiota. A number of specific
taxa were also associated with clinical parameters at the phylum and genus level. In
contrast, no correlation was found between AMY1 CN and T2D or T2D_SCH.
Conclusion. This study identified characteristic bacterial taxa in gut microbiota of T2D
patients with or without SCH, as well as the taxa associated with clinical indices in T2D
patients. These results might be exploited in the prevention, diagnosis and treatment
of endocrine disorders in the future.

Subjects Genomics, Microbiology, Molecular Biology, Diabetes and Endocrinology, Gastroen-
terology and Hepatology

Keywords Type 2 Diabetes Mellitus, Subclinical hypothyroidism, Gut microbiota, DNA copy
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INTRODUCTION

Diabetes and thyroid dysfunction are the two most common endocrine diseases, and they
have become public health concerns in China due to their increasing prevalence, multiple
complications and lifelong treatment (Lambrinou, Hansen & Beulens, 2019; Shan et al.,
2016; Wang et al., 2017). Numerous studies have suggested a possible interaction between
two diseases. On the one hand, both type 1 and type 2 diabetics have a higher incidence of
thyroid diseases than general population, with subclinical hypothyroidism (SCH) occurs
most frequently in diabetic patients (Sotak, Felsoci ¢ Lazurova, 2018). On the other hand,
patients with hyperthyroidism and hypothyroidism are also at increased risk for diabetes
(Biondi, Kahaly & Robertson, 2019).

The causes of endocrine metabolic diseases are very diverse and complex, mainly
including genetic predisposition and environmental factors (Hu, 2003). Environmental
factors are relatively controllable and play a very important role: increasing studies have
confirmed that environmental factors for example diet and physical activity, are closely
related to obesity, diabetes, other endocrine and metabolic diseases (Jebb ¢» Moore, 1999;
Lambrinou, Hansen ¢ Beulens, 2019). Gut microbiome has been neglected as symbiotic
microorganisms. In the past, more attention has been paid to the association between
endocrine metabolic diseases and common environmental factors such as lifestyles.
However, they are not the whole story. Regarded as the “virtual organ” of human
body, gut microbiota and their metabolites such as short-chain fatty acids (SCFAs)
have been demonstrated to have great effects on host physiology, including energy
homeostasis, vitamin synthesis, immune modulation and maintenance of gastrointestinal
barrier (LeBlanc et al., 2013; Natividad & Verdu, 2013; Sekirov et al., 2010). A balanced gut
microbiota requires a great number of microorganisms in the intestinal microecology to
live in harmony by adopting mutualistic strategies, and the eubiosis condition of the gut
microbiota is of great importance to human health. Thus, the alternation in the species
and proportion of gut microbiota can affect the physiological condition of human body
even promote the occurrence and development of certain gastrointestinal and systemic
diseases including autoimmune diseases, metabolic disorders, mental diseases and even
cancer (Bhattarai, Muniz Pedrogo ¢ Kashyap, 2017; Dinan ¢ Cryan, 2017; Parekh, Balart
& Johnson, 2015; Wong & Yu, 2019).

Numerous studies have shown that gut microbes and SCFAs could indirectly regulate
energy homeostasis and insulin signaling, as well as low-grade inflammation, which may
further influence the pathogenesis of type 2 diabetes (T2D) (Kimura et al., 2013; Qin et al.,
20125 Tai, Wong & Wen, 2015). Zhang et al. (2013) investigated the correlation between
glucose intolerance and human gut microbiota in a Chinese population using 16S rRNA
sequencing. It revealed the composition and diversity of gut microbiota had already
changed in the prediabetes (Zhang et al., 2013). Moreover, a balanced gut microbiota is
not only important in nutrients metabolism, immune regulation and maintenance of
the gut barrier, but also beneficial for thyroid function. Increasing studies suggested that
gut microbiota could modulate thyroid homeostasis through various mechanisms: on
the one hand, it affects the synthesis of thyroid hormones by acting on the absorption
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of thyroid-related micronutrients such as iodine, iron, copper and vitamin D (Fréhlich
e Wahl, 2019; Knezevic et al., 2020); on the other hand, it influences the metabolism
and storage of thyroid hormones by regulating immune responses, intestinal barrier
and iodothyronine-deiodinases activity (Nguyen et al., 1993; Sasso et al., 2004; Virili et al.,
2018). Recently, by using rodent model, Khakisahneh et al. (2021) demonstrated that both
states of hyperthyroidism and hypothyroidism were associated with gut microbial diversity
and composition. A cross-sectional study also revealed the correlation between L-thyroxine
treatment and certain species of gut microbes in subclinical hypothyroidism subjects (Yao
et al., 2020). However, the links between gut microbiota and thyroid function are still less
systematically investigated.

Copy number (CN) variation (CNV) in human genome provides new insights into the
heritability of human diseases including T2D, where CNV affects the disease susceptibility
via shaping the gene expression level (Bae et al., 2011; Santos et al., 2012). The salivary «-
amylase gene (AMY1) encodes the enzyme responsible for dietary starch digestion, which
typically ranges from one to 27 copies with a high within-population variability (Fernandez
& Wiley, 2017). 1t is thought the CNV of AMY1 is the result of natural selection, as an
increase in AMY1 CN could have been caused by the adaptation to high-starch foods during
the Neolithic agriculture transition (Kelley ¢ Swanson, 2008; Perry et al., 2015). Meanwhile,
studies have reported that lower «-amylase activity and AMY1 CN are associated with the
prevalence of obesity, insulin resistance and the susceptibility to metabolic disorders
(Choi et al., 2015; Falchi et al., 2014; Nakajima et al., 2011; Viljakainen et al., 2015). Indeed,
higher «-amylase activity and AMY1 CN are associated with faster digestion of starch food
(Atkinson et al., 2018). In contrast, individuals with lower AMY1 CN are less able to digest
starch (Poole et al., 2019). Given that the capacity of starch digestion is closely related to
postprandial glucose level (Atkinson et al., 2018; Mandel & Breslin, 2012; Nakajima, 2016),
which could further influence the incidence of insulin resistance and T2D, understanding
the possible role of AMY1 genetic polymorphisms in T2D is of great importance, which
could eventually benefit T2D patient with personalized nutrition.

Therefore, in order to clarify host-microbe interactions in T2D patients with thyroid
disorders, and determine the potential role of genetic and environmental factors in
glucose metabolism and thyroid homeostasis, here we investigated the profile of gut
microbiotaand AMY1 CNV in T2D patients with or without SCH by 16S rRNA sequencing
and droplet digital PCR (ddPCR) separately, and identified specific taxa of gut microbiota
associated with T2D and SCH. Additionally, the correlations between clinical parameters
and gut microbiota in patients were also analyzed, and it was found that clinical indicators
related to glucose metabolism and thyroid function also correlated with some specific
taxa. This study may help enrich the understanding regarding to the profound association
between human gut microbiota and endocrine diseases.

MATERIALS & METHODS

Participants
A total of sixty participants were enrolled between August and November, 2020, including
30 euthyroid T2D patients and 15 T2D patients with SCH recruited from the inpatient
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department of endocrinology and 15 healthy individuals recruited from the medical
examination center at Xinxiang First People’s Hospital. Three groups were matched for
gender, age and BMI. The diagnostic criteria of T2D were based on the 1999 WHO
diagnostic criteria for diabetes, and SCH was diagnosed as TSH>4.2 mIU/L without any
abnormality of FT3 and FT4. None of the patients had received thyroid hormone therapy.
Subjects containing the following conditions were excluded: age<18 years or >70 years, a
known history of severe trauma, surgery and bowel diseases, use of antibiotics or probiotics
within last three months, pregnancy, lactation, suffer from acute or chronic diarrhea
recently, and a known history of other endocrine diseases.

All procedures and amendments of this study were approved by the Ethics Committee
of School of Public Health, Lanzhou University (IRB20033001). Informed consent was
obtained from all participants enrolled in this study.

Sample collection

Fecal samples were collected with screw-cap sterile plastic bottles. Once collected, the stool
samples were transferred to the laboratory on dry ice and stored in —80 ° C. After an
overnight fast (>8 h), peripheral blood samples of the hospitalized patients (T2D group
and TD_SCH group) were collected for further medical examination, including FBG, PBG,
HbAlc, FT3, FT4, TSH, TG, total cholesterol TCH, HDL-C, LDL-C and serum albumin.

Droplet digital PCR analysis of AMY1 CN

Human genomic DNA was isolated from stool samples following manufacturer’s
protocol (isolation of DNA from stool for human DNA analysis, QlAamp DNA
Stool Mini Kit, QTAGEN). The copy number of the AMY1 gene was determined by
ddPCR using QIAcuity One Digital PCR System (Qiagen, Hilden, Germany). The
primers and probes used to detect target gene AMY1 and reference gene Near AMY
are (Usher et al., 2015): AMY1_assay2-forward: 5'-TGTTTGCAAGGAGGTCTTCTC-
3, AMY1_assay2-reverse: 5'-TTGGCCTTTCATCTGTGATTT-3’, and AMY1_assay2
Probe 5 -FAM-AAATGATTCCCGAAACTGTAGC-MGB-3’; Near AMY-forward: 5'-
AAATTTATTGGAGGGATGTTGG-3', Near_ AMY-reverse: 5-TTCAAGTTTGACTGCT
AACTCCTG-3',and Near_AMY Probe 5'-VICTGGAATAAAGAATCATTGGGCACAGGT-
MGB-3'. The data were acquired using QuantStudio 3D Analysis Suite software. AMY1
CN was further calculated by the ratio between AMY1 and Near_ AMY CN.

16S rRNA sequencing

Bacterial genomic DNA was isolated from stool samples following the manufacturer’s
protocol (isolation of DNA from stool for pathogen, QIAamp DNA Stool Mini

Kit, QIAGEN). V3 and V4 regions of 16S rRNA was amplified with following
primers: forward primer: 5-CCTACGGGNGGCWGCAG-3'and reverse primer: 5'-
GACTACHVGGGTATCTAATCC-3', with adaptor sequences and sample-specific index
sequences. The amplicons were sequenced with NovaSeq 6000 SP Reagent Kit (Illumina,
San Diego, CA, USA) by Illumina NovaSeq 6000 sequencer (Illumina, San Diego, CA,
USA).
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Bioinformatic analyses

The raw reads were processed in QIIME 2. The adaptor and primer were removed by
Cutadapt plugin. Quality control and amplicon sequence variants (ASVs) exaction were
conducted by DADA?2 plugin. Taxonomic assignments of ASV representative sequences
were conducted by Naive Bayes classifier trained on the Greengenes (version 13.8) with
confidence threshold 0.8. Mothur was used to analyze the microbial alpha diversities
among groups. Principal Coordinate Analysis (PCoA) based on Bray-Curtis distance
matrices and partial least squares discriminant analysis (PLS-DA) were used to assess beta
diversity among groups (Lee, Liong ¢ Jemain, 2018). Partition Around Medoids (PAM)
clustering over Jensen—Shannon divergence (JSD) distance was used to analyze enterotype
composition. Specifically, JSD matrix was calculated based on the relative abundance

in the community at genus level. The optimal number of clusters was determined by
the Calinski-Harabasz (CH) index (Arumugam et al., 2011). Permutational multivariate
analysis of variance (PERMANOVA) was conducted to assess the significance of the
difference within gut microbiota composition based on the UniFrac distances with 9999
permutations (Schnorr et al., 2014). Linear discriminant analysis effect size (LEfSe) was
performed in a web-based platform (Afgan et al., 2018) with a threshold of LDA score set
at 2.0 to screen characteristically taxa that can most likely to explain the difference of gut
microbiota among three groups.

Statistical analysis

Kolmogorov—Smirnov test was used to test the normality of continuous variables. Chi-
square test was used to analyze whether the distribution of sex was different among groups.
The distribution of age, BMI, AMY1 CN and alpha diversity parameters of gut microbiota
among three groups were compared by using Kruskal-Wallis test. The association between
serum biochemical indices and gut microbial diversity and composition was analyzed by
Spearman’s correlation. All analysis was performed by using IBM SPSS software version
21 (IBM, Chicago, IL, USA). P<0.05 were considered significant.

RESULTS

Baseline characteristics of participants

Total of 60 subjects participated in our study, including 30 euthyroid T2D patients (T2D
group), 15 T2D patients with SCH (T2D_SCH group) and 15 healthy controls (C group).
Gender, age, and body mass index (BMI) of three groups were matched. As shown in
Table 1, the distribution of them were not significantly different among three groups.
Clinical characteristics including serum biochemical parameters and medication of T2D
group and T2D_SCH group are listed in Table S1.

Figure 1A indicated the distribution of AMY1 CN of participants, which ranged from 1
to 14 with a median of 3.59. The AMY1 CN in T2D group ranged from one to nine, and
ranged from one to 8 in T2D_SCH group. In control group, it was from 1 to 14. As shown
in Fig. 1B, the median AMY1 CN among T2D group (4.29), T2D_SCH group (3.29) and C
group (3.30) are not statistically significant. Meanwhile, no correlation was found between
AMY1 CN and clinical parameters in patients with T2D and T2D_SCH (Fig. S1).
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Table 1 Basic characteristics of study participants.

T2D T2D_SCH Control P value
n 30 15 15
Gender (male) 20 (66.7%) 8 (53.3%) 8 (53.3%) 0.573
Age (years) 53.97 +9.33 50.53 +9.93 49.6 + 6.61 0.236
BMI (kg/m?) 25.03 £ 2.93 25.46 + 2.82 24.58 + 2.67 0.672

Notes.
Age and BMI data are shown as mean =+ SD.
BMI, body mass index; T2D, type 2 diabetes; T2D_SCH, type 2 diabetes with subclinical hypothyroidism.
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e} n.s. |
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Figure 1 The distribution of AMY1 CN in the study population. (A) The distribution of AMY1 copy

number in different groups. The AMY1 CN was rounded to nearest integer. (B) The median of AMY1 CN

was compared among T2D, T2D_SCH and C group. n.s. indicates no significant difference (P > 0.05).
Full-size & DOI: 10.7717/peerj.15193/fig-1

Microbiome profile of the study population

A total of 5,674,655 raw reads were obtained from all 60 fecal samples via high-throughput
sequencing. After carrying out a series of quality control and sequence optimization
measures, 3,946,444 high-quality reads from all samples were collected with nearly 30% of
raw data were filtered.

Overall gut microbiota composition of all subjects at the phylum level was shown
in Fig. 2. The dominant bacterial phyla of all participants were Firmicutes (62.35%),
Bacteroidetes (14.56%), Proteobacteria (13.10%), and Actinobacteria (8.88%). Both the
distribution of four phyla (P = 0.544; 0.223; 0.531; 0.180) and the ratio of Firmicutes/
Bacteroidetes (P = 0.344) is not statistically different among three groups.

Next, the gut microbial richness (ACE and Chaol indices) and diversity (Shannon
and Simpson indices) among three groups were compared. As shown in Figs. 3A and
3B, compared with healthy control, both T2D patients and T2D patients with SCH have
lower gut microbial diversity, as indicated by significantly lower Shannon index and higher
Simpson index (P = 0.032; 0.028). However, the difference between T2D_SCH group
and T2D group was not statistically significant (P = 0.608; 0.706). As for gut microbial
richness, ACE and Chaol indices exhibited an increasing trend in healthy control, although

Lv et al. (2023), PeerdJ, DOI 10.7717/peerj.15193 6/26


https://peerj.com
https://doi.org/10.7717/peerj.15193/fig-1
http://dx.doi.org/10.7717/peerj.15193

Peer

Il “ ‘N B

)

lll,-J

| ‘ ‘

Figure 2 Gut microbiota composition at the phylum level of all participants (A) and each group (B).
Full-size &l DOI: 10.7717/peer;j.15193/fig-2
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the difference was not statistically significant among three groups (P = 0.223; 0.208) (Figs.
3C and 3D). Low gut microbial diversity often occurs in individuals with other metabolic
and inflammatory disorders such as obesity, non-alcoholic fatty liver disease, high blood
pressure, and inflammatory bowel disease (Le Chatelier et al., 2013; Shen et al., 2017; Sun
et al., 2019).

In terms of the similarity of microbiota communities among groups, a clustered
tendency, which represented a relatively stable microbial community was shown in
control group (Fig. 4A). The microbial beta diversity among three groups was significantly
different (P < 0.01), despite that these groups were not distinctly separated on the PCoA
plots. However, when PERMANOVA was conducted only between T2D and T2D_SCH
groups, the beta diversity was not significantly different (Fig. S2). To further analyze
the structural difference of gut microbial community among three groups, a supervised
method-partial least squares discriminant analysis (PLS-DA) was performed across all
samples. The result showed that the three groups were distinctly separated on the PLS-DA
plots (Fig. 4B). Moreover, we further analyzed the microbiota according to the distribution
of dominant genera by PAM-JSD method, and all the 60 samples were stratified into three
enterotypes: enterotype 1 (Ruminococcaceae), enterotype 2 (Prevotella) and enterotype
3 (Bacteroides). It was confirmed that Ruminococcaceae, Prevotella and Bacteroides were
predominant in enterotype 1, enterotype 2 and enterotype 3 (Fig. S3). Then PCoA analysis
was performed at the genus level to visualize the three enterotypes, which showed that their
microbial composition was distinctly different (Fig. 4C, P<0.01). The distribution of the
three enterotypes among three groups was also analyzed, however, there was no statistical
significance (Fig. 4D, Fisher’s exact test P =0.083).

Microbiome signatures of T2D patients with or without SCH

To identify the characteristic bacterial taxa of T2D patients and T2D patients with
SCH, linear discriminant analysis effect size (LEfSe) analysis was used to compare
the composition of gut microbiota among three groups. As shown in Fig. 5, 18
discriminative features have been identified among three groups. The characteristic
taxa of T2D group were Coriobacteriales, Coriobacteriaceae, Peptostreptococcaceae,
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Figure 3 Box plots of alpha diversity among three groups on the basis of Shannon (A) Simpson (B)
ACE (C) and Chaol (D) indices, all base on ASV level.
Full-size & DOI: 10.7717/peer;j.15193/fig-3

Pseudomonadaceae, Collinsella, Pseudomonas and Romboutsia (Fig. 5A). Among them,
the genus Collinsella belongs to the Coriobacteriaceae family, Coriobacteriales order, the
genus Romboutsia belongs to the Peptostreptococcaceae family and the genus Pseudomonas
belongs to Pseudomonadaceae family (Fig. 5B). Escherichia/Shigella, Lactobacillus_Oris,
Parabacteroides_Distasonis_ ATCC_8503, Acetanaerobacterium, Lactonifactor and
uncultured bacterium of Acetanaerobacterium were enriched in the T2D_SCH group.
Among them, Collinsella was also reported enriching in T2D patients by Zhang et al.
(Zhang et al., 2013), and Escherichia-Shigella was reported to involve in production of
secondary bile acid, increase of which was observed in serum of overweight T2D patients
(Suhre et al., 2010). In the control group, Faecalibacterium, Coprococcus, Coprobacillus,
Odoribacter and Bacteroides_intestinalis were more concentrated. These taxa may be used
as potential biomarkers for discrimination of T2D and T2D_SCH, which may help to
distinguish T2D patients with SCH and to assess the risk of SCH in T2D patients.
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Correlation analysis of clinical indices and gut microbiota

To further assess the relationship between gut microbiota and host metabolic status mainly
including glucose metabolism and thyroid function, Spearman’s rank correlation was
conducted in T2D and T2D_SCH groups. First, the correlation between host clinical
parameters and gut microbial diversity was explored. As shown in Fig. 6, serum levels of
both free triiodothyronine (FT3) and free thyroxine (FT4) were negatively correlated with
gut microbial richness (ACE and Chaol indices). Moreover, FT4 level was also negatively
correlated with Shannon index. These results demonstrated that gut microbial richness
decreased as serum FT3 and FT4 levels increased, and increased FT4 level may also be
accompanied with a low gut microbial diversity in T2D patients.

The correlation between abundances of gut microorganisms and clinical parameters of
T2D patients was also analyzed. As shown in Fig. 7, at the phylum level, serum FT3 level
was correlated with the relative abundance of Firmicutes and Bacteroidetes, indicating that
with the increase of FT3, the proportion of Firmicutes increased and that of Bacteroidetes
decreased. And there were negative correlations between fasting blood glucose (FBG) level
and the abundances of both Parcubacteria and Proteobacteria, while postprandial blood
glucose (PBG) was only negatively correlated with Parcubacteria. Serum lipid levels were
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Figure 7 Heatmap of correlations between abundances of intestinal bacteria and clinical indicators of
T2D patients at the phylum level. The color bar with numbers indicates the correlation coefficients. P-
values are shown by asterisks (*: P < 0.05; **: P < 0.01).
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also correlated with some specific taxa at the phylum level: total cholesterol (TCH) level was
negatively correlated with both Bacteroidetes and Synergistetes, and both high- (HDL-C)
and low-density lipoprotein cholesterols (LDL-C) levels were negatively correlated with
Synergistetes. Moreover, serum albumin was correlated with the abundances of Firmicutes
positively, and the abundances of Proteobacteria negatively. At present, the contribution
of Firmicutes or Bacteroidetes in the incidence of T2D is still being debated. In our study
though no correlation between blood glucose and Firmicutes or Bacteroidetes was observed,
here we showed that the level of FT3 in T2D patients was correlated with the abundance
of Firmicutes positively, and the abundance of Bacteroidetes negatively. Thus, the debate
on the contribution of Firmicutes to T2D may consider more about other physiology
perspectives such as thyroid function.

At the genus level (Fig. 8), clinical indicators related to glucose metabolism and
thyroid function also correlated with some specific taxa: FBG level was correlated
with Parasutterella positively, but Escherichia/Shigella negatively. There is evidence
demonstrating that Parasutterella in gut could change the metabolism of aromatic amino
acid, bile acid derivatives, etc. in mice, suggesting that Parasutterella is closely related
to various metabolic processes (Ju et al., 2019). No taxon was correlated with PBG and
hemoglobin Alc (HbAlc) levels. As for the association between thyroid function and
abundances of gut microbiota, Adlercreutzia, Blautia, Clostridium_XVIII, Fusicatenibacter,
Gemella, Lachnospiracea_incertae_sedis and Rothia were positively correlated with serum
FT3 level, while Alistipes, Bacteroides, Bilophila, Catenibacterium, Oscillibacter and
Parabacteroides were negatively correlated with FT3. FT4 level was to decrease in line
with the increase of Anaerobacterium, Anaerovorax, Clostridium_IV, Enterococcus and
Slackia. And thyroid stimulating hormone (TSH) level was positively correlated with
Coprobacillus, Lactobacillus, Parabacteroides and Pediococcus, while negatively correlated
with Acinetobacter and Rcinetobacter. In terms of serum lipid levels, both TCH and
triglyceride (TG) levels were positively correlated with Granulicatella, Gemella, Leuconostoc
and Solobacterium, while negatively correlated with Anaerotruncus and Oscillibacter.
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of T2D patients at the genus level. The color bar with numbers indicates the correlation coefficients. P-
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Erysipelotrichaceae_incertae_sedis was to decrease in line with the increase of all TCH, HDL-
C and LDL-C levels. Both TCH and LDL-C were negatively correlated with Dialister and
Parabacteroides; both TCH and HDL-C were correlated with Lachnospiracea_incertae_sedis
positively, but correlated with Christensenella negatively. Apart from the taxa above, TCH
was also positively correlated with Actinomyces, Enterobacter and Klebsiella, while negatively
correlated with Bacteroides, Bilophila and Sporobacter. TG was positively correlated with
Butyricicoccus, Clostridium_XVIII and Peptostreptococcus, while negatively correlated with
Intestinibacter. And HDL-C was to decrease in line with the increase of Cloacibacillus
and Collinsella. Meanwhile, AMY1 CN was found to be correlated with specific taxa of
gut microbes (Table 52). At the genus level, AMY1 CN were positively correlated with
Granulococcus, Klebsiella, Escherichia/Shigella and Rothia, while negatively correlated with
Sporobacter, Anaerovorax, Clostridium_IV, Alistipes, Bacteroides and Parabacteroides.
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DISCUSSION

In this study, the characteristics of gut microbiome and AMY1 CNV in T2D patients with
or without SCH were explored. The correlation between the clinical parameters and gut
microbiota composition and diversity was analyzed in patients as well.

Although it is hard to define exactly what a balanced gut microbiota is, dysbiosis of
flora is often associated with excess of pathobionts and reduced microbial diversity (Levy
et al., 2017). In our study, compared to healthy individuals, the gut microbial diversity of
patients with T2D was significantly reduced, which was consistent with previous studies
(Chdvez-Carbajal et al., 2020; Jandhyala et al., 2017; Leiva-Gea et al., 2018). However, we
failed to get statistically significant result in the reduction of gut microbial richness in
T2D patients, similar result was reported in a Denmark study targeting on T2D patients
(Larsen et al., 2010). We also found that T2D patients with SCH have lower gut microbial
diversity compared to healthy individuals, although the difference between T2D_SCH
group and T2D group was not statistically significant. Moreover, one of our key findings
was that serum levels of both FT3 and FT4 were negatively correlated with gut microbial
richness (ACE and Chaol indices). And FT4 level was also negatively correlated with
microbial diversity (Shannon index) in T2D patients. Similarly, another study targeting
Chinese population showed that patients with primary hypothyroidism had significantly
less diversity of gut microbiota than healthy controls, and transplantation of the patients’
gut microbiota resulted in hypothyroidism in mice (Su ef al., 2020). There is no doubt that
high diversity of microbial taxa provides a more exhaustive crosstalk between the microbial
and host metabolism (Palau-Rodriguez et al., 2015).

In our study, no significant difference in the composition of gut microbiota was found
among three groups at the phylum level. Previous studies demonstrated that higher ratio
of Firmicutes/Bacteroidetes was linked to Western lifestyles and obesity (De Filippo et al.,
2010; Ley et al., 2005). However, recent studies indicated that the abundance of Firmicutes
appeared to be more associated with impaired carbohydrate metabolism than obesity
(Muiioz Garach, Diaz-Perdigones ¢ Tinahones, 2016). At the same time, the contribution
of Firmicutes or Bacteroidetes in the incidence of T2D is still being debated. One study
found increased abundance of Firmicutes and reduced Bacteroidetes in obese T2D patients
in which Firmicutes also appeared a positive correlation with the FBG level (Ahmad et al.,
2019). In contrast, a significant reduction in the proportion of the Firmicutes phylum was
observed in T2D patients in another study, where the ratio of Bacteroidetes to Firmicutes
was positively correlated with blood glucose concentration, but not with BMI (Larsen ef al.,
2010), and even in prediabetes, the decreased abundance of Firmicutes was also observed
(Chdvez-Carbajal et al., 2020). Moreover, the debate on the contribution of Firmicutes to
T2D may consider more about other physiology perspectives such as thyroid function.
According to recent researches, the Firmicutes/Bacteroidetes ratio was significantly elevated
in primary hypothyroidism patients (Su et al., 2020), and the same result was also reported
in euthyroid patients with Hashimoto’s thyroiditis (Zhao et al., 2018). It was also indicated
that Firmicutes was enriched in patients with thyroid carcinoma (Feng et al., 2019). In
fact, both Firmicutes and Bacteroidetes are involved in producing SCFAs, thus more
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concentration should be paid on specific species rather than just comparing at the phylum
level (Cani et al., 2012). Additionally, in this study, enterotype analysis was also performed
and all samples were stratified into three enterotypes. Although no significant difference
in enterotype distribution has been found among three groups, there is a tendency that
the proportion of enterotype 1 (Ruminococcus) was higher in T2D (30%) and T2D_SCH
(40%) groups compared to healthy control (13.3%). Similar result has been reported by Al
Bataineh et al., where Ruminococcus enterotype was enriched in T2D patients (Al Bataineh
et al., 2020). Meanwhile, there is evidence that increased Prevotella abundance has been
linked to T2D, which was also observed in our study (T2D vs C) (Larsen et al., 2010).

Characteristic bacterial taxa of T2D patients with or without SCH were found in our
study, which may help to distinguish T2D patients with SCH and to assess the risk of SCH
in T2D patients. Compare to T2D patients, T2D_SCH patients are more likely to suffer
from diabetes complications such as diabetic nephropathy (Han et al., 2015; Mansournia et
al., 2017). Moreover, SCH was suggested to be associated with higher risk of cardiovascular
events and metabolic syndrome (Delitala et al., 2017; Delitala et al., 2019). Our results
suggested some biomarkers associated with SCH in T2D patients, which were absent in
patients with T2D only. However, due to the relatively small sample size in this study, our
finding need to be verified in well-powered human studies of large population, since to our
knowledge, our study represents the first investigation on the characteristic taxa of T2D
patients with SCH. Meanwhile, despite that very small differences may not be found due
to the small sample size, we did find certain significant different taxa among three groups,
and some are in consistence with previous reports.

Correlation analysis in this study also demonstrated that FBG level of T2D
patients was positively correlated with Parasutterella, while negatively correlated with
Escherichia/Shigella. Interestingly, in our previous study, Parasutterella was also found to
be a characteristic taxon of overweight/obese people (BMI > 24 kg/m?) (Lv et al., 2019).
Meanwhile, Jang et al. (2019) showed that the abundance of Parasutterella is significantly
reduced in bodybuilders. Also, study in rats have demonstrated that the abundance of
Escherichia coli (E.coli) were greater in T2D group than healthy controls (Li, Zhang ¢
Wang, 2020). In contrast, lower abundance of Escherichia/Shigella in obese individuals with
T2D was observed in a human study (Ahmad et al., 2019). Our study also demonstrated that
Collinsella was one of the characteristic bacteria in T2D group. Consistent with this result,
Zhang et al. (2013) found Collinsella had higher relative abundance in newly diagnosed
T2D patients in a Chinese population. And higher abundance of Collinsella was also linked
to other metabolic disorders such as obesity, atherosclerosis and nonalcoholic fatty liver
disease (Astbury et al., 2020; Gomez-Arango et al., 2018; Karlsson et al., 2012).

Although less work has been done on the reciprocal influence between gut microbiota
and thyroid homeostasis, intestinal flora was reported to play an important part in thyroid
hormones metabolism and enterohepatic recycling (Virili ¢ Centanni, 2015; Virili ¢
Centanni, 2017). To our surprise, both probiotics (Lactobacillus_Oris) and opportunistic
pathogens (Escherichia/Shigella) were defined as characteristic intestinal microbes in
T2D patients with SCH. One study characterized the gut microbiota in hypothyroid
patients with Hashimoto’s thyroiditis, and found that compared to healthy subjects, the
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abundance of Escherichia/Shigella increased in hypothyroid patients (Ishaq et al., 2017).
Greater abundance of E.coli have also been observed in overweight pregnant women
compared with normal weight ones (Santacruz et al., 2010). On the other hand, it has
been demonstrated that certain components/proteins from specific strains of Lactobacillus
and Bifidobacterium may act as antigenic properties of human autoantibodies by sharing
amino acidic sequences with thyroid peroxidase and thyroglobulin (Kiseleva et al., 2011).
According to one recent research, lower relative abundance of Lactobacillus was observed
in thyroid cancer and thyroid nodules, and FT3 was negatively correlated with the genera
Lactobacillus in thyroid nodules patients (Zhang et al., 2019). Zhou et al. also observed that
both Bifidobacterium and Lactobacillus decreased in hyperthyroid individuals (Zhou et al.,
2014). And some animal experiments showed that Lactobacillus has beneficial effect on
thyroid gland homeostasis and bowel permeability (Mu et al., 2017; Varian et al., 2014). In
term of patients with T2D, several studies showed the level of Lactobacillus was significantly
higher in patients, while when it comes to Bifidobacterium, another widely recognized
probiotic, the opposite result occurred (Sato ef al., 2014; Sedighi et al., 2017; Wu et al.,
2010).

Previous studies linking gut microbiome to endocrine diseases such as diabetes and
thyroid disorders had different results. Complex influencing factors of gut microbiota
make the reproducibility of studies reporting associations between the intestinal flora
and diseases a challenge. The characteristics of participants (age, ethnicity, customs, etc.),
differences in study methods and data analysis, may lead to the variations in results from
different studies. Though these issues exist, research on the distribution of intestinal flora
and its relationship with endocrine diseases is necessary in exploring the occurrence and
development of several diseases, helping to better understand the underlying mechanism,
and may benefit to disease prevention and treatment in the future.

Although the distribution and the median of AMY1 CN of our participants were
comparable to what have been reported previously (Falchi et al., 2014; Hasegawa et al.,
20225 Marquina et al., 2019), no significant correlation has been found between AMY1 CN
and T2D or T2D_SCH. Indeed, some studies have described a negative association between
AMY1 CN and diabetes in particular populations. For example, in a Korean population,
AMY1 CN was found negatively correlates with insulin resistance and the incidence of
T2D (Choi et al., 2015; Shin ¢ Lee, 2021). In contrast, in Qatari women, the risk of diabetes
was only associated with low salivary a-amylase activity, but not low AMY1 CN (Al-Ak],
Thompson & Arredouani, 2021). Similarly, another study reported a negative correlation
between salivary a-amylase activity, but not AMY1 CN, with fasting plasma glucose levels in
a French population (Bonnefond et al., 2017). Studies investigating the correlation between
obesity and AMY1 CN also failed to draw a consistent conclusion (Falchi et al., 2014; Usher
et al., 2015; Yong et al., 2016). Besides the variations on study populations and methods,
another possible explanation could be that AMY1 CN is not the solo factor determining
the level of salivary «-amylase (Perry et al., 2007). Other genetic and environmental factors
such as oral health and diet also influence salivary «-amylase production and activity
(Carpenter, Mitchell & Armour, 2017; Granger et al., 2007; Hasegawa et al., 2022; Heianza
et al., 20205 Lawrence, 2002; Nater, Hoppmann & Scott, 2013). Therefore, more attention
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should be paid to the variation of enzyme itself, which together with AMY1 CNV could
lead to a more convincing conclusion in studies targeting metabolic disorders.

However, some limitations still existed in the present study. We did not include SCH
patients without T2D in our participants, so further investigations involving patients with
SCH only are needed to better explore the association between endocrine metabolic diseases
and gut microbiota. Since we may not have had sufficient information about patients’
previous medication such as glucagon-like peptide-1 receptor agonists and statins, which
may influence the gut microbiota composition (Everard ¢ Cani, 2014; Vieira-Silva et al.,
2020), further multivariate analyses are required to explore the contribution of medication
to the gut microbiota of patients with endocrine diseases. Moreover, this is a case-control
study that may fails to prove the chronological order of causes and consequences, thus,
future prospective study and randomized controlled trial are warranted to further evaluate
the causality. Meanwhile, due to the fact that the sample size of this study was limited,
well-powered human studies of large population should also be carried out to further
confirm the impact of alterations in gut microbiota on endocrine and metabolic diseases.

CONCLUSIONS

In this study, characteristic bacterial taxa in gut microbiota of T2D patients with or without
SCH were identified, which might be used as biomarkers in discriminating T2D patient
with SCH and for clinical treatment in future. This work also provides insight into the
relationship between clinical indices and gut microbiota in T2D patients, so as to find
the possible association between human gut microbiota and both glucose metabolism
and thyroid homeostasis, and eventually be exploited in the prevention, diagnosis and
treatment of endocrine disorders.
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