Kukri snakes *Oligodon* Fitzinger, 1826 of the Western Palearctic with the resurrection of *Contia transcaspica* Nikolsky, 1902 (Reptilia, Squamata, Colubridae) (#80933)

First submission

Guidance from your Editor

Please submit by 22 Jan 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

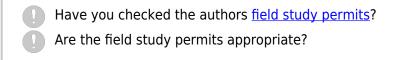
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 7 Figure file(s)
- 5 Table file(s)
- 1 Raw data file(s)


DNA data checks

- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Field study

For assistance email peer.review@peerj.com

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to Peerl standards, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see Peerl policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Kukri snakes *Oligodon* Fitzinger, 1826 of the Western Palearctic with the resurrection of *Contia transcaspica* Nikolsky, 1902 (Reptilia, Squamata, Colubridae)

Justin L Lee ^{Corresp., Equal first author, 1, 2}, Platon V Yushchenko ^{Equal first author, 3, 4}, Konstantin D Milto ⁵, Mehdi Radjabizadeh ⁶, Eskandar Rastegar Pouyani ⁷, Daniel Jablonski ⁸, Rafaqat Masroor ⁹, Suranjan Karunarathna ¹⁰, Ashok Kumar Mallik ¹¹, Princia Dsouza ¹¹, Nikolai L Orlov ⁵, Roman A Nazarov ¹², Nikolay A Poyarkov ^{Corresp. 3, 4}

Corresponding Authors: Justin L Lee, Nikolay A Poyarkov Email address: justinllee@verizon.net, n.poyarkov@gmail.com

The kukri snakes of the genus *Oligodon* Fitzinger, 1826 reach the westernmost limits of their distribution in Middle and Southwest Asia (Pakistan, Afghanistan, Iran, and Turkmenistan). In this paper, we review the taxonomy and distribution of the two species native to this region, *Oligodon arnensis* (Shaw, 1802) and *Oligodon taeniolatus* Jerdon, 1853 based on an integrative approach combining morphological data, molecular data from mitochondrial DNA, and species distribution modeling (SDM). Phylogenetic analyses recover *O. taeniolatus* from Iran and Turkmenistan in the *O. arnensis* species group, rendering the species paraphyletic with respect to *O. taeniolatus* sensu stricto on the Indian subcontinent. To correct this, we resurrect the junior synonym *Contia transcaspica* Nikolsky, 1902 for the Middle/Southwest Asian populations and provide a formal redescription. So far, *Oligodon transcaspicus* comb. et stat. nov. is known only from the Köpet-Dag Mountain Range of northeast Iran and southern Turkmenisan, but SDM mapping suggests it may have a wider range. Genetic samples of *O. "arnensis"* from northern Pakistan are nested in a clade sister to the recently described *Oligodon churahensis* Mirza, Bhardwaj & Patel, 2021, and are phylogenetically separate from *O.*

¹ Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, United States

² Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States

Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, Russia

⁴ Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam

⁵ Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia

⁶ Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

⁷ Hakim Sabzevari University, Sbazavar, Iran

⁸ Department of Zoology, Comenius University in Bratislava, Bratislava, Slovak Republic

⁹ Zoological Sciences Division, Pakistan Museum of Natural History, Islamabad, Pakistan

Nature Explorations and Education Team, Moratuwa, Sri Lanka

¹¹ Center for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India

Zoological Museum, Moscow State University, Moscow, Russia

arnensis sensu stricto in south India and Sri Lanka. Based on morphological similarity, the Afghanistan and Pakistan populations are assigned to *Oligodon russelius* (Daudin, 1803) and we synonymize *O. chuarhensis* with this species. Our investigation leads us to remove *O. taeniolatus* from the snake fauna of Afghanistan, Iran, and Turkmenistan, with the consequence that only *Oligodon transcaspicus* **comb. et stat. nov.** and *O. russelius* are present in these countries. Additional studies are needed to resolve the taxonomy of the *O. taeniolatus* and *O. arnensis* species groups on the Indian subcontinent.

1 Kukri snakes *Oligodon* Fitzinger, 1826 of the Western

2 Palearctic with the resurrection of Contia transcaspica

Nikolsky, 1902 (Reptilia, Squamata, Colubridae)

4

3

- 5 Justin L. Lee^{1,2#*}, Platon V. Yushchenko^{3,4#}, Konstantin D. Milto⁵, Mehdi Radjabizadeh⁶,
- 6 Eskandar Rastegar Pouyani⁷, Daniel Jablonski⁸, Rafaqat Masroor⁹, Suranjan Karunarathna¹⁰,
- 7 Ashok Kumar Mallik¹¹, Princia Dsouza¹¹, Nikolai L. Orlov⁵, Roman A. Nazarov¹², Nikolay A.
- 8 Poyarkov^{3,4}*

9

- 10 1 Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova
- 11 University, Villanova, USA
- 12 ² Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian
- 13 Institution, Washington, DC, USA
- 14 ³ Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow
- 15 Russia
- ⁴ Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
- 17 ⁵ Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
- 18 ⁶ Department of Biodiversity, Institute of Science and High Technology and Environmental
- 19 Sciences, Graduate University of Advanced Technology, Kerman, Iran
- 20 ⁷ Hakim Sabzevari University, Sbazavar, Iran
- 21 8 Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
- ⁹ Zoological Sciences Division, Pakistan Museum of Natural History, Islamabad, Pakistan
- $23\,$ $\,^{10}$ Nature Explorations and Education Team, Moratuwa, Sri Lanka
- 24 11 Center for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- 25 12 Zoological Museum, Moscow State University, Moscow, Russia

26

- 27 Corresponding authors:
- 28 Justin L. Lee^{1,2}
- 29 Nikolay A. Poyarkov Jr.^{3,4}

30

- 31 Email Addresses: <u>justinllee@verizon.net</u>, <u>n.poyarkov@gmail.com</u>
- 32 # Both authors contributed equally to this manuscript

Abstract

- 34 The kukri snakes of the genus *Oligodon* Fitzinger, 1826 reach the westernmost limits of their
- distribution in Middle and Southwest Asia (Pakistan, Afghanistan, Iran, and Turkmenistan). In
- 36 this paper, we review the taxonomy and distribution of the two species native to this region,
- 37 Oligodon arnensis (Shaw, 1802) and Oligodon taeniolatus Jerdon, 1853 based on an integrative
- 38 approach combining morphological data, molecular data from mitochondrial DNA, and species
- 39 distribution modeling (SDM). Phylogenetic analyses recover O. taeniolatus from Iran and
- 40 Turkmenistan in the O. arnensis species group, rendering the species paraphyletic with respect to
- 41 O. taeniolatus sensu stricto on the Indian subcontinent. To correct this, we resurrect the junior
- 42 synonym Contia transcaspica Nikolsky, 1902 for the Middle/Southwest Asian populations and
- 43 provide a formal redescription. So far, *Oligodon transcaspicus* comb. et stat. nov. is known only
- 44 from the Köpet–Dag Mountain Range of northeast Iran and southern Turkmenisan, but SDM
- 45 mapping suggests it may have a wider range. Genetic samples of O. "arnensis" from northern
- 46 Pakistan are nested in a clade sister to the recently described *Oligodon churahensis* Mirza,
- 47 Bhardwaj & Patel, 2021, and are phylogenetically separate from O. arnensis sensu stricto in
- 48 south India and Sri Lanka. Based on morphological similarity, the Afghanistan and Pakistan
- 49 populations are assigned to *Oligodon russelius* (Daudin, 1803) and we synonymize O.
- 50 chuarhensis with this species. Our investigation leads us to remove O. taeniolatus from the snake
- fauna of Afghanistan, Iran, and Turkmenistan, with the consequence that only *Oligodon*
- 52 transcaspicus comb. et stat. nov. and O. russelius are present in these countries. Additional
- 53 studies are needed to resolve the taxonomy of the O. taeniolatus and O. arnensis species groups
- on the Indian subcontinent.

55 **Keywords**

58 59

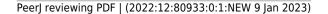
60

61

- 56 Oligodon transcaspicus, Oligodon taeniolatus, Middle Asia, Iran, Turkmenistan, Köpet–Dag
- 57 Mountain Range, Indian subcontinent, Taxonomy, mtDNA, species distribution modeling

Introduction

Our knowledge of the snake fauna of Middle and Southwest Asia (herein considered the countries of Afghanistan, Iran, Pakistan, western China, Mongolia and the former Soviet Middle


Asian republics fide Berg, 1931; Geptner, 1938; Chernov, 1949) has improved over the past

- decade as researchers continue to contribute species descriptions, range extensions, and natural
- history observations (Wagner et al., 2016a; Jablonski & Koleska, 2017; Faroog et al., 2018;
- Rajabizadeh, 2018; Shestopal & Rustamov, 2018a; Shestopal & Rustamov, 2018b; Orlov et al.,
- 65 2018; Jablonski et al., 2019; Asadi et al., 2019; Rajabizadeh et al., 2020; Eskandarzadeh et al.,
- 2020; Chen et al., 2021; Essote et al., 2022). Most snake species inhabiting these countries are
- associated with the Palearctic biogeographic realm. However, there also exist a few taxa
- originating from the Oriental realm (South and Southeast Asia) that reach their westernmost
- 69 limits in this region (Wagner et al., 2016b; Orlov et al., 2018). The kukri snakes of the genus
- 70 Oligodon Fitzinger, 1826 are one such example. Normally distributed across tropical portions of

Ę

72

73

74

75

76 77

78

79

80

81 82

83

88

89

90

91

92

93

94 95

96 97

98

99

South and Southeast Asia, two species of this diverse group extend into Afghanistan, northeastern Iran, Pakistan, and southern Turkmenistan (Latifi, 1991; Green, 2010; Wagner et al., 2016b; Orlov et al., 2018; Uetz et al., 2022).

F

The first species, the banded kukri snake *Oligodon arnensis* (Shaw, 1802), is commonly found across the Indian subcontinent, but is known from Afghanistan based on a single specimen (Král, 1969; Wagner et al., 2016b). This species was recently divided into several taxa by Bandara et al. (2022), who published a revision of *O. arnensis* sensu auctorum based largely on morphological data. These authors restricted *O. arnensis* sensu stricto to southern India and Sri Lanka, and described a new species *Oligodon tillacki* Bandara et al., 2022 (Tillack's kukri snake) for *O. arnensis* populations found along the western coast of India, and the resurrected the name *Oligodon russelius* (Daudin, 1803) (Russell's kukri snake) for populations in north/east India, Bangladesh (Barkat & Rabbe, 2022) and Nepal (Rai, Adhikari & Antón, 2022). Additionally, Mirza, Bhardwaj & Patel (2021) described a new species, the Churah Valley kukri snake *O.*

churahensis Mirza, Bhardwaj & Patel, 2021 from Himachal Pradesh, India, which was recovered within *O. arnensis* species group based on mitochondrial DNA (mtDNA) sequences. These

86 authors included genetic samples of *O. "arnensis"* collected from Pakistan but were unable to

87 examine their specimen vouchers and tentatively identified them as *Oligodon* cf. *churahensis*.

While these studies have shed light on the taxonomic nature of the *O. arnensis* and related taxa,

both neglected the status of specimens from Pakistan and Afghanistan. We refer to these

populations as O. "arnensis" until our clarifications in the results.

The second species, the streaked kukri snake *Oligodon taeniolatus* (Jerdon, 1853), is also widespread on the Indian subcontinent, but extends westward into northern Iran, southern Turkmenistan, and possibly Afghanistan (Latifi, 1991; Wagner et al., 2016b; Orlov et al., 2018). Like *O. "arnensis"*, *O. taeniolatus* exhibits substantial variation across its range, including multiple color phenotypes that have invariably been recognized as synonyms or subspecies by past authors (Wall, 1921; Wall, 1923; Smith, 1943; Taylor, 1950). Bauer (2003) reviewed the nomenclatural history of this taxon and designated a lectotype illustrated by Russell (1796) with the type locality "Vizagapatam" (=Visakhapatnam, Andhra Pradesh, India), thereby restricting 'true' (nominotypical) *O. taeniolatus* to eastern India. Outside of South Asia, populations of *O.*

100 taeniolatus from Iran and Turkmenistan can be referred to the name Contia transcaspica

101 Nikolsky, 1902, described based on a single specimen collected from "Köpet–Dag, Transcaspia"

102 [=now Köpet–Dag Mountain Range, near Ashgabat, Ahal Province, Turkmenistan]. Chernov

103 (1935) considered C. transcaspica to be a junior synonym of O. taeniolatus, owing to similarities

between Turkmen and Indian specimens. Later authors would follow his recommendation and

report these populations as O. taeniolatus in the subsequent literature (Terentjev & Chernov,

106 1949; Bogdanov, 1962; Bannikov et al., 1977; Dotsenko, 1984; Atayev, 1985; Szczerbak,

107 Khomustenko & Golubev 1986; Latifi, 1991; Rustamov & Sopyev, 1994; Szczerbak, 1994;

108 Atayev, Rustamov & Shammakov, 1994). The name Contia transcaspica has rarely been

mentioned since and was even neglected in the synonymy of *O. taeniolatus* by Wallach et al.

110 (2014). A few sources (Dotsenko, 1984; Latifi, 1991) would provide additional descriptive data

116

117

118 119

120

142

143

144

111 of collected specimens from this region. Their accounts showed that specimens from the Köpet-112 Dag Mountain Range had distinct differences in coloration and scalation from Indian subcontinent O. taeniolatus (Wall, 1921; Wall, 1923; Smith, 1943), although detailed 113 comparisons between populations were not made. 114

In this study, we review the taxonomy, phylogenetic relationships, and distributional limits of the genus *Oligodon* at the westernmost end of its range. We aimed to clarify the taxonomic status of O. taeniolatus historically associated with the name Contia transcaspica from Iran and Turkmenistan and resolve the status of *Oligodon "arnensis"* populations from the countries of Pakistan and Afghanistan, which were neglected by past taxonomic revisors.

Materials & Methods

- 121 Sampling and species delimitation. Fieldwork which resulted in the collection of *Oligodon* in
- 122 Iran was conducted by RAN and MR during a field trip in May 2017 to Razavi, Khorasan
- 123 Province, Iran (locality 7, Figure 1). Fieldwork in Pakistan was conducted by DJ and RM during
- 124 a field trip in September 2018 to Punjab Province, Pakistan, Fieldwork in Sri Lanka was
- 125 conducted by SK and NAP during field trips in February 2018 to December 2020 to dry and wet
- zones of the country. Collected specimens were euthanized using a 20% solution of benzocaine 126
- 127 and fixed in formalin before being transferred into 70% ethanol for storage. Before preservation,
- a small sample of muscle tissue was taken from each snake and stored in 95% ethanol for later 128
- 129 DNA analyses. For molecular analysis, we included one sample of O. taeniolatus (=Contia
- 130 transcaspica) from Iran (ZMMU Re-16687); one sample of nominotypical O. taeniolatus from
- 131 India (CESS-180); four novel samples of O. arnensis sensu stricto from India (CESS-563) and
- Sri Lanka (SL-Os-1, SL-Oa-2; ZMMU Re-17331); two novel samples of O. sublineatus 132
- 133 Duméril, Bibron & Duméril, 1854 from Sri Lanka (SL-Os-2; SL-Os-3); and one novel sample
- morphologically resembling *Oligodon russelius* from Punjab Province, Pakistan (CUHC 7904; 134
- locality 9, Figure 1). In addition, we included 34 publicly available samples of other *Oligodon* 135
- species retrieved from GenBank (Table 1). Bandara et al. (2022) noted that one sample (NCBS-136
- NRC-AA-021) previously identified as O. "arnensis" may represent O. tillacki but did not 137
- 138 examine this specimen. As such, we re-identify this specimen as O. cf. tillacki herein. For
- 139 outgroup taxa, we chose one sample each of *Oreocryptophis porphyraceus* (Cantor, 1839)
- (subfamily Colubrinae) and *Hebius vibakari* (Boie, 1826) (subfamily Natricinae) due to their use 140

141 in previous phylogenies of *Oligodon* published in the literature (Nguyen et al., 2020).

We examined the morphology of seven O. taeniolatus specimens available to us from the Iran and Turkmenistan, including the type specimen of *Contia transcaspica* (localities 1–7,

- Figure 1). To compare these populations with typical members of the O. arnensis species group,
- 145 we examined two specimens within the range of O. russelius fide Bandara et al. (2022) from
- 146 Andhra Pradesh, India, and southern Nepal (localities 14–16, Figure 1), five specimens of O.
- 147 arnensis sensu stricto from southern India and Sri Lanka (localities 18–19, Figure 1) (see
- Supplementary Material 1), and the new specimen of O. russelius collected from Pakistan 148
- 149 (locality 9, Figure 1). Additional morphological data for O. taeniolatus, the O. arnensis species
- 150 group and other taxa were derived from relevant literature sources (see Morphological analysis).

156

158

159

160

161 162

163

164

165

166

167

168 169

170

171

151 For aspects of species concepts and delimitation, we follow an integrative taxonomic approach

152 (Padial et al., 2010) where a species is supported by a combination of morphological and

molecular evidence. In addition, we follow the General Lineage Concept (De Queiroz, 2007). 153

where a species represents a single independent lineage following a separate evolutionary 154

trajectory compared to its congeners. Discrete morphological separation, substantial genetic

divergence using standard genetic markers, and evidence of monophyly are all used as

supporting evidence for evolutionary independence. 157

Abbreviations for museum collections are as following: CAS: California Academy of Sciences, San Francisco, USA; CUHC: Comenius University Herpetological Collection, Bratislava, Slovakia; MMB: Department of Zoology, Moravian Museum, Brno, Czech Republic; USNM: National Museum of Natural History, Washington, DC, USA; ZISP: Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia; ZMMU: Zoological Museum of Moscow State University, Moscow, Russia. Additional abbreviations for genetic samples and voucher specimens can be found in Table 1.

Field works, including collection of the samples and animals in the field, was performed outside of any protected area, in the framework of a project contract signed by International Center for Science, High Technology and Environmental Sciences, Kerman, Iran (contract number 1.87, issued at 11.04.2008). The contract bears a permission to collect the reptile samples outside of any protected area of Department of the Environment (specified in www.doe.ir) that needed extra permissions. Specimen collection protocols and animal operations followed the Institutional Ethical Committee of International Center for Science, High Technology and Environmental Sciences, Kerman, Iran (certificate number 1.87-1).

172 173 174

175

176 177

178

179

180 181

182

Molecular analyses. We extracted total genomic DNA of novel samples from muscle tissue preserved in 95% ethanol using a Oiagen DNAeasy Blood and Tissue Kit following manufacturers protocols. We performed polymerase chain reactions (PCRs) on the extracted DNA to amplify two fragments of mitochondrial DNA (mtDNA): the first fragment including partial sequences of 12S ribosomal RNA (rRNA), transfer RNA (tRNA)-Valine and 16S rRNA (total length up to 1930 bp), and a second fragment including the complete sequence of the gene Cytochrome b (cyt b) (1,091 bp). Primers used for both PCR and sequencing are summarized in Table S2. PCR protocols for 12S-16S rRNA fragments were adapted from Green et al. (2010). For both primer pairs of 12S and 16S rRNA, we used the following PCR protocol: (1) initial denaturation step at 94°C for 5 min; (2) 35 cycles of denaturation at 94°C for 1 min, annealing at

183

55°C for 1 min and extension at 72°C for 1 min; (3) final extension at 72°C for 10 min; and (4) 184

cooling step at 4°C for storage. For cvt b sequences, we used a modified PCR protocol of Chen 185

186 et al. (2014) with touchdown: (1) initial denaturation step at 94°C for 5 min; (2) 10 cycles of

denaturation at 94°C for 1 min, annealing for 1 min with temperature decreasing from 50°C to 187

45°C (with cool-down at 0.5°C per each cycle) and extension at 72°C for 1 min; (3) 24 cycles of 188

189 denaturation at 94°C for 1 min, annealing at 45°C for 1 min and extension at 72°C for 1 min; (4)

190 final extension at 72°C for 10 min; and (5) cooling step at 4°C for storage. All PCR products

198

199

200

201

202

203

204205

206207

208

209

210211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226227

were sequenced in both directions by the Evrogen company at the Institute of Bioorganic
Chemistry, Russian Academy of Sciences (Moscow, Russia) and at Macrogen Europe
(Amsterdam, The Netherlands; http://www. macrogen-europe.com). Sequences were assembled
and checked using Sequencher 4.9 (GeneCodes). The obtained sequences are deposited in
GenBank under the accession numbers OQ092426; OQ099833–OQ099837; and OQ116816–
OQ116825 (Table 1).

To examine the position of *O. taeniolatus* from Turkmenistan and Iran in a matrilineal genealogy of the genus, we combined newly obtained sequences with all publicly available GenBank sequences of O. arnensis, O. churahensis, O. taeniolatus, O. cf. tillacki and one sequence per species of other *Oligodon* (summarized in Table 1). In total, we analyzed mtDNA sequences of 45 specimens, including 43 samples of 33 species of *Oligodon*, with outgroup sequences of *O. porphyraceus* and *H. vibakari* used to root the tree. Nucleotide sequences were initially aligned in MAFFT v.7 (Katoh et al., 2002) with default parameters, and subsequently checked by eye in BioEdit 7.0.5.2 (Hall, 1999) and slightly adjusted for translation when appropriate. We used IQ-TREE web server (http://iqtree.cibiv.univie.ac.at/; Trifinopoulos et al. 2016) to estimate optimal evolutionary models for the data set analysis using the Akaike Information Criterion (AIC). Mean uncorrected genetic distances (p-distances) were calculated in MEGA 7.0 (Kumar, Stecher & Tamura, 2016). The matrilineal genealogy was inferred using Bayesian inference (BI) and Maximum Likelihood (ML) approaches. The best-fitting model for both BI and ML analyses for 12S-16S rRNA fragments and for the second codon partition of cyt b was the GTR+G+I model as of DNA evolution suggested by the AIC. For the remaining portions of cyt b, the AIC suggested the GTR+G model for the first codon partition, and the HKY+G+I for the third codon partition.

ML was conducted using the IQ-TREE web server (Trifinopoulos et al., 2016). BI was conducted in MrBayes 3.2.2 (Ronquist et al., 2012); Metropolis-coupled Markov chain Monte Carlo (MCMCMC) analyses were run with one cold chain and three heated chains for one million generations and sampled every 1000 generations. Two independent MCMCMC run iterations were performed and 100 trees were discarded as burn-in. The convergence of the runs was checked by exploring and examining likelihood plots in TRACER v1.6 (Rambaut et al., 2020), with effective sample sizes (ESS) all above 200. Nodal support for BI was assessed by calculating posterior probabilities (BI PP). We *a priori* regarded tree nodes with BI PP values over 0.95 as sufficiently resolved, while BI PP values between 0.95 and 0.90 were regarded as tendencies. For ML, confidence in nodal topology was estimated via the ultrafast bootstrap approximation algorithm (UFBS; Hoang et al., 2018) with 1,000 bootstrap pseudoreplicates. Nodes having ML UFBS values of 95 and above were *a priori* considered highly supported, while nodes with values of 90–94 were considered well-supported, and nodes with values of 70–89 were considered as tendencies. Lower values were regarded as indicating unresolved nodes (Huelsenbeck & Hillis, 1993).

247248

249

250

251

252

253254

255256

257

258

259260

261

262

263

264

265

266

267

268269

230 Morphological analysis. Coloration and pattern were recorded during examination of preserved 231 specimens. For some specimens, live coloration was also recorded from digital images taken 232 before preservation. No statistical analyses were performed between species due to the low sample size of comparative material. All body measurements, except body and tail lengths, were 233 234 taken under a dissecting microscope using a digital slide-caliper to the nearest 0.1 mm. Body and 235 tail lengths were measured to the nearest millimeter by straightening snakes along a flexible 236 ruler. Methodology for counting ventral and subcaudal scales follow Dowling (1951). The tail tip 237 was not included in the number of subcaudals. Head scale suture angle terminology follows that 238 of Kaiser, O'Shea & Kaiser (2019), Maxillary teeth were counted by examination of the 239 dissected maxillary bone when available, or by carefully removing the gum layer of the maxilla. Sex was determined by ventral incision below the vent to detect the presence or absence of 240 hemipenes. Our data on specimens referrable to Contia transcaspica were compared and 241 242 reviewed with relevant literature on *O. taeniolatus* across its distribution (Nikolsky, 1902; 243 Nikolsky, 1903a; Wall, 1921; Wall 1923; Chernov, 1935; Smith, 1943; Minton, 1966; Dotsenko, 244 1984; Latifi, 1991; Khan, 2002). 245 The following linear measurements (all in mm) were taken: snout to vent length (SVL)

F

— measured from the tip of the snout to the vent; tail length (TailL) — measured from the vent to the tip of the tail; total length (TotalL) — sum of SVL and TailL; relative tail length to total length (TailLR) calculated as tail length to total length ratio; head length (HeadL) from the tip of the snout to the posterior margin of the mandible; head width (HeadW) measured at the widest part of the head immediately posterior to the eye; snout length (SnoutL) — distance between the tip of the snout and anterior edge of eye; eye diameter (EyeD) — maximal horizontal length of the eve; frontal scale length (FrontalL); frontal scale width (FrontalW); distance (IOD) — the shortest distance between the eyes; and internarial distance (IND) — distance between the nostrils. Additional morphological characters examined include the number of maxillary teeth (MT); anterior scale rows (ASR) — namely number of scale rows at one head length behind the head; midbody scale rows (MSR) — the number of scale rows at midbody; posterior scale rows (PSR) — number of dorsal scale rows at one head length prior to the vent; dorsal scale row formula (DSR) — a given acronym summarizing the three dorsal scale row counts (i.e., ASR— MSR-PSR); ventral scales (VEN) — the number of belly scales starting from the scale contacting the first dorsal scale row to the vent, excluding the cloacal plate; subcaudal scales (SC) — the number of paired subcaudal scales excluding the terminal scute; total body scales (TOTAL) — the sum of ventral, subcaudal scales and the cloacal plate (included as one scale

regardless of whether the plate is single or divided); subcaudal ratio (SCR) — namely the ratio

between the number of subcaudal scales and the number of total body scales given as a decimal

value; cloacal plate (CP) — the number of terminal ventral scales immediately anterior to vent

(given as single for one scale, and divided for two scales); condition of nasal scale (NASAL) —

(LOREAL) — given as present or absent; supralabials (SL) — the number of scales on upper lip;

number of supralabials in contact with the eye (SL-Eye); infralabials (IL) — the number of

given as either vertically divided, entire, or partially divided; condition of loreal scale

PeerJ

270 scales on lower lip; infralabials contacting each other (IL-contact) — the number of pairs of 271 infralabial scales in contact; infralabials contacting the anterior chin shields (IL-CS) — the 272 number of infralabial scales contacting the anterior chin shields; number of preocular scales 273 (PrO); number of presubocular scales (PrsO); number of postocular scales (PtO); number of 274 anterior temporals (Ate) — the number of temporal scales in contact with the postocular scales; 275 number of posterior temporals (Pte) — the number of temporal scales immediately contacting 276 the anterior temporal scales. We also describe and abbreviate certain color pattern characteristics 277 found in specimens, including the number of body blotches or crossbars from nape to vent (B-Blotch); the number of blotches or crossbars from vent to tail tip (T-Blotch); the width in 278 279 vertebral (dorsal) scales of each blotch at midbody (BlotchW); and the distance between each 280 blotch at midbody counted using vertebral (dorsal) scales (BlotchD). Abbreviations for these 281 characters are used in Tables 3–4. Symmetric characters are given in left/right order.

282 283

284

285

295

- Species distribution modeling. We used MaxEnt 3.3.3 (Phillips, Anderson & Schapire, 2006) and modelled the potential distribution of *Oligodon* population in Central Asia in the present as well as three previous historical epochs: the mid-Pliocene (ca 3.2 Mya), the Last Glacial
- Maximum (ca 21 Kya), and the mid-Holocene (ca 6 Kya). We used 23 unique georeferenced 286 data points (Table S1), 23 bioclimatic and four landscape layers. Data were filtered and 287
- 288 correlated variables were excluded using ENMTools 1.3. (Warren et al., 2010) and models
- 289 assessed by computing the area under the CURVE (AUC). Further, we estimated the relative
- 290 contribution of variables to the model. For the current climate projection, we used the CHELSA
- 291 database (Karger et al., 2017). The PaleoCLIM database was used for the past conditions, the
- 292 mid-Pliocene, the Last Glacial Maximum (LGM) and the Mid-Holocene (Fordham et al., 2017;
- 293 Brown et al., 2018), at 5 km pixel size. The final maps were designed in QGIS Desktop 3.28
- 294 software (QGIS Development Team, 2021).

Results

- 296 **Molecular analyses.** The final concatenated alignment of the 12S–16S rRNA and cvt b gene
- 297 sequences contained 3019 base pairs with 1812 conserved sites, 1191 variable sites, and 833
- parsimony informative sites. The transition-transversion bias (R) was estimated as 1.2. 298
- 299 Nucleotide frequencies were 36.7% (A), 23.0% (T), 25.7% (C), and 14.6% (G) (all data given for
- ingroups only). The uncorrected pairwise genetic distances (hereafter p-distances; given for the 300
- 301 cvt b mtRNA gene fragment) between and within examined Oligodon species are presented in
- Table 4. Intraspecific genetic distances varied from p = 0% (in O. sublineatus) to p = 2.2% (O. 302
- churahensis, including samples of O. cf. churahensis and O. russelius). The interspecific genetic 303
- 304 distances within examined Oligodon varied from p = 3.3% (between O. arnensis sensu stricto 305 and O. churahensis) to p = 21.0% (between O. sublineatus and O. churahensis).
- 306 In general, our mtDNA-based genealogy of *Oligodon* (Figure 2) correlates well with the 307 set of phylogenetic relationships obtained from previous authors (Green et al., 2010; Nguyen et 308
- 309
- al., 2020; Mirza, Bhardwaj & Patel, 2021; Das et al., 2022; Yushchenko & Lee et al., in press). Both ML and BI topologies of our mtDNA-genealogy of *Oligodon* support the specimen of *O*.

332

333334

335336

337

338

339340

341

342

343344345

346

347348

349

F

310 tagniolatus from Iran as a separate lineage sister to Oligodon melaneus Wall. 1909, the newly described species O. churahensis, and Pakistani specimens O. russelius and O. cf. churahensis, 311 with strong support from both analyses (0.97/92). Genetic p-distances in this clade varied from 312 7.8% (between O. taeniolatus and O. melaneus), 6.3% (between O. taeniolatus and O. russelius), 313 314 and 5.7% (between O. taeniolatus and O. churahensis) based on cyt b. Together with O. arnensis they form the most basal clade (1/100), while the three samples of O. taeniolatus from India and 315 Sri Lanka form a distinct clade together with O. sublineatus and Oligodon calamarius (Linnaeus, 316 1758) also with strong support (1.0/100). This topology renders O. taeniolatus sensu lato as 317 paraphyletic. Notably, the sample of O. taeniolatus from Sri Lanka is divergent (2.2% p-distance 318 319 based on 16S rRNA) from the Indian sample, which suggests additional undescribed diversity is present in O. taeniolatus outside of Middle and Southwest Asia. Distances of such a percentage 320 321 based on 16S rRNA are more significant than the cyt b gene as 12S-16S rRNA evolves at a 322 slower rate (Mueller, 2006). The newly collected Pakistan sample (CUHC 7904) identified by us 323 as O. russelius is recovered within a clade containing two other Pakistan samples from Genbank 324 that were identified as O. cf. churahensis by Mirza, Bhardwaj & Patel (2021) with high support (1.0/99). Low genetic divergence (p = 2.2%) exists between the three samples, suggesting they 325 326 are conspecific. Additionally, the divergence between the Pakistan samples and the type series of 327 O. churahensis from Himachal Pradesh, India is only 3.3% in cyt b gene (Table 5). The genetic 328 distance between the sample re-identified as O. cf. tillacki and samples of O. arnensis sensu 329 stricto was also low (p = 3.6%). 330

Species distribution modeling. The species distribution model (SDM) maps based on geolocation points of *Oligodon* from Iran and Turkmenistan is shown in Figure 3. Variables that mostly account for the species presence are landscape uniformity, mean temperature of coldest quarter (Bio 11), slope, and precipitation seasonality (coefficient of variation) (Bio 15). The average test AUCs for the replicate runs was estimated as 0.988. The predicted distribution of *Oligodon* during past and present epochs expanded and contracted across the Plio-Pleistocene and Holocene and suggests that the current distribution of *Oligodon* in Middle/Southwest Asia is significantly different. The most suitable habitat for *Oligodon* mostly occurred during the last glacial maximum (LGM) period, with the range including more expansive areas of current day Turkmenistan, Afghanistan, and the southern edge of the Caspian Sea. Subsequent range reduction is visible since the mid-Holocene, with the model prediction expecting the most suitable habitat for this species in Köpet-Dag Mountain Range of northeast Iran and southwest Turkmenistan, and small parts of Afghanistan, Azerbaijan, and western Iran (Figure 3).

Resurrection and revalidation of *Contia transcaspica* **Nikolsky, 1902.** Re-examination of Turkmen and Iranian *O. taeniolatus* as well as past literature descriptions *O. taeniolatus* from this region by Dotsenko (1984) and Latifi (1991) revealed that individuals from these localities are morphologically identical to the type specimen of *Contia transcaspica* (ZISP 9868). These specimens differ from Indian subcontinent *O. taeniolatus* in several features, the most obvious

350	being the presence of only 5 (rarely 6) supralabial scales, and narrow contact between the 4th and	
351	5 th supralabials due to the bottommost posterior temporal scale. These specimens can also be	
352	diagnosed from all members of its sister clade, the O. arnensis species group (O. arnensis, O.	
353	churahensis, O. melaneus, O. russelius, and O. tillacki), based on several coloration and	
354	scalation features, namely the presence of 15 dorsal scale rows throughout the body (versus 17–	F.
355	17–15). In terms of color pattern, these specimens also differ from typical O. taeniolatus (and	-
356	most Oligodon species across Asia) by the presence of brown transverse crossbars across the	
357	dorsal surface. Phylogenetically, the sample of O. taeniolatus from northern Iran is monophyletic	
358	and separate from all other congeners in the O. arnensis species group. Genetic distances	
359	between its closest relatives, O. churahensis, O. melaneus, O. russelius are also substantial	
360	(5.7%-7.8% based on cyt b) are also substantial. Since the combination of molecular and	
361	morphological evidence support the distinct status of Iranian and Turkmen O. taeniolatus, we	Ę
362	resurrect the name Contia transcaspica from the subjective junior synonymy of this species. O.	
363	taeniolatus sensu stricto is no longer paraphyletic and is now restricted to the Indian	
364	Subcontinent in Bangladesh, India, Sri Lanka, and Pakistan. The Iranian and Turkmen	
365	populations from the Köpet-Dag Mountain Range shall now be referred to as Oligodon	
366	transcaspicus comb. et. stat. nov. and a detailed redescription, including the holotype of Contia	
367	transcaspica, is provided below.	
368		
369	Oligodon transcaspicus comb. et stat. nov. (Nikolsky, 1902)	F
370	(Figures 4–6; Table 2)	
371		
372	Contia transcaspica: Nikolsky (1902: 839–840). Holotype: "Köpet-Dag, Transcaspia" [=	Ę
373	now Köpet-Dag Mountain Range, near Ashgabat, Ahal Province, Turkmenistan],	
374	Nikolsky (1903a: 11-13), Bobrinskoy (1923: 8), Chernov (1935: 351) (in part), Welch	
375	(1983: 77) (in part), Green (2010: 139) (in part), Bandara et al. (2022: 68) (in part), Uetz	
376		
377	et al. (2022) (in part)	
	et al. (2022) (in part) Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov	
378	· / · · · · /	
378379	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov	
	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970:	
379	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov &	
379 380	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov & Shammakov (1978), Szczerbak (1979: 68–70), Welch (1983: 77), Dotsenko (1984: 23–	
379 380 381	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov & Shammakov (1978), Szczerbak (1979: 68–70), Welch (1983: 77), Dotsenko (1984: 23–26), Atayev (1985), Szczerbak, Khomustenko & Golubev (1986: 68–70), Latifi (1991: pl.	
379 380 381 382	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov & Shammakov (1978), Szczerbak (1979: 68–70), Welch (1983: 77), Dotsenko (1984: 23–26), Atayev (1985), Szczerbak, Khomustenko & Golubev (1986: 68–70), Latifi (1991: pl. 52 & 117), Rustamov & Sopyev (1994: 224), Atayev, Rustamov & Shammakov (1994:	
379 380 381 382 383	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov & Shammakov (1978), Szczerbak (1979: 68–70), Welch (1983: 77), Dotsenko (1984: 23–26), Atayev (1985), Szczerbak, Khomustenko & Golubev (1986: 68–70), Latifi (1991: pl. 52 & 117), Rustamov & Sopyev (1994: 224), Atayev, Rustamov & Shammakov (1994: 337), Szczerbak (1994: 312), Ananjeva et al. (2006: 175), Green (2010: 139), Rustamow	
379 380 381 382 383 384	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov & Shammakov (1978), Szczerbak (1979: 68–70), Welch (1983: 77), Dotsenko (1984: 23–26), Atayev (1985), Szczerbak, Khomustenko & Golubev (1986: 68–70), Latifi (1991: pl. 52 & 117), Rustamov & Sopyev (1994: 224), Atayev, Rustamov & Shammakov (1994: 337), Szczerbak (1994: 312), Ananjeva et al. (2006: 175), Green (2010: 139), Rustamow (2011), Safaei-Mahroo et al. (2015: 280), Shestopal & Rustamov (2018a: 40), Orlov et al.	
379 380 381 382 383 384 385	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov & Shammakov (1978), Szczerbak (1979: 68–70), Welch (1983: 77), Dotsenko (1984: 23–26), Atayev (1985), Szczerbak, Khomustenko & Golubev (1986: 68–70), Latifi (1991: pl. 52 & 117), Rustamov & Sopyev (1994: 224), Atayev, Rustamov & Shammakov (1994: 337), Szczerbak (1994: 312), Ananjeva et al. (2006: 175), Green (2010: 139), Rustamow (2011), Safaei-Mahroo et al. (2015: 280), Shestopal & Rustamov (2018a: 40), Orlov et al.	
379 380 381 382 383 384 385 386	Oligodon taeniolatus (in part): Chernov (1935: 351), Filippov (1947), Terentjev & Chernov (1949), Bogdanov (1962), Brück (1968: 201), Nurgeldyev, Shammakov & Atayev (1970: 187–190), Rustamov & Atayev (1976: 47–53), Bannikov et al. (1977) Atayev, Gorelov & Shammakov (1978), Szczerbak (1979: 68–70), Welch (1983: 77), Dotsenko (1984: 23–26), Atayev (1985), Szczerbak, Khomustenko & Golubev (1986: 68–70), Latifi (1991: pl. 52 & 117), Rustamov & Sopyev (1994: 224), Atayev, Rustamov & Shammakov (1994: 337), Szczerbak (1994: 312), Ananjeva et al. (2006: 175), Green (2010: 139), Rustamow (2011), Safaei-Mahroo et al. (2015: 280), Shestopal & Rustamov (2018a: 40), Orlov et al. (2018: 58–67), Rajabizadeh (2018: 242).	

Referred Specimens. Turkmenistan: Ahal Province. CAS 180042, adult female from "the Iran border south of Goalon, Ashkabad (Ashkhabad) Region" collected in May 1989 by Soviet Border Patrol (obtained by J. R. Macey); ZMMU Re-5589, subadult female from "Karanki", collected on 1 May 1979; ZMMU Re-6155, juvenile male from "Aidere" unknown collection date; ZMMU Re-7318, adult female from "Chuli, Geok-Tepe" collected on 20 June 1990; ZISP 18334, juvenile of undetermined sex from "Geok-Tepe", collected on May 1971; ZISP 18976, subadult male from "Geok-Tepe", collected on 05 August 1968. Iran: Khorasan Province. ZMMU Re-16687 (field number RAN-3264), adult male from Bazangan Lake, Razavi (36.3044°N, 60.4751°E, WGS 84; 900–950 meters a.s.l.) collected by Roman A. Nazarov and Mehdi Radiabizadeh on 27 May 2017. See Table S1 for more details.

Diagnosis. A Kukri Snake in the genus *Oligodon* that is distinguished from all other congeners by the following combination of morphological characters: 1) 7–9 maxillary teeth, with posterior two teeth enlarged and blade-like; 2) dorsal scales in 15–15–15 rows; 3) cloacal plate divided; 4) ventral scales 179–188 in males, 193–214 in females; 5) subcaudals 48–52 in males, 44–51 in females; 6) total body scales 232–240 in males, 240–266 in females (232–266 scales combined); 7) subcaudal ratio 0.203–0.224 in males, 0.177–192 in females; 8) almost always 5 supralabials (sometimes 6 according to Latifi, 1991), with 3rd supralabial in contact with orbit; 9) loreal and preocular scales present, presubocular sometimes present; 10) posterior temporal scales 3 (rarely 2), with lowest temporal causing 4th and 5th supralabial to contact narrowly; 11) dorsal color pattern beige or light brown with of 42–57 dark transverse crossbands on body and 12-17 crossbands on the tail; 12) dorsal color pattern on tail similar to rest of body, with no vertebral stripe along tail.

F

Comparisons. We compare *Oligodon transcaspicus* comb. et stat. nov. to all species of *Oligodon* found in Middle and Southwest Asia, which may be confused with this species, particularly *O. taeniolatus* sensu stricto, with which it was previously confused with, and members of its sister clade in the *O. arnensis* species group. We base our comparisons primarily on data from the following literature sources (Wall, 1921; Wall, 1923; Smith, 1943; Khan, 2002; Mirza, Bhardwaj & Patel, 2021; Bandara et al., 2022) as well as data from our own examined specimens (Supplementary Material 1). *Oligodon transcaspicus* comb. et stat. nov. can be morphologically assigned to the genus *Oligodon* by having a subcylindrical body, enlarged blade-like maxillary teeth, two prefrontals and internasals present, a blunt and subterminal-shaped rostral scale, length of rostral scale visible from above two times as long as the internasal suture, two temporal scales bordering edge of parietals (generic diagnosis modified from Wall 1923).

The closest relatives of *O. transcaspicus* **comb. et stat. nov.** include members of the *O. arnensis* species group. Of these, *O. transcaspicus* **comb. et stat. nov.** can be distinguished from *O. arnensis* sensu stricto by having 15 dorsal scale rows (*versus* 17–17–15), 179–202 ventrals in both sexes (*versus* 164–188 in both sexes), loreal scale present (*versus* loreal absent), 5–6 supralabials (*versus* 7–8, rarely 6), usually 3 posterior temporal scales (*versus* always 2), 7–9 maxillary teeth (*versus* 12–16), and irregular dorsal mottling with 47–57 transverse body

blotches (versus dorsum immaculate, less than 20 black body bands). O. transcaspicus comb. et **stat. nov.** can be distinguished from O. churahensis (later synonymized with O. russelius) by having 15 dorsal scale rows (versus 17–17–15), 179–202 ventrals in both sexes (versus 170–175) in both sexes), 5–6 supralabials (versus 7–8), usually 3 posterior temporal scales (versus always 2), and irregular dorsal mottling with 42–57 transverse body blotches 1.5–3.0 dorsal scales wide and 12–16 tail blotches (versus 37–45 broad black body crossbars, all edged with a cream color, 1.0–2.0 dorsal scales wide and 9–11 tail bars). O. transcaspicus comb. et stat. nov. is distinguished from O. melaneus by having 15 dorsal scale rows (versus 17–15–15), 5–6 supralabials (versus usually 7, rarely 6), usually 3 posterior temporal scales (versus always 2), and irregular dorsal mottling with 42-57 transverse body blotches 1.5-3.0 dorsal scales wide and 12–16 tail blotches (versus black dorsum without conspicuous blotches or markings and a distinct blue ventral coloration in life). O. transcaspicus comb. et stat. nov. can be distinguished from O. russelius by having 15 dorsal scale rows (versus 17–17–15), 5–6 supralabials (versus 7– 8, rarely 6), usually 3 posterior temporal scales (versus always 2), and irregular dorsal mottling with 42–57 transverse body blotches 1.5–3.0 dorsal scales wide (versus dorsum immaculate with narrow black body bands or crossbars usually edged with white, 1.0–2.0 dorsal scales wide). O. transcaspicus comb. et stat. nov. can be distinguished from O. tillacki by having 15 dorsal scale rows (versus 17–17–15), 5–6 supralabials (versus 7–8), usually 3 posterior temporal scales (versus always 2), and irregular dorsal mottling with 42–57 transverse body blotches 1.5–3.0 dorsal scales wide (versus dorsum immaculate with 25–35 broad black body bands 4.0–6.0 dorsal scales wide).

In addition, *O. transcaspicus* **comb. et stat. nov.** can be distinguished from *O. taeniolatus*, which it was previously confused with, by having 5 (rarely 6) supralabials (*versus* always 7–8) with only the 3rd supralabial contacting the orbit (*versus* usually the 3rd and 4th in contact with orbit), two posterior supralabials (4th and 5th) in narrow contact due to the lowest posterior temporal scale abutting the two scales (*versus* all supralabials in broad contact), temporal scale formula 1+3 (*versus* temporals 1+2), and a dorsal color pattern with irregular transverse crossbars and no distinct vertebral stripe on the body or tail (*versus* dorsal color pattern variable, but usually with irregular non-transverse crossbars or body blotches, and a small thin vertebral stripe on the body and tail).

Redescription of the Holotype (ZISP 9868). Adult female specimen in good condition after 118 years of preservation. Small portion of midbody in slightly poor condition, large ventral incision posteriorly until vent (Figure 4). SVL 304 mm, TailL 53 mm (TotalL 357 mm). HeadL 9.6 mm, HeadW 5.6 mm, SnL 2.6 mm, EyeL 1.4 mm, FrontalL 3.2 mm. TailLR 0.148, HeadW/HeadL 0.58, SnL/HeadL 0.29, EyeL/SnL 0.54, EyeL/HeadL 0.15. Body elongated and cylindrical in cross section; head ovoid, slightly distinct from neck; snout narrowing in dorsal view, depressed very slightly towards the tip with rostral appearing rounded in lateral profile; snout tip subterminal near mouth; eyes moderately sized compared to head, with a round pupil; nostrils small and subelliptical, pointed in lateral view; mouth flat with lips curving upwards posteriorly along last supralabial; tail gradually tapering to a sharp terminal scute.

497

498 499

500

501

502

503

504505

506

507508

470 Rostral distinctly enlarged, wider than high, triangular in dorsal view, partially separating 471 the anterior half of internasals: posterior scale suture of rostral with internasals "deep-V" shaped. with vertex of rostral in-line with nostrils as a narrow obtuse angle (~99°); internasals 472 subpentagonal, wider than long, internasal suture equal in length compared to prefrontal suture; 473 prefrontals subhexagonal, wider than long, wider and longer than internasals; frontal 474 subpentagonal, shield shaped, anterior suture with prefrontals concave and angled; frontal longer 475 than prefrontals; eyes placed posterior relative to the anterior edge of the frontal; angle formed 476 477 by sutures producing the posterior vertex of the frontal a right angle, almost acute (\sim 90): supraoculars subrectangular, longer than wide, shorter in length than frontal; parietals 478 479 subpentagonal, longer than wide, width of scale wider than parietal suture, posterior sutures 480 bordering occipital region strongly concave and curved; length of parietals approximately equal in length of frontal; parietal suture shorter than frontal; parietal suture shorter than length of 481 482 frontal; anterior parietal angle formed by the sutures between the parietal/frontal and the suture 483 between the supraocular/parietal a broad obtuse angle (~130°) with lateral ray of angle pointing posterolaterally. Nasal scale rectangular-shaped, longer than wide, fully divided; loreal 1/1, small 484 and square shaped, slightly wider than than long, less than half the size of the nasal; supralabials 485 5/5; 3rd supralabial in contact with orbit; 5th supralabial largest, first supralabial smallest; all 486 supralabials in broad contact, except for supralabials 4–5, which are in narrow contact due to 487 488 abutting posterior temporal: preoculars 1/1, wider than long; presubocular 1/1, smaller than preocular: postoculars 2/2, uppermost postocular largest: anterior temporal 1/1: posterior 489 temporals 3/3, bottommost temporal large and subpentagonal in shape, blocking the 4th and 5th 490 491 supralabial from broadly contacting each other; infralabials 7/7 in all specimens, first in contact 492 with each other, 4/4 infralabials in contact with anterior chin shields; mental subtriangular, wider than long; small mental groove present, starting from border of 1st infralabial and mental 493 terminating at the posterior chin shields; length and width of both chin shields equal in size. 494 495

Dorsal scale rows 15–15–15, smooth throughout without apical pits; ventral scales 202; subcaudals 47, paired; total body scales 250; subcaudal ratio 0.19; cloacal plate divided; tail tip a sharp pointed scute. Maxillary teeth 7, posterior two teeth enlarged and blade-like.

Coloration in Preservation. After 121 years in preservation fluids, dorsal ground color cream, margins of some dorsal scales brown forming indistinct and irregular mottling along flanks; 47 indistinct transverse bars along dorsum, broadest vertebrally and slightly narrowing laterally, around 1.5–2.0 dorsal scales at their widest; along tail 12 transverse bands of similar color with any additional markings. Dorsal portion of head is cream, indistinct beige ocular-bar edged with brown starting along 3rd and 4th supralabial scale, past eye covering first half of supraocular, prefrontals and anterior suture of frontal; a second beige and brown-edged temporal bar starting near gulars and first dorsal scales, extending across posterior portion of the fifth supralabial before meeting medially at the parietals and frontal forming a "V" shaped mark; brown nuchal chevron present medially starting at the parietal suture as a small lanceolate tip broadening along the nape as a thick tripartite-shaped blotch, extending laterally on each side of

510

511

512

513514

515

516517

518

519

520521

522

523

524

525

526527

528

529530

531

532

533

534535

536

537

538539

540

541

542

543544

545

546547

548

the flanks, ending before reaching the ventral surface. Ventral surface an immaculate cream, faint beige spotting or mottling along edge of ventral scales, more prominent along the tail.

General Description and Variation. The additional six specimens examined agree with the description of the holotype in most aspects of coloration, scalation and morphometric characteristics. SVL 145–312 mm in male, 267–361 mm in females; TailL 27–70 mm in male, 42–64 mm in females; TotalL in male 195–382 mm, 309–425 mm in females. The largest specimen is an adult female (ZMMU Re-7318) with a SVL of 361 mm and TailL of 64 mm. HeadL 5.9–9.6 mm; HeadW 3.6–6.0 mm, SnL 2.3–3.5 mm, EyeL 0.8–1.4 mm, FrontalL 1.4–3.2 mm. TailLR 0.157–0.183 in males, 0.136–0.159 in females, HeadL/HeadW 0.53–0.72, SnL/HeadL 0.27–0.42, EyeL/SnL 0.34–0.54, EyeL/HeadL 0.12–0.15. Body elongated and cylindrical, slightly robust along midbody in some specimens; head ovoid, slightly distinct from neck; snout narrowing in dorsal view, depressed only slightly towards the tip in dorsolateral view; head oblong in lateral profile; snout tip subterminal near mouth; eyes moderately sized compared to head; nostrils pointed in lateral view; mouth flat, lips slightly curved posteriorly; tail tapering to a sharp terminal scute.

Rostral distinctly enlarged, wider than high, triangular in dorsal view, extending posteriorly partially separating internasals; posterior scale suture of rostral with internasals "deep-V" shaped, with vertex of rostral in-line with nostrils obtuse angled (95°–115°); internasals subpentagonal, wider than long, suture roughly equal or slightly longer than prefrontal suture: prefrontals subhexagonal, wider than long, longer and wider than internasals; frontal subhexagonal, shield shaped, anterior margin of scale clearly angled in most specimens but sometimes more concave; the posterior border of the frontal of one specimen (ZMMU Re-16687) is slightly notched with two pores near the border of the parietals and two similar notched "pores" in the center of the scale (Figure 5); frontal around twice the length of prefrontals; supraoculars subrectangular, longer than wide, shorter in length and width than frontal; eyes placed posterior relative to the anterior edge of the frontal; angle formed by sutures producing the posterior vertex of the frontal right or acute-angled (80°–90°); oftentimes the posterior portion of the frontal truncates, giving the vertex a notched appearance in dorsal profile; parietals subpentagonal, posterior portion concave and usually curved, occasionally straight; parietals slightly longer than wide, width of scale wider than parietal suture; length of parietals equal or slightly longer than length of frontal; parietal suture shorter than frontal length; anterior parietal angle formed by the sutures between the parietal/frontal and the suture between the supraocular/parietal a broad obtuse angle (120°–130°) with lateral ray of angle pointing posterolaterally. Nasal scale rectangular to square shaped, fully divided and usually longer than wide; loreal 1/1, square-shaped, around a quarter or half the size of nasal; supralabials 5/5 in all examined specimens, although Latifi (1991) mentions specimens with 6 supralabials; 3rd supralabial always in contact with orbit; 5th supralabial largest, 1st supralabial smallest; all supralabials in broad contact, except for supralabials 4–5, which contact narrowly due to abutting posterior temporal; preoculars 1/1, uppermost preocular slightly larger; presubocular 1/1 present in four specimens (including holotype), absent in rest; postoculars 2/2, uppermost postocular

556557

558

559

560561

562

563

564

565

566

567

568569

570

571

572573

574575

576

577

578579

580

581

582

583584

585 586

587

588

largest; anterior temporal 1/1; posterior temporals 3/3 (in one specimen, CAS 180042, 3/2), bottommost temporal large and subpentagonal in shape, blocking the 4th and 5th supralabial from broadly contacting each other; infralabials 7/7 in all specimens, first in contact with eachother, 4/4 infralabials in contact with anterior chin shields; mental subtriangular, wider than long; small mental groove present, starting from border of 1st infralabial and mental terminating at the posterior chin shields; length and width of both chin shields equal in size.

Dorsal scale rows 15–15–15, smooth throughout and without apical pits; ventral scales 179–188 in males, 193–202 in females; subcaudals 48–52 in male, 44–51 in females; total body scales 232–240 in male. 240–266 in females: subcaudal ratio 0.203–0.224 in males. 0.177–192 in females; anal plate divided; tail tip tapers to a sharp tip. Maxillary teeth 7 in two specimens (including the holotype) and 9 in one specimen (CAS 180042), posterior two teeth enlarged and blade-like. Teeth unavailable for examination in other specimens. We did not examine the hemipenis of any specimens as all organs were retracted. The structure of hemipenes is a rather conservative feature. Therefore, despite the lack of any information about hemipenial morphology of O. transcaspicus comb. et stat. nov., we expect that the fully everted and expanded hemipenes of this species will likely share the same structure with its closest relatives in the O. arnensis species group, namely a short and slightly bilobed hemipenes with spinous calvees and a simple sulcus spermaticus. Our sample size is too low to make statistical comparisons between sexes, however a few instances of putative sexual dimorphism are noted. First, the number of ventral scales appear to be higher in the single male specimen. The male specimens also have a higher number of subcaudals, TailLR ratio and subcaudal ratio than the females. The number of total body scales appears to be higher in females.

All specimens in preservative have a cream to beige colored dorsum, with brown mottling mostly well-defined and restricted across the flanks, some vertebral portions of dorsum also with white mottling; 47–57 transverse crossbars, usually light brown with the margins of dorsal scales along bars dark-brown or black and the edges of each bar surrounded weakly edged by white; all crossbars more well-defined compared to the holotype, widest in the vertebral region and are narrower laterally, at widest between 1.5–3.0 dorsal scales in length; crossbar counts on body are not sexually dimorphic; tail blotches range from 12–16 and are similar in coloration. Dorsal surface of the head tan to cream, lower portions of snout sometimes grayishbrown; occasional vermiculations present along supralabials and underside of head; the position of the ocular and temporal bars are consistent amongst all specimens, but are usually brown or dark-brown and edged with black; the nuchal chevron in some specimens is lanceolate-shaped at its anterior origin along the parietals, but in two specimens it is blunt or obtuse-pointed, terminating before the ventral surface along the nape as a thick tripartite or triangular-shaped blotch. No vertebral stripe is present along the tail in preserved specimens. The ventral surface is tan to cream, with three specimens bearing irregular margins of dorsal cross-bands visible on lateral sides of the ventral scales, but in other specimens the ventral surface is immaculate. The color in life based on ZMMU Re-16687 (Figure 5) and two specimens photographed in Turkmenistan by A. V. Pavlenko (Figure 6) resembles the coloration in preservative, but its

596597

598

599

600 601

602

603

604

605 606

607

608

609

610611

612

613

614615

616

617

618

619

620

621

622

623624

625

628

dorsal patterning and blotching are more pronounced. In these specimens, the dorsum is brown to reddish-brown with white mottling concentrated on the vertebral region and white and dark-brown mottling concentrated on the flanks; the transverse bars are brown and have small dark-brown edges on the dorsal scales of each bar; the nuchal chevron and ocular bars are darker than the bars on the dorsum; iris of eyes gold-brown, pupils black; ventral surface and areas between head markings plain white.

Distribution and Natural History. The known distribution of *Oligodon transcaspicus* comb. et stat. nov. is summarized in Figure 1 and Table S1. This species is currently known from the Köpet–Dag region of northern Iran and southern Turkmenistan. In Turkmenistan, it is known from the present-day Balkan, Ahal and Mary provinces. The distribution of the species in Turkmenistan was recently reviewed by Orlov et al. (2018). They report O. transcaspicus comb. et stat. nov. from ten localities in the foothills of the Köpet–Dag Mountains: Balkan and Ahal Provinces (Danata spring; Eldere Gorge north from Kara-Kala; Chandyr Valley; Makhmumkala village; Kara–Elchi and Eishem gorges; Aidere, Kurygol; Arvaz Valley; 7 km northwards from Saivan; Firuza and Chuli villages; Shamly, near Babazo) and from two localities in Mary Province (Dana–Germab spring, and Nardyvanly spring; environs of Badkhyz). In Iran, Oligodon transcaspicus comb. et stat. nov. is known definitively from Razavi Khorasan Province from two localities (ZMMU Re-16687 from Bazangan Lake; and another sight record we confirm from ~5 km SW of Mashahd), and Golestan Province (town of Dashliburun [Dashil Borun]). The Golestan Province records originates from Latifi (1991), who reported the locality as "Mazandaran Province (Ghonbad Kavoos) ... in Dashley Boron region". At the time of Latifi's writings, the locality "Ghonbad Kavoos... Dashley Boron" (the romanized spelling of Gonbad-e Kavus county) was included within Mazandaran Province before being separated into Golestan Province in 1997. We here confirm this locality in Golestan Province as "Dashliburun" (sometimes spelled as "Dashil Boron"), close to the Turkmenistan border. Rajabizadeh (2018) reported the species in Northeastern Iran close to border of Turkmenistan from eastern Golestan Province to north of Khorasan Razavi Province. Latifi (2000) and Safaei-Mahroo et al. (2015) also reported this species from North Khorasan, and from Zanjan and West Azarbaijan Provinces, although the occurrences in western Iran require further verification (see Discussion).

The natural history of *Oligodon transcaspicus* **comb. et stat. nov.** is somewhat well-known in the literature (Dotsenko, 1984; Atayev, 1985; Szczerbak, Khomustenko & Golubev, 1986; Rustamov & Sopyev, 1994; Szczerbak, 1994; Atayev, Rustamov & Shammakov, 1994; Orlov et al., 2018) and several additional specimens have been recorded. Two specimens photographed by A. Pavlenko (pers. comm.) were found in the daytime amongst rocky outcrops (Figure 6); however, Orlov et al. (2018) noted most specimens were strictly nocturnal or crepuscular. These authors found *Oligodon transcaspicus* **comb. et stat. nov.** was most abundant between elevations of 400–700 meters, but also noted a few specimens that were found at lower and higher altitudes. Most animals were captured at the base of gradually sloping mountain

and higher altitudes. Most animals were captured at the base of gradually sloping mountain

627 gorges, riverbeds and open habitats with shrubs and tree vegetation that maintain enough surface

moisture. Based on this, Orlov et al. (2018) posited that the activity period of Oligodon

630

631

632633

634

635

636

637638

639

640

641642

643644

645

646

647

648

649650

651

652653

654 655

656

657

658659

660

661

662

663

664

665

666667

668

transcaspicus comb. et stat. nov. is highly dependent on high moisture and relative humidity and will only come up on the surface when these conditions are met. Like other *Oligodon*, this species probably feeds on reptile and bird eggs. Atayev, Rustamov & Shammakov (1994) and sources therein record this species laying one to two eggs between the months of May and June, suggesting the reproductive season is in the spring and early summer. It is assumed like other *Oligodon* that its diet primarily consists of reptile eggs.

Remarks. Most sources that mention *O. transcaspicus* **comb. et stat. nov.** have cited Nikolsky (1903a) as the source of original description. However, we have discovered an earlier book that was also authored by Nikolsky describing *Contia transcaspica* dated to 1902. Thus, the year of original description and its publication source should be fixed, and we do so here in the present paper.

Etymology. The species epithet "transcaspicus" is a latinized toponymic adjective in genitive singular and given in reference to the type locality of this species, which during the time of its description, was called the Transcaspian Region (Zakaspiyskaya Oblast or Zakaspiyskiy Krai) and was part of the Turkestan Governor–Generalship of the Russian Empire. The Transcaspian Region later became known as Turkmenistan during its time as a constituent republic of the Soviet Union (Turkmen S.S.R.) and now as an independent nation. The epithet is fixed to agree with the gender of the generic name Oligodon, which is masculine. We recommend the English common name "Köpet–Dag Kukri Snake" for this species, followed by the Russian, Farsi, and Turkmen common names "Zakaspiyskiy oligodon", ""ناخ کپه مال لوس " [Loos Mār-e Kopet Dagh], and "Goňurja ýylanjyk", respectively (see Rustamow, 2011; Rajabizadeh, 2018).

F

The taxonomic status of Oligodon "arnensis" in Pakistan. Because the revision of O. arnensis sensu auctorum by Bandara et al. (2022) only focused on material from India and Sri Lanka, we use this section to review the status of these snakes in neighboring Pakistan. We examined one specimen of O. "arnensis" (CUHC 7904) recently collected by DJ and RM on 16 September 2018 from Kallar Kahar, Punjab Province, Pakistan (32.7695°N, 72.7065°E, 613 m a.s.l.). Based on the presented mtDNA phylogeny, this specimen was recovered in a clade with two additional samples from Pakistan that were previously identified as O. cf. churahensis by Mirza, Bhardwaj & Patel (2021). These authors only briefly commented on the status of these genetic samples and could not examine voucher specimens from Pakistan in their study. A brief description of CUHC 7904 is as follows (Figure 7): adult male, SVL 345 mm, TailL 65 mm (TotalL 410 mm; TailLR 0.159) 16–17–15 dorsal scale rows, 183 ventrals, 49 subcaudals (233 total body scales), subcaudal ratio of 0.21, 1/1 loreal present, 1/1 divided nasal, 7/7 supralabials with the third and fourth in contact with the eye, 7/7 infralabials, and an immaculate brown dorsum with 37 black crossbands across the body and 13 tail bands approximately 1.0-1.5 dorsal scales wide at midbody and interspaces between each band approximately 4.0 dorsal scales long. In addition to this specimen, multiple authors who have conducted fieldwork in Pakistan (Minton, 1962; Minton, 1966; Mertens, 1969; Khan, 2002) have recorded O. "arnensis" specimens. Both

- Minton (1962) and Khan (2002) figure an *O. "arnensis"* (with Khan, 2002 swapping the images of *O. "arnensis"* and *O. taeniolatus* by mistake) bearing small narrow black crossbars with white edges. Based on these characteristics, along with other scalation features (see Table 3), the literature descriptions of Pakistani *O. "arnensis"* are very similar to CUHC 7904 and specimens *O. russelius* fide Bandara et al. (2022). Therefore, based on our specimen and previous reports of *O. "arnensis"*, we refer the northern Pakistan populations of *O. "arnensis"* to *O. russelius*.
- 675676

679

680 681

682

683

684

685

686

687

688

689 690

691

692

693

694 695

696

697

698 699

700

701

702

703704

705

706707

708

Records of Oligodon in Afghanistan. Literature reports of O. "arnensis" and O. taeniolatus from Afghanistan are sparse but have been the subject of confusion for decades. Brück (1968) first reported a juvenile Kukri Snake he identified as O. taeniolatus from "dem Gebiete um Dielalabad" [= vicinity of Jalalabad]. This record was plotted by Sindaco et al. (2013) but rejected due to imprecision by Wagner et al. (2016b). Although Brück (1968) identified this specimen as O. taeniolatus, data he provided for this specimen indicates it bears 17 dorsal scale rows, contra the 15 dorsal scales normally observed in O. taeniolatus. This was noticed quickly by Král (1969), who subsequently corrected its identification to O. arnensis. Nevertheless, both Sindaco, Venchi & Grieco (2013) and Wagner et al. (2016b) recorded both O. arnensis and O. taeniolatus as inhabitants of Afghanistan, failing to realize that their records refer to the same specimen (MMB 28497). Brück (1968)'s account provided additional morphological data that allow us to confirm its identification. He notes that the specimen bears the following features: iuvenile (unsexed, but based on relative tail length and subcaudal ratio, possibly an immature female), SVL 153 mm, TailL 24 mm (TotalL 177 mm, TailLR 0.136), dorsal scales in 17 rows, 198 ventrals, 44 subcaudals, (243 total body scales, subcaudal ratio 0.181), 7/7 supralabials (3–5 contacting eye), 6/6 infralabials, 1 preocular, 2 postocular, 1+2 temporals, and 49 dark crossbars across the body and tail. These characteristics confirm that the specimen should not be identified as O. taeniolatus and that Král's re-identification as O. "arnensis" was correct (see Table 3 for more comparisons). A second *Oligodon* record from Afghanistan was recently documented on the citizen science platform iNaturalist (2022). This specimen (obs. 110932106, user mohammadfaroog) was observed from Dara-i-Pech district, Kunar Province, Afghanistan (35.0553°N, 70.9561°E; 1,700–1,800 meters a.s.l.) on 9 April 2022. While photographs of the specimen are too poor in quality to discern any scalation features, its color pattern consisting of approximately 51 black crossbars and 13 tail bars (64 total crossbars) greatly resembles O. "arnensis", specifically O. russelius (and to some extends O. churahensis but see Discussion). Because of this, we conclude that the Afghanistan populations previously recorded as O. arnensis (Khan, 2002; Wagner et al., 2016b) should also represent O. russelius. All records of

this species from the country are restricted to the western portion of the Hindu Kush.

The only other report of an Afghan *Oligodon* is a record of *O. taeniolatus* from Afghanistan noted by Wagner et al. (2016b) from "Kars, Kandahar Province" based on specimen USNM 194971. We attempted to trace the voucher of this specimen and discovered that the museum catalog number USNM 194971 refers to a scincid lizard *Eurylepis taeniolatus* Blyth, 1854a, and not a kukri snake. No collection records of *Oligodon* from Afghanistan have been

- found within the USNM collections ledger (E. Langan, 2022, pers. comm.), and so we consider
- 710 the Kandahar Province record of *O. taeniolatus* to be erroneous. The similar species epithets
- between E. taeniolatus and O. taeniolatus may have caused Wagner et al. (2016b) to mistake its
- 712 identity, resulting in a *lapsus calami*. Therefore, we formally remove *O. taeniolatus* from the
- herpetofauna of Afghanistan, Iran, and Turkmenistan. However, we note that the presence of O.
- 714 transcaspicus comb. et stat. nov. in Afghanistan is still possible, particularly in northwestern
- 715 provinces bordering with Iran and Turkmenistan (suggested also by the SDM analysis).

Discussion

- The phylogenetic analysis of 12S–16S rRNA, cvt b fragments, morphological data and
- 718 SDM mapping data support the resurrection of *Contia transcaspica* as *Oligodon transcaspicus*
- 719 **comb. et stat. nov.** for Iranian and Turkmen populations previously ranked under *O. taeniolatus*.
- 720 This analysis also revealed substantial genetic differentiation between populations of O.
- 721 taeniolatus on the Indian subcontinent warranting additional revisionary work from future
- authors. We cannot provide a valid description for the deeply divergent lineages in Sri Lanka and
- mainland India due to a lack of broad morphological and genetic sampling. However, we note
- 724 that the names *Oligodon fasciatus* Günther, 1864 (now considered a subspecies of O.
- 725 taeniolatus) and Oligodon taeniolatus var. ceylonicus Wall, 1921 are both available names for
- 726 Sri Lankan populations if they indeed prove to be distinct from others on the island, and/or the
- 727 remainder of the Indian subcontinent. While the taxonomy of *O. taeniolatus* remains unresolved,
- 728 the position of O. transcaspicus comb. et stat. nov. outside of this clade in the O. arnensis
- species group justifies its separation as a distinct species. The distribution of *O. transcaspicus*
- comb. et stat. nov. is probably more expansive than currently ascertained, and we expect that
- 731 this species will eventually be found in additional localities across the Köpet–Dag Mountain
- 732 region
- 733 The SDM models identified some patches of suitable habitat across the Western Caspian region
- and Central Iranian Desert in areas where Latifi (1991, 2000) and Safaei-Mahroo et al. (2015)
- reported its presence. Unfortunately, we could not trace any specimen vouchers of Latifi's
- 736 collection in the Razi Vaccine and Serum Research Institute associated with these Iranian
- 737 records. Since these Latifi's specimens come from snake hunters of the institute (and were not
- 738 collected by Latifi himself) and the locality data is given only at province level, researchers must
- be very cautious about them. Only subsequent fieldwork in these areas might verify such reports,
- 740 particularly in adjacent Iranian provinces bordering Turkmenistan.
- Verified vouchers specimens of O. transcaspicus comb. et stat. nov. also exist close to the
- border of Afghanistan in Mary Province, Turkmenistan, Since SDM modelling also predicts
- suitable habitat in this region, it is possible that this species also persists in the northwestern
- 744 portion of Afghanistan (specifically Herat, Badghis, Faryab and Jowzan provinces), but a lack of
- survey effort due to security concerns makes it difficult to ascertain whether this species will be
- found here anytime soon (see Jablonski et al., 2021). The conservation of O. transcaspicus
- comb. et stat. nov. does not seem to be under any significant threats, although factors such as
- habitat degradation and human encroachment could pose a threat to some populations. Climate

750

751

752753

754

755

756 757

758

759

760761

762

763

764

765

766

767

768769

770

771

772

773

774775

776

777

778779

780

781

782

783 784

785

786 787

788

projections also state that aridification and a reduction of river runoff is expected across the southern portion of Turkmenistan over the following decades (Lioubimtseva et al., 2012; Duan et al., 2019). Because the SDM mapping analyses indicated temperature and precipitation seasonality were major factors influencing the distribution of *O. transcaspicus* **comb. et stat. nov.**, climate change may also negatively impact populations. Under listings provided by the International Union for Conservation of Nature (IUCN) we would recommend classifying this species as "Least Concern". Continued monitoring of existing populations and additional field surveys across the Köpet–Dag Mountain Range would improve our understanding of the ecology and conservation of this species.

Although our sampling is very limited, the results from our study suggest the three-taxon statement of the O. arnensis sensu auctorum by Bandara et al. (2022) requires additional scrutiny. Specimens we included from Ganjam district, Odisha, India (CAS 17224–225) are well within the distribution of O. russelius (fide Bandara et al., 2022) and both morphologically resemble O. arnensis sensu stricto, bearing 18–20 dark black body bands that are 2.0–3.0 dorsal scales wide. Another specimen collected near Rajamahendravaram, Andhra Province, India (CAS 94375) is close to the type locality of O. russelius but has 22 dorsal body bands that are 1.5–2.0 dorsal scales wide (band count resembling the species diagnosis of O. arnensis sensu stricto fide Bandara et al., 2022). Either the ranges of O. arnensis sensu stricto and O. russelius are sympatric in parts eastern India, or a broad contact zone between the two species may exist. This could explain why some specimens we examined have more variable color pattern conditions than previously described. The distribution map of O. arnensis, O. russelius and O. tillacki in Bandara et al. (2022)'s clearly separates the three taxa on the Indian subcontinent; however, we note that the collection localities in their map combine collection localities with observations identified from iNaturalist. We agree that such citizen scientist databases have great utility in documenting rare and understudied herpetofauna, but they still can suffer from data quality issues (i.e., limited number of visible morphological features, misidentification errors). It is difficult to discern which locations in Bandara et al. (2022)'s map are voucher specimens or iNaturalist observations because the authors do not provide a geolocation appendix in their paper and do not denote a distinction between their location datapoints. Furthermore, we note that the p-distance (based on cyt b) between Sri Lankan O. arnensis samples and the GenBank sample identified as O. cf. tillacki is only 3.6%, lower than most normal p-distances separating specieslevel lineages of *Oligodon*. We conservatively retain the species status of *O. tillacki* as we have not directly examined the voucher specimen of this sample to verify its identity. Subsequent treatments of O. arnensis sensu stricto, O. russelius, and O. tillacki should emphasize increased specimen and tissue collection for an integrative taxonomic approach.

Our analysis also confirmed the taxonomic identity of *O. "arnensis"* populations in northern Pakistan and Afghanistan as *O. russelius*. Nevertheless, several authors (Minton, 1966; Mertens, 1969; Khan, 2002) note the distribution of *O. "arnensis"* extends into central and southern Pakistan close to the border of western India. These locations come close to the known distribution of *O. tillacki*, especially near Gujarat State, India. However, Minton (1966) noted

PeerJ

800 801

802

803

804

805806

807

808809

810811

812

813

814815

816

817

818819

820

821

822

823824

825

826

827

789 that all his specimens have black bars with white edges, a phenotypic trait that Khan (2002) also 790 described. Both illustrations by these authors show a "V-shaped" marking on the nape, although it is not a thick triangular blotch that is observed in O. tillacki. We believe there is little 791 indication that O. "arnensis" populations in southern and central Pakistan match the description 792 793 O. tillacki and we maintain the identity these populations as O. russelius for the time being. It is 794 still possible that O. tillacki could range into this part of the country due to the continuity of habitat within this region, and we suggest future herpetological survey work and the examination 795 of additional material to confirm this. Such a discovery could align with recent studies that have 796 797 denoted a biogeographic break between the right and left banks of the Indus River seen in several 798 Pakistani amphibians and reptiles (Gowande et al., 2021; Agarwal et al., 2022; Dufresnes et al., 799 2022).

Our study has taxonomic implications for the recently described O. churahensis, as Mirza, Bhardwaj & Patel (2021) tentatively associated Pakistani samples of O. "arnensis" with this species. Like the genetic distances between O. cf. tillacki and O. arnensis sensu stricto, the cyt b p-distance between the Pakistani clade of O. russelius (= O. cf. churahensis) and the clade containing the type series of O. churahensis is low for species-level divergence, standing at only 3.3%. Oligodon churahensis was described by Mirza, Bhardwaj & Patel (2021) based on two specimens collected at the foothills of the western Himalayas in Himachal Pradesh, India. Bandara et al. (2022) correctly noted that literature descriptions of kukri snakes similar to O. churahensis were reported as O. arnensis sensu lato (= now O. russelius) by past authors (Wall, 1921; Deraniyagala, 1936; Constable, 1949; Deraniyagala, 1955). However, because Bandara et al. (2022) include data from these historical sources into their conception of O. churahensis (as seen in their supplementary material), diagnosing this species from O. russelius becomes puzzling. In the comparisons section of O. russelius, Bandara et al. (2022) separated this species from O. churahensis by the presence of 30–45 crossbars (versus 48–54 in O. churahensis) the distance between each crossbar measured in vertebral dorsal scales (4–6 scales versus 2–4 in O. churahensis), and by a different head shape marking (inverted Y-shaped marking versus heartshaped symbol in O. churahensis). However, the authors note that O. churahensis has 56–62 crossbars in the remaining text, especially in Table 1, where it is again compared to the 30–45 crossbars of O. russelius. It appears that the authors confused the true number of crossbars found in O. churahensis and O. russelius, failed to specify between "total crossbars" (including body and tail bars) and "body crossbars" (restricted from nape to vent) and did not completely summarize the color pattern traits observed in all of the sources they believe comprise O. churahensis (Wall, 1921; Deraniyagala, 1936; Constable, 1949; Deraniyagala, 1955; Mirza, Bhardwaj & Patel 2021). Per the original description (Mirza, Bhardwaj & Patel 2021), the actual number of body crossbars in O. churahensis is 37–45, with the total crossbars noted as 48–54. Furthermore, Bandara et al. (2022) state in the written description that O. russelius has 30–45 body crossbars and 6–10 tail bars. This indicates that the supposed differences in crossbar

numbers are a lot less significant than previously considered. As argued by Mahony & Kamei

829

830

831832

833

834

835

836837

838

839840

841

842843

844

845

846

847848

849

850

851852

853854

855

856

857858

859

860

861

862863

864865

866

(2021), errors and inconsistencies in taxonomic articles are inevitable, but authors should practice great care to make sure data inputted into descriptions and tables is consistent.

When we combine our own data on *O. russelius* from Afghanistan, Pakistan with the clarified characters of Bandara et al. (2022) and existing data in the literature (Wall, 1921; Constable, 1949), most color pattern and scalation traits between this taxon and *O. churahensis* overlap (Table 3). Combined with the low genetic divergence revealed by our molecular data, our study does not support the species-rank status of *O. churahensis*. It is plausible that specimens identified as *O. churahensis* represent the high-end of a geographic cline of crossbanded phenotypes found within *O. russelius* across its range, as suggested in part by Wall (1921). Alternatively, it is possible that the *O. churahensis* and *O. russelius* clades could maintain their reciprocal monophyly, albeit with low genetic divergence that would support the existence of two lineages at the subspecies level. In the absence of additional samples from the type locality of *O. churahensis* and adjacent regions of northern India and Pakistan, we believe the most appropriate decision is to relegate the species to the junior synonymy of *O. russelius*, which we do so here.

Our resurrection of O. transcaspicus comb. et stat. nov. and the clarification of O. "arnensis" and O. taeniolatus records from Middle and Southwest Asia represents a small step of a long journey in our goal of understanding the evolutionary history of snakes and other herpetofauna of this region. Interestingly, several reptiles found in Middle and Southwest Asian countries that are Oriental realm elements of the region's herpetofauna are recognized as separate taxa. Such examples include *Boiga trigonata melanocephala* (Annandale, 1904), Lycodon striatus bicolor Nikolsky, 1903b and Ptyas mucosa nigriceps Terentjev & Chernov, 1949. Other reptile taxa found in Middle/Southwest Asia whose close relatives are of Oriental realm origin include Naja oxiana Eichwald, 1831 and Eublepharis macularius Blyth, 1854b. For these latter species, phylogeographic evidence indicates minimal genetic differentiation between populations opposite of the Hindu Kush suggesting rapid range expansion from the Indian subcontinent into Middle/Southwest Asia due to suitable environmental conditions formed by steppe habitats west of the Hindu Kush mountains (Kazemi et al., 2021; Agarwal et al., 2022). The uniqueness of the evolutionary lineage representing O. transcaspicus comb. et stat. nov. paints a different picture, as the presented molecular, morphological and SDM evidence implies that the divergence of its common ancestor into present-day Iran and Turkmenistan occurred much earlier. The high topography surrounding the Hindu Kush and the south-adjacent Registan-North Pakistan sandy deserts present formidable biogeographic barriers, and probably limited dispersal opportunities periods when climatic and habitat conditions were suitable. The diversity and cladogenesis of other Oriental-affiliated elements of Middle and Southwest Asia's amphibians and reptiles are still poorly understood by herpetologists, and present numerous intriguing questions for future research. The acquisition of new material along with more comprehensive phylogeographic analyses will undoubtedly shed light on these unique animals and their taxonomic and evolutionary status.

孠

Conclusions

- We carefully reviewed the status of the two kukri snake species found in Middle and
- 869 Southwestern Asia, the banded kukri snake O. "arnensis" and the streaked kukri snake O.
- 870 taeniolatus, leading to several taxonomic and distributional clarifications. For O. taeniolatus, we
- 871 found that specimens from the Köpet-Dag Mountain Range of northern Iran and southern
- 872 Turkmenistan were phylogenetically recovered in a different intrageneric grouping compared to
- 873 nominotypical O. taeniolatus on the Indian subcontinent. To fix this paraphyly, we resurrected
- 874 the junior synonym *Contia transcaspica* and provided a thorough morphological redescription
- supplemented with SDM mapping to explore its potential range. We also found that Afghanistan
- and northern Pakistan records of kukri snakes previously recognized as O. arnensis should in
- fact be allocated to the species *O. russelius*. This latter species forms a clade sister to the recently
- 878 described O. churahensis from northern India, but is only separated by a small genetic
- divergence of 3.3% based on cytochrome b. Because the morphology between O. russelius and
- 880 O. churahensis exhibits substantial overlap, we consider both species to be conspecific, and
- relegate O. churahensis to junior synonymy. Our investigation further revealed that there are no
- records of O. taeniolatus from Afghanistan, as the two past reports from the literature refer to a
- misidentified specimen of O. russelius, and a misidentified scincid lizard, respectively. As a
- 884 consequence, we remove O. taeniolatus from the snake fauna of Afghanistan, Iran, and
- 885 Turkmenistan. The two kukri snakes found in Middle and Southwestern Asia now consist of
- 886 transcaspicus comb. et stat. nov. and O. russelius. These two species represent key Oriental
- herpetofaunal elements in a region that primarily consists of Palearctic amphibians and reptiles.
- Their ranges in Middle and Southwest Asia appear to be influenced by past climate change
- across the Hindu Kush Mountain range, in addition to past biotic and abiotic fluctuations that
- 890 occurred during the Plio-Pleistocene. Future studies that explore the biogeographic origins of
- these animals are recommended. We also suggest that additional taxonomic work on O. arnensis
- and O. taeniolatus are needed on Indian subcontinent populations. The number of recognized
- species in *Oligodon* remains at 89.

Acknowledgements

894

- Permission to conduct fieldwork in Iran was granted by the International Center for Science,
- High Technology and Environmental Sciences, Kerman, Iran (contract number 1.87, issued at
- 897 11.04.2008), in Sri Lanka by the Department of Wildlife Conservation and Department of Forest
- 898 Conservation (WL/3/2/1/14/12), and in Pakistan by the permit of the Pakistan Museum of
- Natural History, Islamabad, Pakistan (No. PMNH/EST-1[89]/05). We are also grateful to
- 900 Alexander V. Pavlenko for providing photographs and detailed locality information of two O.
- 901 transcaspicus comb. et stat. nov. he observed in the field. We thank the following curators.
- 902 collections managers and other staff members for permission to examine specimens under their
- 903 care and assistance with laboratory materials and protocols: Lauren Scheinberg, Erica Ely, Jens
- 904 Vindum, and Alan Leviton (CAS); Jana Polákova (Comenius University in Bratislava); and Roy
- 905 W. McDiarmid, Steve Gotte, Jeremy Jacobs, Kenneth Tighe, Addison Wynn, and George R. Zug

906 907 908 909 910 911 912 913 914 915	(USNM); Valentina F. Orlova, Evgeniy A. Dunayev, Evgeniya Shepelya, and Evgeniya N. Solovyeva (ZMMU); Natalia B. Ananjeva and Igor Doronin (ZISP). We are indebted to (reviewers) for their constructive comments on this manuscript. JLL thanks Aaron M. Bauer (Villanova University, USA) for providing important copies of literature and additional support. JLL was partially supported by the University of Maryland College of Computer, Mathematical and Natural Sciences and the Ernest Cory Undergraduate Scholarship during the earlier development of this manuscript. SK would like to thank Dr. Anslem de Silva and Dr. Kanishka Ukuwela for various help for permission to use parts of his data. We also thanks to Pouria Sardari for providing a specimen from northeastern Iran. PD'S and AKM wish to thank Kartik Shankar for laboratory assistance. The research was completed within the frameworks of Russian
916 917	State projects A16116021660077–3, 122031100282-2 and AAAA–A17–117030310017–8.
918	ADDITIONAL INFORMATION AND DECLARATIONS
919	
920	Funding
921	Specimen storage and examination was completed with financial support of Russian Science
922	Foundation (RSF grant No. 22-14-00037; molecular phylogenetic analysis, specimen
923	examination) to NAP; with partial support of the Russian Foundation for Basic Research and
924	Iran National Science Foundation (Grant no. 20–54–56033; specimen collection) to RAN; and
925	by the grant of the Scientific Grant Agency of the Slovak Republic VEGA 1/0242/21 (SDM
926	modeling, specimen collection) to DJ. The funders had no role in study design, data collection
927 928	and analysis, decision to publish, or preparation of the manuscript.
929	Grant Disclosures
930	The following grant information was disclosed by the authors:
931	Russian Science Foundation: 22–14–00037
932	Russian Foundation for Basic Research and Iran National Science Foundation: 20-54-56033
933	Scientific Grant Agency of the Slovak Republic: VEGA 1/0242/21
934	
935	Competing Interests
936	Nikolay A. Poyarkov serves as an Academic Editor for PeerJ. The other authors declare that they
937	have no competing interests.
938	
939	Author Contributions
940	Justin L. Lee collected data, conceived and designed the experiments, analyzed the data,
941 942	prepared figures and tables, prepared the drafts of the paper, reviewed drafts of the paper, and approved the final draft.
ノマム	approved the iniai diait.

- 943 **Platon V. Yushchenko** collected data, conceived and designed the experiments, analyzed the
- data, prepared figures and tables, prepared the drafts of the paper, reviewed drafts of the paper,
- and approved the final draft.
- Wonstantin D. Milto collected data, prepared figures, reviewed drafts of the paper, discussion of
- 947 the results
- 948 **Mehdi Radjabizadeh** collected data, prepared figures, reviewed drafts of the paper, discussion
- 949 of the results
- 950 **Eskandar Rastegar Pouvani** analyzed the data, reviewed drafts of the paper, discussion of the
- 951 results
- **Daniel Jablonski** collected data, contributed analysis tools, prepared figures, prepared the drafts
- of the paper, reviewed drafts of the paper, and approved the final draft, discussion of the results
- Rafaqat Masroor collected data for the paper, contributed analysis tools, reviewed drafts of the
- paper, approved the final draft, discussion of the results
- 956 Suranjan Karunarathna collected data for the paper, contributed analysis tools, reviewed
- drafts of the paper, approved the final draft, discussion of the results
- 958 **Ashok Kumar Mallik** analyzed the data, contributed analysis tools, reviewed drafts of the
- paper, discussion of the results
- Princia Dsouza collected data for the paper, reviewed drafts of the paper, approved the final
- 961 draft, discussion of the results
- Nikolai L. Orlov analyzed the data, reviewed drafts of the paper, discussion of the results
- **Roman A. Nazarov** collected data, prepared figures, reviewed drafts of the paper, discussion of
- 964 the results

- Nikolay A. Poyarkov conceived and designed the experiments, analyzed the data, prepared the
- drafts of the paper, reviewed drafts of the paper, and approved the final draft.

968 Animal Ethics

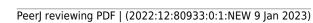
- The following information was supplied relating to ethical approvals (i.e., approving body and
- any reference numbers):
- 971 Specimen collection protocols and animal operations followed the Institutional Ethical
- 972 Committee of International Center for Science, High Technology and Environmental Sciences,
- 973 Kerman, Iran (Certificate #1.87-1).

975 **F**i

974

Field Study Permissions

- 976 The following information was supplied relating to field study approvals (i.e., approving
- 977 body and any reference numbers):
- 978 Field works, including collection of the samples and animals in the field, was performed outside
- of any protected area, in the framework of a project contract signed by International Center for
- 980 Science, High Technology and Environmental Sciences, Kerman, Iran (contract number 1.87,
- 981 issued at 11.04.2008). The contract bears a permission to collect the reptile samples outside of
- any protected area of Department of the Environment (specified in <u>www.doe.ir</u>) that needed



983	extra permissions. Specimen collection protocols and animal operations followed the
984	Institutional Ethical Committee of International Center for Science, High Technology and
985	Environmental Sciences, Kerman, Iran (certificate number 1.87-1).
986	
987	DNA Deposition
988	The following information was supplied regarding the deposition of DNA sequences:
989	Sequences of 12S–16S rRNA and cyt <i>b</i> genes presented here are accessible via GenBank
990	accession numbers OQ092426; OQ099833–OQ099837; and OQ116816–OQ116825 (Table 1).
991	
992	Data Availability
993	The following information was supplied regarding data availability:
994	Specimens examined in this study are deposited in herpetological collections of the following
995	museums:
996	1. CAS: California Academy of Sciences, San Francisco, USA;
997	2. CUHC: Comenius University Herpetological Collection, Bratislava, Slovakia;
998	3. MMB: Department of Zoology, Moravian Museum, Brno, Czech Republic;
999	4. USNM: National Museum of Natural History, Washington, DC, USA;
1000	5. ZISP: Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia;
1001	6. ZMMU: Zoological Museum of Moscow State University, Moscow, Russia.
1002	
1003	References
1003	Agarwal I, Bauer AM, Gamble T, Giri VB, Jablonski D, Khandekar A, Mohapatra PP, Masroor
1004	R, Mishra A, Ramakrishnan U (2022) The evolutionary history of an accidental model
1005	organism, the leopard gecko <i>Eublepharis macularius</i> (Squamata: Eublepharidae). Molecular
1007	Phylogenetics and Evolution 168: 107414.
1008	https://doi.org/10.1016/j.ympev.2022.107414
1009	
1010	Ananjeva NB, Orlov NL, Khalikov RG, Darevsky IS, Ryabov SA, Barabanov A (2006) The
1011	Reptiles of Northern Eurasia. Taxonomic Diversity, Distribution, Conservation Status.
1012	Pensoft Series Faunistica, Sofia, 250 pp.
1013	
1014	Annandale N (1904) Additions to the Collection of Oriental Snakes in the Indian Museum.
1015	Journal of the Asiatic Society of Bengal 73(2): 207–211 + pl. ix.
1016	
1017	Asadi A, Montgelard C, Nazarizadeh M, Moghaddasi A, Fatemizadeh F, Simonov E, Kami HG,
1018	Kaboli M (2019) Evolutionary history and postglacial colonization of an Asian pit viper
1019	(Gloydius halys caucasicus) into Transcaucasia revealed by phylogenetic and
1020	phylogeographic analyses. Scientific Reports 9: 1224.
1021	https://doi.org/10.1038/s41598-018-37558-8

1022	
1023	Atayev Ch (1985) Reptiles of the Mountains of Turkmenistan. Ylym Press, Ashkhabad, 344 pp.
1024	(in Russian)
1025	
1026	Atayev Ch, Gorelov YK, Shammakov S (1978) Data on rare and endangered species of reptiles
1027	of the Turkmenistan fauna. Proceedings of the Academy of Sciences of the Turkmen SSR.
1028	Series of Biological Sciences 4: 81–83. (in Russian)
1029	
1030	Atayev Ch, Rustamov AK, Shammakov S (1994) Reptiles of Kopetdagh. In: V. Fet and K. I.
1031	Atamuradov (Eds) Biogeography and Ecology of Turkmenistan. Monographiae Biologicae.
1032	Springer, Dordrecht, 329–350.
1033	
1034	Bandara SK, Ganesh SR, Kanishka AS, Danushka AD, Sharma VR, Campbell PD, Ineich I,
1035	Vogel G, Amarasinghe AAT (2022) Taxonomic Composition of the Oligodon arnensis
1036	(Shaw 1802) Species Complex (Squamata: Colubridae) with the Description of a New
1037	Species from India. Herpetologica 78(1): 51–73.
1038	https://doi.org/10.1655/Herpetologica-D-21-00026.1
1039	
1040	Bannikov AG, Darevsky IS, Ischenko VG, Rustamov EA, Scherbak NN (1977) The key to
1041	amphibians and reptiles of the USSR. Prosveschenie, Moscow, 414 pp. (in Russian)
1042	
1043	Barkat AI, Rabbe MF (2022) A confirmed record of Russell's kukri (Oligodon russelius) from
1044	Bangladesh. Taprobanica 11(1): 44.
1045	https://doi.org/10.47605/tapro.v11i1.280
1046	
1047	Bauer AM (2003) On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-
1048	ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803).
1049	Hamadryad 27(2): 205–213.
1050	
1051	Berg LS (1931) Landscape and geographical zones of the USSR. Izdaniye Instituta
1052	Rastenievodstva, Leningrad (St. Petersburg), 401 pp. (in Russian)
1053	
1054	Blyth E (1854a) Notices and descriptions of various reptiles, new or little known [part 2]. Journal
1055	of the Asiatic Society of Bengal 23(3): 287–302.
1056	
1057	Blyth E (1854b) Proceedings of the Society. Report of the Curator, Zoological Department.
1058	Journal of the Asiatic Society of Bengal 23(7): 737–740.
1059	

1060 1061	Bobrinskoy NA (1923) Guide to snakes of the Turkestan Territory (Russian Turkestan, Semirechye, Khiva and Transcaspian Region). Middle Asian State University, Tashkent, 14
1062	pp. (in Russian)
1063	pp. (iii reassian)
1064	Bogdanov OP (1962) Reptiles of Turkmenia. Akademii Nauk Turkmenskoi S.S.R. Publishing,
1065	Ashkhabad, 260 pp. (in Russian)
1066	
1067	Boie, H. (1826) Merkmale einiger japanischen Lurche. Isis von Oken 19(2): cols. 203–216.
1068	
1069	Brown JL, Hill DJ, Dolan AM, Carnaval AC, Haywood AM (2018) PaleoClim, high spatial
1070	resolution paleoclimate surfaces for global land areas. Scientific Data 5: 180254.
1071	https://doi.org/10.1038/sdata.2018.254
1072	
1073	Brück G (1968) Zur Herpetofauna Afghanistans. Věstník Československé Společnosti
1074	Zoologické, Acta Societatis Zoologicae Bohemoslovenicae 32: 201–208.
1075	
1076	Cantor T (1839) Spicilegium Serpentium Indicorum [parts 1–2]. Proceedings of the Zoological
1077	Society of London part 7: 31–34 + 49–55.
1078	
1079	Chen M, Liu J, Cai B, Li J, Wu N, Guo X (2021) A new species of <i>Psammophis</i> (Serpentes:
1080	Psammophiidae) from the Turpan Basin in northwest China. Zootaxa 4974(1): 116–134.
1081	https://doi.org/10.11646/zootaxa.4974.1.4
1082	
1083	Chernov SA (1935) Two specimens of the genus <i>Oligodon</i> (Ophidia, Colubridae) in the USSR.
1084	Comptes rendus (Doklady) de l'Académie des sciences de l'URSS 1: 348–352. (in Russian)
1085	
1086	Chernov SA (1949) Reptiles of Tajikistan and genesis of modern herpetofauna of Middle Asia.
1087	Doctoral thesis abstract, Leningrad, 9 pp. (in Russian)
1088	
1089	Constable JD (1949) Reptiles from the Indian Peninsula in the Museum of Comparative Zoology.
1090	Bulletin of the Museum of Comparative Zoology at Harvard College 103(2): 59–160.
1091	
1092	Das A, Gower DJ, Narayanan S, Pal S, Boruah B, Magar S, Das S, Moulick S, Deepak V (2022)
1093	Rediscovery and systematics of the rarely encountered Blue-bellied kukri snake (<i>Oligodon</i>
1094	melaneus Wall, 1909) from Assam, India. Zootaxa 5138(4): 417–430.
1095	https://doi.org/10.11646/zootaxa.5138.4.4
1096	
1097	Daudin FM (1803) Histoire naturelle, générale et particulière, des reptiles : ouvrage faisant
1098	suite à l'Histoire naturelle générale et particulière, composée par Leclerc de Buffon, et

1099	rédigée par C.S. Sonnini, Member de Plusieurs Sociétés Savantes. Tome sixième.
1100	Imprimerie F. Dufart, Paris, 447 pp. + pls. 71–80.
1101	
1102	De Queiroz K (2007) Species Concepts and Species Delimitation. Systematic Biology 56(6):
1103	879–886.
1104	https://doi.org/10.1080/10635150701701083
1105	
1106	Deraniyagala PEP (1936) The snake <i>Oligodon albiventer</i> (Günther). Spolia Zeylanica 20: 89–91.
1107	
1108	Deraniyagala PEP (1955) A Colored Atlas of some Vertebrates from Ceylon, vol. 3. Serpentoid
1109	Reptilia. Ceylon National Museums Publication, Colombo, xix + 112 pp. + 48 pls.
1110	
1111	Dotsenko LB (1984) Morphological characters and ecological features of Oligodon taeniolatus
1112	(Serpentes, Colubridae). Vestnik Zoologii 1984(4): 23–26. (in Russian)
1113	
1114	Dowling HG (1951) A proposed standard system of counting ventrals in snakes. British Journal
1115	of Herpetology 1: 97–99.
1116	
1117	Dufresnes C, Mahony S, Prasad VK, Kamei RG, Masroor R, Khan MA, Al-Johany AM, Gautam
1118	KB, Gupta SK, Borkin LJ, Melnikov DA, Rosanov JM, Skorinov DV, Borzée A, Jablonski
1119	D, Litvinchuk SN (2022) Shedding light on taxonomic chaos: Diversity and distribution of
1120	South Asian skipper frogs (Anura, Dicroglossidae, <i>Euphlyctis</i>). Systematics and
1121	Biodiversity 20(1): 2102686.
1122	https://doi.org/10.1080/14772000.2022.2102686
1123	
1124	Duméril C, Bibron G, Duméril AHA (1854) Erpétologie Générale ou Histoire Naturelle
1125	Complète des Reptiles. Tome septième. Première Partie, Comprenant l'Histoire des
1126	Serpents Non Venimeux. Librairie Encyclopédique de Roret, Paris, vii + xvi + 780 pp + 1
1127	folding table + pls. 59, 63, 70, 72, 75–82.
1128	
1129	Eichwald KE (1831) Zoologia Specialis quam expositis Animalibus tum Vivis tum Fossilibus
1130	Potissimuni rossiae in Universum, et Poloniae in Specie, in usum Lectionum Publicarum in
1131	Universitate Caesarea Vilnensi Habendarum. Pars Posterior; Specialem expositionem
1132	Spondylzoorum Continents, Pars Posterior. Jospehi Zawadski, Vilnius. 3 blank pgs. + 404
1133	pp. + 2 folding pls.
1134	Estrandamodali NI Dagtagan Dayyani NI Dagtagan Dayyani E 7 I II-iin 1 II-
1135	Eskandarzadeh N, Rastegar-Pouyani N, Rastegar-Pouyani E, Zargan J, Hajinourmohamadi A,
1136	Nazarov RA, Sami S, Rajabizadeh M, Nabizadeh H, Navaian M (2020) A new species of
1137	Eryx (Serpentes: Erycidae) from Iran. Zootaxa 4767(1): 182–192.
1138	https://doi.org/10.11646/zootaxa.4767.1.8

1139	
1140	Essote SA, Iqbal A, Taj MK, Kakar A, Taj I, Kakar S-D, Ali I (2022) Occurrence and
1141	Distribution of Snake Species in Balochistan Province, Pakistan. Pakistan Journal of
1142	Zoology 54(2): 1–8.
1143	https://doi.org/10.17582/journal.pjz/20181111091150
1144	
1145	Farooq Z, Akram SM, Khan MS, Wajid M (2018) Ecological Assortment of Snakes in Southern
1146	Punjab, Pakistan. Pakistan Journal of Zoology 50(1): 397-400.
1147	https://doi.org/10.17582/journal.pjz/2018.50.1.sc9
1148	
1149	Fordham DA, Saltré F, Haythorne S, Wigley TML, Otto-Bliesner BL, Chan KC, Brook BW
1150	(2017) PaleoView: a tool for generating continuous climate projections spanning the last
1151	21,000 years at regional and global scales. Ecography 40(11): 1348–1358.
1152	https://doi.org/10.1111/ecog.03031
1153	
1154	Geptner VG (1938) Zoogeographical features of the desert fauna of Turkestan and its origin.
1155	Bulletin of Moscow Society of Nature Researchers, Biological series 47(5–6): 329–338. (in
1156	Russian)
1157	
1158	Gowande G, Pal S, Jablonski D, Masroor R, Phansalkar PU, Dsouza P, Jayarajan A, Shanker K
1159	(2021) Molecular phylogenetics and taxonomic reassessment of the widespread agamid
1160	lizard Calotes versicolor (Daudin, 1802) (Squamata, Agamidae) across South Asia.
1161	Vertebrate Zoology 71: 669–696. https://doi.org/10.3897/vz.71.e62787
1162	
1163	Green MD (2010) Molecular Phylogeny of the Snake Genus Oligodon (Serpentes: Colubridae),
1164	with an Annotated Checklist and Key. M.S. Thesis, University of Toronto, Toronto, 169 pp.
1165	
1166	Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program
1167	for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
1168	H DE CL O H L A M' I DO M' I I C (2010) HED (2 ' ' 1
1169	Hoang DT, Chernomor, O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the
1170	ultrafast bootstrap approximation. Molecular Biology and Evolution 35(2): 518–522.
1171	https://doi.org/10.1093/molbev/msx281
1172	
1173	Huelsenbeck JP, Hillis DM (1993) Success of Phylogenetic Methods in the Four-Taxon Case.
1174	Systematic Biology 42(3): 247–264.
1175	https://doi.org/10.1093/sysbio/42.3.247
1176	iNetimalist (2022) iNetimalist and iNetimalist Assillable from Netimalist and Inc.
1177 1178	iNaturalist (2022) iNaturalist.org. <i>iNaturalist</i> . Available from: <u>iNaturalist.org/home</u> (accessed 31
11/8	October 2022)

1179	
1180	Jablonski D, Koleska D (2017) Molecular identification of Eremias stummeri (Squamata:
1181	Lacertidae) as a prey for Gloydius halys complex (Serpentes: Viperidae) from Kyrgyzstan.
1182	Phyllomedusa: Journal of Herpetology 16(1): 121–124.
1183	https://doi.org/10.11606/issn.2316-9079.v16i1p121-124
1184	
1185	Jablonski D, Masroor R, Khan, MA, Altaf, M (2019) Addition to the snake fauna of Pakistan:
1186	Mackinnon's Wolf Snake, Lycodon mackinnoni Wall, 1906. The Herpetological Bulletin
1187	147(2019): 21–23.
1188	https://doi.org/10.33256/hb147.2123
1189	
1190	Jablonski D, Basit A, Farooqi J, Masroor R, Böhme W (2021) Biodiversity research in a
1191	changing Afghanistan. Science 372(6549): 1402.
1192	https://doi.org/10.1126/science.abj8118
1193	
1194	Jerdon TC (1853) Catalogue of reptiles inhabiting the peninsula of India. Journal of the Asiatic
1195	Society of Bengal 22: 461–479 + 522–534.
1196	
1197	Kaiser CM, O'Shea M, Kaiser H (2019) A new species of Indo-Papuan groundsnake, genus
1198	Stegonotus Duméril et al., 1854 (Serpentes, Colubridae), from the Bird's Head Peninsula of
1199	West Papua, Indonesia, with comments on differentiating morphological characters.
1200	Zootaxa 4590(2): 201–230.
1201	https://doi.org/10.11646/zootaxa.4590.2.1
1202	
1203	Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder
1204	HP, Kessler M (2017) Climatologies at high resolution for the earth's land surface areas.
1205	Scientific Data 4: 170122.
1206	https://doi.org/10.1038/sdata.2017.122
1207	
1208	Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7:
1209	Improvements in Performance and Usability. Molecular Biology and Evolution 30(4): 772–
1210	780.
1211	https://doi.org/10.1093/molbev/mst010
1212	
1213	Khan MS (2002) Guide to the Snakes of Pakistan. Edition Chimaira, Frankfurt au Main, 265 pp.
1214	
1215	Král B (1969) Notes on the Herpetofauna of Certain Provinces of Afghanistan. Zoologické Listy
1216	18(1): 55–66.
1217	

1218	Kumar S, Stecher G, Tamura, K (2016) MEGA7: Molecular Evolutionary Genetics Analysis
1219	Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7): 1870–1874.
1220	https://doi.org/10.1093/molbev/msw054
1221	
1222	Latifi M (1991) The snakes of Iran (English edition). In: Leviton AE, Zug GR (Eds)
1223	Contributions to Herpetology, Number 7. Society for the Study of Amphibians and Reptiles,
1224	Oxford, viii + 159 pp. + 25 pls.
1225	
1226	Latifi M (2000) Snakes of Iran, 3rd edition. Tehran: Department of the Environment. 237 pp. (in
1227	Farsi)
1228	
1229	Linnaeus CV (1758) Systema naturae per regna tria naturae: secundum classes, ordines, genera,
1230	species, cum characteribus, differentiis, synonymis, locis. Tomus I. Edito Decima,
1231	Reformata. Laurentii Salvii, Holmiae [Stockholm], iii + 824 pp.
1232	
1233	Mahony S, Kamei RG (2021) A new species of Cyrtodactylus Gray (Squamata: Gekkonidae)
1234	from Manipur State, northeast India, with a critical review highlighting extensive errors in
1235	literature covering bent-toed geckos of the Indo-Burma region. Journal of Natural History
1236	55(39–40): 2445–2480.
1237	https://doi.org/10.1080/00222933.2021.1994667
1238	
1239	Mertens R (1969) Die Amphibien und Reptilien West-Pakistans. Stuttgarter Beiträge zur
1240	Naturkunde 197: 1–96.
1241	
1242	Minton SA (1962) An annotated key to the amphibians and reptiles of Sind and Las Bela, West
1243	Pakistan. American Museum Novitates 2081: 1–60.
1244	
1245	Minton SA (1966) A contribution to the herpetology of West Pakistan. Bulletin of the American
1246	Museum of Natural History 134(2): 29–184 + pls. 9–36.
1247	
1248	Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus <i>Oligodon</i> Boie in
1249	Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas. Evolutionary Systematics
1250	5: 335–345.
1251	https://doi.org/10.3897/evolsyst.5.72564
1252	
1253	Nguyen HN, Tran BV, Nguyen LH, Neang T, Yushchenko PV, Poyarkov NA (2020) A new
1254	species of Oligodon Fitzinger, 1826 from the Langbian Plateau, southern Vietnam, with
1255	additional information on <i>Oligodon annamensis</i> Leviton, 1953 (Squamata: Colubridae).
1256	PeerJ 8: e8332.
1257	https://doi.org/10.7717/peerj.8332

1258		
1259	Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A Fast and Effective	
1260	Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology	
1261	and Evolution 32(1): 268–274.	
1262	https://doi.org/10.1093/molbev/msu300	
1263		
1264	Nikolsky AM (1902) Amphibians, Reptiles and Fishes. Brockhaus-Efron publishing, St.	
1265	Petersburg, 872 pp. (in Russian and Latin)	
1266		
1267	Nikolsky AM (1903a) Contia transcaspica n. sp. (Ophidia, Colubridae). Annuaire du Musée	
1268	zoologique de l'Académie des sciences de St. Pétersbourg 8(1): 11–13. (in Russian and	Ę
1269	Latin, with French titles)	
1270		
1271	Nikolsky AM (1903b) Sur trois nouvelles espèces de reptiles, recueillis par Mr. N. Zarudny dans	
1272	la Perse orientale en 1901 [Alsophylax persicus sp.n., Contia bicolor sp.n., et Bufo persicus	
1273	sp.n.]. Annuaire du Musée <mark>zoologique</mark> de l'Académie des <mark>sciences</mark> de St. Pétersbourg 8(1):	Ę
1274	95–98. (in Russian and Latin, with French titles)	
1275		
1276	Nurgeldyev ON, Shammakov S, Atayev Ch (1970) On distribution of some snake species in	
1277	Turkmenia. In: Gladkov NA (Eds), Animal Life of Turkmenia. Ylym Press, Ashkhabad,	
1278	187–190. (in Russian)	
1279		
1280	Orlov NL, Atayev ChA, Ananjeva NB, Shammakov SM, Shestopal AA (2018) Pieces of tropical	
1281	mesophilic herpetofauna in the deserts of Turkmenistan. In: Herpetological and	
1282	ornithological research: current aspects. Dedicated to the 100th Anniversary of A.K.	
1283	Rustamov (1917–2005). KMK Scientific Press, St. Petersburg–Moscow, 58–67. (in Russian	
1284	with English abstract)	
1285		
1286	Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy.	
1287	Frontiers in Zoology 7: 1–14.	
1288	https://doi.org/10.1186/1742-9994-7-16	
1289		
1290	Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution.	
1291	Bioinformatics 14(9): 817–818.	
1292	https://doi.org/10.1093/bioinformatics/14.9.817	
1293		
1294	Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species	
1295	geographic distributions. Ecological Modelling 190: 231–259.	
1296	https://doi.org/10.1016/j.ecolmodel.2005.03.026	
1297		

1298	QGIS Development Team (2021) QGIS Geographic Information System. Open Source
1299	Geospatial Foundation Project. Available from: http://qgis.osgeo.org (accessed 11
1300	December 2022)
1301	
1302	Rai TP, Adhikari S, Antón PG (2022) An Updated Checklist of Amphibians and Reptiles of
1303	Nepal. ARCO-Nepal Newsletter 23: 1–23.
1304	
1305	Rajabizadeh M (2018) Snakes of Iran. Iranshensai Publishing, Tehran, 496 pp. (in Farsi)
1306	
1307	Rajabizadeh M, Pyron RA, Nazarov RA, Poyarkov NA, Adriaens D, Herrel A (2020) Additions
1308	to the phylogeny of colubrine snakes in Southwestern Asia, with description of a new genus
1309	and species (Serpentes: Colubridae: Colubrinae). PeerJ 8: e9016.
1310	https://doi.org/10.7717/peerj.9016
1311	
1312	Rambaut A, Suchard MA, Xie D, Drummond AJ (2020) Tracer v1.6. Available from:
1313	http://beast.bio.ed.ac.uk/Tracer (accessed 29 May 2018)
1314	
1315	Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
1316	Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic
1317	Inference and Model Choice Across a Large Model Space. Systematic Biology 61(3): 539–
1318	542.
1319	https://doi.org/10.1093/sysbio/sys029
1320	
1321	Rustamov EA, Atayev Ch (1976) New data on the herpetofauna of Turkmenistan. Proceedings of
1322	the Academy of Sciences of the Turkmen SSR. Series of Biological Sciences 5: 47-53. (in
1323	Russian)
1324	
1325	Rustamov AK, Sopyev O (1994) Vertebrates in the Red Data Book of Turkmenistan. In: Fet V,
1326	Atamuradov KI (Eds), Biogeography and Ecology of Turkmenistan. Monographiae
1327	Biologicae. Springer, Dordrecht, 205–230.
1328	
1329	Rustamov [Rustamow] AK (2011) Wildlife of Turkmenistan and its protection Ylym Press,
1330	Ashgabat, 502 pp. (in Turkmen)
1331	
1332	Shaw G (1802) General zoology, or Systematic natural history, Volume III, Part 2. G. Kearsley,
1333	Thomas Davison, London, vi + 313–615 pp. + pls. 87–140
1334	
1335	Szczerbak NN (1979) New records of lizards and snakes in Middle Asia. Vestnik Zoologii 1:,
1336	68–70. (in Russian)
1337	

1338	Szczerbak NN (1994) Zoogeographic Analysis of the Reptiles of Turkmenistan. In: Fet V,
1339	Atamuradov KI (Eds), Biogeography and Ecology of Turkmenistan. Monographiae
1340	Biologicae. Springer, Dordrecht, 307–328.
1341	
1342	Szczerbak NN, Khomustenko YD, Golubev MV (1986) Amphibians and reptiles of the
1343	Kopetdagh State Reserve and adjacent territories. In: Szczerbak NN (Ed), Nature in Central
1344	Kopetdagh. Ylym Press, Ashkhabad, 76–110 pp. (in Russian)
1345	
1346	Shestopal AA, Rustamov EA (2018a) An annotated Checklist of the fauna of amphibians and
1347	reptiles of Turkmenistan, ver. 2018. In: Herpetological and ornithological research: current
1348	aspects. Dedicated to the 100th Anniversary of A.K. Rustamov (1917-2005). KMK
1349	Scientific Press, St. Petersburg–Moscow, 31–42. (in Russian with English abstract)
1350	
1351	Shestopal AA, Rustamov EA (2018b) New data on the distribution and numbers of reptiles in
1352	some landscapes of Turkmenistan. In: Herpetological and ornithological research: current
1353	aspects. Dedicated to the 100th Anniversary of A.K. Rustamov (1917-2005). KMK
1354	Scientific Press, St. Petersburg–Moscow, 43–57. (in Russian with English abstract)
1355	
1356	Sindaco RA, Venchi A, Grieco C (2013) The Reptiles of the Western Palearctic, Volume 2:
1357	Annotated Checklist and Distributional Atlas of the Snakes of Europe, North Africa, Middle
1358	East and Central Asia, with an Update to Volume 1. Edizioni Belvedere, Latina, 543 pp. +
1359	342 col. photos + 184 col. maps.
1360	
1361	Smith MA (1943) The Fauna of British India, Ceylon and Burma, including the whole of the
1362	Indo-chinese subregion. Reptilia and Amphibia. Vol. III, Serpentes. Taylor & Francis,
1363	London, xii + 583 pp.
1364	
1365	Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary
1366	Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12): 2725–2729.
1367	https://doi.org/10.1093/molbev/mst197
1368	
1369	Taylor EH (1950) The Snakes of Ceylon. The University of Kansas Science Bulletin 33(2): 519–
1370	603 + pls. 12–25.
1371	
1372	Terentjev PV, Chernov SA (1949) Encyclopedia of Reptiles and Amphibians. Sovetskaya Nauka
1373	Moscow, 320 pp. (in Russian)
1374	
1375	Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online
1376	phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(1): 232–
1377	235.

PeerJ

1378	https://doi.org/10.1093/nar/gkw256
1379	
1380	Uetz P, Freed P, Aguilar R, Hošek J (2022) The Reptile Database. Available from:
1381	http://www.reptile-database.org/ (accessed 22 March 2022).
1382	
1383	Wagner P, Bauer AM, Leviton AE, Wilms TM, Böhme W (2016a) A Checklist of the
1384	Amphibians and Reptiles of Afghanistan - Exploring Herpetodiversity using Biodiversity
1385	Archives. Proceedings of the California Academy of Sciences, Series 4 63(13): 457–565.
1386	
1387	Wagner P, Tiutenko A, Mazepa G, Borkin LJ, Simonov E (2016b) Alai! Alai! – a new species of
1388	the Gloydius halys (Pallas, 1776) complex (Viperidae, Crotalinae), including a brief review
1389	of the complex. Amphibia-Reptilia 37(1): 15–31.
1390	https://doi.org/10.1163/15685381-00003026
1391	
1392	Wall F (1909) Notes on snakes from the neighbourhood of Darjeeling. Journal of the Bombay
1393	Natural History Society 19: 337–357 + 1 pl.
1394	
1395	Wall F (1921) Ophidia taprobanica; or, The snakes of Ceylon. H.R. Cottle, govt. printer,
1396	Colombo, xxii + errata + 581 pp. + 1 foldout map.
1397	
1398	Wall F (1923) A Review of the Indian Species of the Genus <i>Oligodon</i> Suppressing the Genus
1399	Simotes (Ophidia). Records of the Zoological Survey of India 25(3): 305–334.
1400	https://doi.org/10.26515/rzsi/v25/i3/1923/162698
1401	
1402	Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of
1403	environmental niche models. Ecography 33: 607–611.
1404	https://doi.org/10.1111/j.1600-0587.2009.06142.x
1405	
1406	Welch KRG (1983) Herpetology of Europe and Southwest Asia: a checklist and bibliography of
1407	the orders Amphisbaenia, Sauria and Serpentes. Robert E. Krieger Publishing Company,
1408	Malabar, Florida, 135 pp.

PeerJ

1409	Supplementary Material and Table Legends:
1410	
1411	Supplementary Material 1. Other Specimens of Oligodon examined, organized based on their
1412	morphological identification based on Bandara et al. (2022).
1413	
1414	Supplementary Table 1. Tabled list of localities of Oligodon transcaspicus comb. et stat. nov.
1415	with latitude and longitude coordinates used for species distribution modelling.
1416	
1417	Supplementary Table 2. Primers used in this study
1418	

1.400	
1420	
1421	Table 1. Sequences and voucher specimens of Oligodon and outgroup taxa used in
1422	molecular analyses of this study.
1423	Note that the numbers (column one) included in this table are not the same as those found in
1424	other tables or figures. Acronyms present here that are not noted in the materials and methods
1425	include the following: CHS, unknown field tag series; KIZ, Kunming Institute of Zoology,
1426	Chinese Academy of Sciences, Kunming, China; NCBS, National Center for Biological
1427	Sciences, Bangalore, India; RAP, field tags of R. Alexander Pyron; ROM, Royal Ontario
1428	Museum, Toronto, Canada; RS, field tags of Ruchira Somaweera; SIEZC, Department of
1429	Zoology, Southern Institute of Ecology, Ho Chi Minh City, Vietnam; SYNU, Shenyang Normal
1430	University, Shenyang, China; TNHC, Texas Natural History Collections, Austin, USA; UMMZ,
1431	University of Michigan Museum of Zoology, Ann Arbor, USA; ZMUVAS, Zoological Museum
1432	of the University of Veterinary and Animal Sciences, Punjab, Pakistan. Additional abbreviations
1433	include NP: National Park, NR: Nature Reserve, and WS: Wildlife Sanctuary.
1434	
1435	Table 2. Selected morphological characters of <i>Oligodon transcaspicus</i> comb. et stat. nov.
1436	based on examined specimens.
1437	Abbreviations for males and females are denoted by (m) or (f) respectively. For abbreviations of
1438	characters, see materials and methods section for details.
1439	
1440	Table 3. Morphological comparisons of <i>Oligodon russelius</i> specimens from Afghanistan,
1441	northern India, and Pakistan hitherto recognized as Oligodon "arnensis" or Oligodon
1442	churahensis.
1443	Data from the literature are combined from multiple authors unless denoted with an asterisk (*),
1444	which indicates that only a single source was used. Abbreviations for males and females are
1445	denoted by (m) or (f) respectively and (total) is used to indicate that the data combines both
1446	sexes or combines the total number of body and tail blotches.
1447	
1448	Table 4. Pairwise matrix of genetic distances between and within <i>Oligodon</i> species sampled in this starter.
1449	in this study.
1450	Uncorrected p-distances (given as percentages) are based on sequences of the cytochrome b
1451 1452	mtDNA gene are shown below the diagonal. Intraspecific genetic p-distances are shown along
1452 1453	the diagonal and are highlighted in bold. See Table 1 for the list of samples used to create this matrix.
1453 1454	maura.
1727	

1455 Figure Legends: 1456 1457 Figure 1. Approximate distribution and location of samples utilized in this study for 1458 molecular and morphological analyses (A); and approximate distribution of Oligodon 1459 transcaspicus comb. et stat. nov in the Köpet-Dag Mountain range of Iran and 1460 Turkmenistan (B). 1461 Triangle icons denote specimens with only molecular data; square icons denote specimens with only morphological data; rhombic icons denote specimens without molecular and morphological 1462 1463 data (only locality is known); round icons denote specimens with both molecular and 1464 morphological data. Stars/asterisks next to numbers indicate type localities. Localities: (1) Ashgabat, Ahal Prov., Turkmenistan (type locality of *Oligodon transcaspicus* comb. et stat. 1465 **nov**); (2) Chuli, Ahal Prov., Turkmenistan; (3) Geok-Tepe, Ahal Prov., Turkmenistan; (4) 1466 1467 Karanki, Ahal Prov., Turkmenistan; (5) "Goalon" (Goudan), Ahal Prov., Turkmenistan; (6) 1468 Aidere, Ahal Prov., Turkmenistan; (7) Bazangan Lake, Razavi Khorasan Prov., Iran; (8) Punjab Prov., Pakistan; (9) Kallar Kahar, Punjab Prov., Pakistan; (10) Chamba Distr., Himachal 1469 1470 Pradesh, India (type locality of Oligodon churahensis); (11) Jalalabad, Nangarhar Prov., Afghanistan; (12) Dara-i-Pech district, Kunar Prov., Afghanistan; (13) Maharashtra, India; (14) 1471 1472 Chitwan NP, Bagmati Prov., Nepal; (15) Ganjam, Odisha, India; (16) 24.1 km SW of 1473 Rajamahendrayaram, Andhra Pradesh, India; (17) Bangalore, Karnataka, India; (18) Tamil Nadu, India; (19) Puttalam Distr., North Western Prov., Sri Lanka; (20) Udawalawe National Park, Uva 1474 Prov.; (21) Monargala Distr., Southern Prov., Sri Lanka; (22) Hambantota Distr., Southern Prov., 1475 1476 Sri Lanka; (23) Gampaha Distr., Western Prov., Sri Lanka; (24) Polonnaruwa Distr., North 1477 Central Prov., Sri Lanka; (25) Paramikulam, Kerala, India; (26) Barengabari, Assam, India. 1478 1479 Figure 2. Phylogenetic tree of *Oligodon* derived from the analysis of 3,019 bp of 12S rRNA, 1480 16S rRNA and cyt b mitochondrial DNA gene sequences. 1481 For voucher specimen information and GenBank accession numbers see Table 1. Numbers at 1482 tree nodes correspond to BI PP/ML BS support values, respectively; n-dash denotes no support. 1483 Outgroup taxa are not shown. Colors of clades and locality numbers correspond to Figure 1. 1484 1485 Figure 3. Species distribution model (SDM) map based on geolocation points of Oligodon 1486 transcaspicus comb. et stat. nov. from Iran and Turkmenistan. 1487 Darker red coloration indicates more suitable habitat, whereas lighter colors indicate less suitable 1488 habitat. 1489 1490 Figure 4. Photographs of the preserved holotype specimen of *Contia transcaspica* (ZISP

1491 9868) now Oligodon transcaspicus comb. et stat. nov. from "Köpet-Dag, Transcaspica".

1492 Scale bars equal 10 millimeters. Photos by Konstantin D. Milto.

1493

PeerJ

1494	Figure 5. Live photographs of Oligodon transcaspicus comb. et stat. nov. (ZMMU Re-
1495	16687; field number RAN-3264) from Khorasan Province, Iran.
1496	(a) Right lateral, (b) left lateral, (c) ventral, (d) ventral views of the head, and (e) general habitus.
1497	Photographs by Roman A. Nazarov.
1498	
1499	Figure 6. Two unvouchered specimens of Oligodon transcaspicus comb. et stat. nov.
1500	Specimens photographed from (a) Podere, Sumbar Valley, Turkmenistan and (b) Seqiz-Khan
1501	Gorge, Turkmenistan. Photographs taken by Alexander V. Pavlenko.
1502	
1503	Figure 7. Photographs of Oligodon russelius from Pakistan (a-e) and Afghanistan (f).
1504	Shown in a-e is specimen CUHC 7904 from Kallar Kahar, Punjab Province, Pakistan, showing
1505	(a) general habitus in life, (b) right lateral, (c) left lateral, (d) dorsal, and (e) ventral views of the
1506	head in preservative. Shown in (f) is a cropped image of O. russelius from Kunar Province,
1507	Afghanistan observed on iNaturalist (obs. 110932106, user mohammadfarooq). Photographs a-e
1508	by Daniel Jablonski, photograph f taken by Mohammad Farooq from iNaturalist.org.
1509	
1510	
1511	

Table 1(on next page)

Table 1. Sequences and voucher specimens of *Oligodon* and outgroup taxa used in molecular analyses of this study.

Note that the numbers (column one) included in this table are not the same as those found in other tables or figures. Acronyms present here that are not noted in the materials and methods include the following: CHS, unknown field tag series; KIZ, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; NCBS, National Center for Biological Sciences, Bangalore, India; RAP, field tags of R. Alexander Pyron; ROM, Royal Ontario Museum, Toronto, Canada; RS, field tags of Ruchira Somaweera; SIEZC, Department of Zoology, Southern Institute of Ecology, Ho Chi Minh City, Vietnam; SYNU, Shenyang Normal University, Shenyang, China; TNHC, Texas Natural History Collections, Austin, USA; UMMZ, University of Michigan Museum of Zoology, Ann Arbor, USA; ZMUVAS, Zoological Museum of the University of Veterinary and Animal Sciences, Punjab, Pakistan. Additional abbreviations include NP: National Park, NR: Nature Reserve, and WS: Wildlife Sanctuary.

- 1 Table 1. Sequences and voucher specimens of *Oligodon* and outgroup taxa used in molecular analyses of this study.
- 2 Note that the numbers (column one) included in this table are not the same as those found in other tables or figures. Acronyms present
- 3 here that are not noted in the materials and methods include the following: CHS, unknown field tag series; KIZ, Kunming Institute of
- 4 Zoology, Chinese Academy of Sciences, Kunming, China; NCBS, National Center for Biological Sciences, Bangalore, India; RAP,
- 5 field tags of R. Alexander Pyron; ROM, Royal Ontario Museum, Toronto, Canada; RS, field tags of Ruchira Somaweera; SIEZC,
- 6 Department of Zoology, Southern Institute of Ecology, Ho Chi Minh City, Vietnam; SYNU, Shenyang Normal University, Shenyang,
- 7 China; TNHC, Texas Natural History Collections, Austin, USA; UMMZ, University of Michigan Museum of Zoology, Ann Arbor,
- 8 USA; ZMUVAS, Zoological Museum of the University of Veterinary and Animal Sciences, Punjab, Pakistan. Additional
- 9 abbreviations include NP: National Park, NR: Nature Reserve, and WS: Wildlife Sanctuary.

1	Λ
- 1	()

No.	Sample ID	GenBank Accession No.	Species	Country	Locality	Reference
1	ZMMU Re-16687	OQ116823; OQ116816	Oligodon transcaspicus comb. et stat. nov.	Iran	Razavi Khorasan Prov., Bazangan Lake	this work
2	CUHC 7904	OQ092426; OQ116817	Oligodon russelius	Pakistan	Punjab Prov., Kallar Kahar	this work
3	SL-Os-1	OQ099833; OQ116819	Oligodon arnensis albiventer	Sri Lanka	Sabaragamu Prov., Ratnapura Distr., Udawalawe	this work
4	SL-Oa-2	OQ116825; OQ116820	Oligodon arnensis albiventer	Sri Lanka	Uva Prov., Monargala Distr., Thanamalwila	this work
5	ZMMU Re-17331	OQ116824; OQ116818	Oligodon arnensis albiventer	Sri Lanka	Western Prov., Gampaha Distr., Ganemulla	this work
6	SL-Os-2	OQ099834; OQ116821	Oligodon sublineatus	Sri Lanka	Central Prov.	this work
7	SL-Os-3	OQ099835; OQ116822	Oligodon sublineatus	Sri Lanka	Central Prov., Kandy Distr.	this work
8	CESS 563	OQ099837	Oligodon arnensis	India	Karnataka, Bangalore	this work
9	CESS 180	OQ099836	Oligodon taeniolatus	India	Kerala, Paramikulam	this work
10	WII-ADR980	ON262767, ON241309	Oligodon melaneus	India	Assam, Barengabari	Das et al. (2022)
11	NCBS NRC-AA-019	MZ675817	Oligodon churahensis	India	Himachal Pradesh, Chamba Distr.	Mirza et al. (2021)
12	NCBS NRC-AA-020	MZ675818	Oligodon churahensis	India	Himachal Pradesh, Chamba Distr.	Mirza et al. (2021)
13	ZMUVAS 10	MK941834	Oligodon russelius	Pakistan	Punjab Prov.	Mirza et al. (2021)
14	Saeed 5	MZ403752	Oligodon russelius	Pakistan	-	Ahmed et al. (unpublished)
15	RAP 483	KC347327; KC347365; KC347464	Oligodon arnensis	Sri Lanka	Southern Prov., Hambantota Distr.	Pyron et al. (2013)
16	NCBS-NRC-AA-021	MZ675819	Oligodon <mark>cf. t</mark> illacki	India	Maharashtra	Mirza et al. (2021)
17	RS136	KC347330; KC347368; KC347484;	Oligodon taeniolatus ceylonicus	Sri Lanka	Central Prov., Polonnaruwa Distr.	Pyron et al. (2013)

		KC347521; KC347408; KC347445				
18	RS-OC	KC347328; KC347366	Oligodon calamarius	Sri Lanka	Central Prov., Kandy Distr.	Pyron et al. (2013)
19	RAP 504	KC347329; KC347367	Oligodon sublineatus	Sri Lanka	Central Prov., Kandy Distr.	Pyron et al. (2013)
20	ROM37092	HM591504	Oligodon cinereus	Vietnam	Dong Nai Prov., Cat Tien NP	Green et al. (2010)
21	UMMZ201913	HM591519	Oligodon octolineatus	Brunei	Tutong Distr., 3 km E of Tutong	Green et al. (2010)
22	ROM 35626	HM591526	Oligodon chinensis	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
23	ROM35629	HM591533	Oligodon formosanus	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
24	ROM32261	HM591534	Oligodon ocellatus	Vietnam	Dak Lak Prov., Yok Don NP	Green et al. (2010)
25	ROM32260	HM591521	Oligodon taeniatus	Vietnam	Dak Lak Prov., Yok Don NP	Green et al. (2010)
26	ROM32464	HM591523	Oligodon barroni	Vietnam	Gia Lai Prov., Krong Pa	Green et al. (2010)
27	CAS204963	HM591535	Oligodon cyclurus	Myanmar	Ayeyarwady Reg., Mwe Hauk	Green et al. (2010)
28	CAS204855	HM591509	Oligodon splendidus	Myanmar	Mandalay Reg., Kyauk Se	Green et al. (2010)
29	CAS215976	HM591513	Oligodon torquatus	Myanmar	Mandalay Reg., Min Gone Taung WS	Green et al. (2010)
30	CAS213822	HM591514	Oligodon planiceps	Myanmar	Magwe Reg., Shwe Set Taw WS	Green et al. (2010)
31	CAS213896	HM591516	Oligodon theobaldi	Myanmar	Magwe Reg., Shwe Set Taw WS	Green et al. (2010)
32	CAS213271	HM591517	Oligodon cruentatus	Myanmar	Yangon Reg., Hlaw Ga NP	Green et al. (2010)
33	ROM27049	HM591518	Oligodon eberhardti	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
34	TNHC59846	HM591511	Oligodon maculatus	Philippines	Mindanao, Barangay Baracatan	Green et al. (2010)
35	SIEZC 20201	MN395604; MN396765	Oligodon rostralis	Vietnam	Lam Dong Prov., Bidoup–Nui Ba NP	Nguyen et al. (2020)
36	ZMMU Re-14304	MN395601; MN396762	Oligodon annamensis	Vietnam	Dak Lak Prov., Chu Yang Sin NP	Nguyen et al. (2020)
37	KIZ014591	MW090140; MW133297	Oligodon nagao	-	-	Xu et al. (2021)
38	KIZ011002	MW090139; MW133296	Oligodon lipipengi	China	Tibet, Medok	Che et al. (2020)
39	CHS850	MK194265; MK201568; MK065694	Oligodon albocinctus	China	-	Li et al. (Unpublished)
40	CHS668	MK194135; MK201461; MK065563	Oligodon fasciolatus	China	-	Li et al. (Unpublished)
41	CHS304	MK194038; MK201386; MK065470	Oligodon lacroixi	China	-	Li et al. (Unpublished)
42	CHS683	MK194147; MK065575	Oligodon ornatus	China	-	Li et al. (Unpublished)
43	SYNU 1907027	MW489824	Oligodon bivirgatus	China	Hainan, Shangxi NR	Qian et al. (2021)
Outgr	oups					
44	-	KP684155	Hebius vibakari	-	-	-
45	-	GQ181130	Oreocryptophis poryphyraceus	-	-	-

Table 2(on next page)

Table 2. Selected morphological characters of *Oligodon transcaspicus* comb. et stat. nov. based on examined specimens.

Abbreviations for males and females are denoted by (m) or (f) respectively. For abbreviations of characters, see materials and methods section for details.

1 Table 2. Selected morphological characters of *Oligodon transcaspicus* comb. et stat. nov. based on examined specimens.

Abbreviations for males and females are denoted by (m) or (f) respectively. For abbreviations of characters, see materials and methods

section for details.

4

Morphology	ZISP 9868 (holotype)	ZMMU Re-7318	ZMMU Re-5589	ZMMU Re-6155	CAS 180042	ZISP 18334	ZISP 18976	ZMMU Re-16687	
Sex	f f f		f	f	m	m	m		
SVL	304	361	267	166	338	145	252	312	
TailL	53	64	42	29	29 64		53	70	
TotalL	357	425	309	195	195 402		305	382	
TailLR	0.148	0.151	0.136	0.149 0.159		0.157 0.174		0.183	
DSR	15-15-15	15–15–15	15-15-15	15-15-15	15–15–15	15-15-15	15-15-15	15-15-15	
VEN	202	198	203	193	214	188	188	179	
SC	47	45	44	46	51	48	51	52	
TOTAL	250	244	248	240	266	237	240	232	
SCR	0.188	0.184	0.177	0.192	0.192	0.203	0.213	0.224	
LOREAL	Present	Present	Present	Present	Present	Present	Present	Present	
SL	5/5	5/5	5/5	5/5	5/5	5/5	5/5	5/5	
SL-eye	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	
IL	7/7	7/7	7/7	7/7	7/7	7/7	7/7	7/7	
IL-CS	4/4	4/4	4/4	4/4	4/4	4/4	4/4	4/4	
PrO	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	
PsO	1/1	1/1	0/0	0/0	0/0	0/0	1/1	1/1	
PtO	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	
Ate	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	
Pte	3/3	3/3	3/3	3/3	2/2	3/3	3/3	3/3	
B-Blotch	47	52	57	54	54	47 43		42	
T-Blotch	F-Blotch 12 16		15	14	15	17	17	14	

Table 3(on next page)

Table 3. Morphological comparisons of *Oligodon russelius* specimens from Afghanistan, northern India, and Pakistan hitherto recognized as *Oligodon "arnensis"* or *Oligodon churahensis*.

Data from the literature are combined from multiple authors unless denoted with an asterisk (*), which indicates that only a single source was used. Abbreviations for males and females are denoted by (m) or (f) respectively and (total) is used to indicate that the data combines both sexes or combines the total number of body and tail blotches.

- 1 Table 3. Morphological comparisons of Oligodon russelius specimens from Afghanistan,
- 2 northern India, and Pakistan hitherto recognized as Oligodon "arnensis" or Oligodon
- 3 churahensis.
- 4 Data from the literature are combined from multiple authors unless denoted with an asterisk (*),
- 5 which indicates that only a single source was used. Abbreviations for males and females are
- 6 denoted by (m) or (f) respectively and (total) is used to indicate that the data combines both
- 7 sexes or combines the total number of body and tail blotches.

8

Morphology	CUHC 7904	MMB 28497	O. churahensis	O. russelius	Pakistan O. "arnensis"	West Himalayan O. "arnensis"		
Location Kallar Kahar, Punjab Provin Pakistan		Jalalabad, Nangarhar, Afghanistan	Churah Valley, Himachal Pradesh, India	Northern and Eastern India	Northern and Southern Pakistsan	Punjab and Himachal Pradesh, India		
TailLR	0.159	0.136	0.180	0.157-0.185	0.160–175	0.163		
VEN	183 (m)	198 (juv)	170 (m) 175 (f)	169–180 (m) 183–207 (f)	175–191 (m&f)	187–190* (m&f)		
SC	49 (m)	44 (juv)	46 (m) 47 (f)	46–54 (m) 49–51 (f)	47–52 (m) 40 (f)	39–52* (m&f)		
LOREAL	OREAL Present Present		Present	Present	Present (rarely absent)	Present		
SL	7	7	7	7	7	6–7		
IL	7	6	7	7	7–8	7		
B-Blotch	37	49 (total)	37–45	30–45	31–42	41–54		
T-Blotch	13	_	9–11	6–10	_	9–13		
Blotch edges	Present	_	Present	Mostly present	Present	Present		
BlotchW	1.0-1.5	_	1.0-2.0	1.0-2.0	_	_		
BlotchD	4.0	_	3.0-4.0	4.0-6.0	_	_		
Source This study Brück		Brück (1968)	Mirza, Bhardwaj & Patel (2021)	Bandara et al. (2022)	Minton (1966); Mertens (1969); Khan (2002)	Wall (1921), Constable (1949*)		

9

10

11

Table 4(on next page)

Table 4. Pairwise matrix of genetic distances between and within *Oligodon* species sampled in this study.

Uncorrected p-distances (given as percentages) are based on sequences of the cytochrome *b* mtDNA gene are shown below the diagonal. Intraspecific genetic p-distances are shown along the diagonal and are highlighted in bold. See Table 1 for the list of samples used to create this matrix.

- 1 Table 4. Pairwise matrix of genetic distances between and within *Oligodon* species sampled in this study.
- 2 Uncorrected p-distances (given as percentages) are based on sequences of the cytochrome b mtDNA gene are shown below the
- 3 diagonal. Intraspecific genetic p-distances are shown along the diagonal and are highlighted in bold. See Table 1 for the list of samples
- 4 used to create this matrix.

_	
.)	
J	

No.	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	O. transcaspicus															
2	O. russelius	6.3	2.2													
3	O. arnensis	6.9	6.1	0.0												
4	O. melaneus	7.8	6.4	6.3	_											
5	O. sublineatus	18.9	20.9	19.8	20.1	0.0										
6	O. taeniolatus	17.1	18.5	18.3	18.3	19.5	_									
7	O. churahensis	5.7	3.3	5.1	5.1	21.0	18.0	0.0								
8	O. tillacki	8.7	7.9	3.6	7.5	18.6	20.1	6.3	_							
9	O. calamarius	17.4	19.3	17.4	17.7	11.4	17.4	19.2	18.3	_						
10	O. annamensis	18.0	17.9	16.8	18.3	17.7	16.5	16.8	16.2	16.5	_					
11	O. rostralis	17.7	19.1	17.4	18.3	18.9	17.1	17.7	16.8	17.7	6.9	_				
12	O. octolineatus	16.8	16.7	16.2	16.2	16.5	16.2	15.9	15.9	16.8	12.9	12.0	_			
13	O. albocinctus	18.0	18.9	18.3	20.1	16.5	20.1	18.6	18.6	16.8	16.2	16.2	15.0	_		
14	O. fasciolatus	17.1	17.3	18.0	16.8	16.5	17.4	16.5	17.7	16.8	12.3	12.6	11.4	15.0	_	
15	O. lacroixi	16.2	16.8	15.6	17.4	16.8	16.8	16.2	15.6	15.3	13.2	15.0	11.7	15.9	15.6	_

Figure 1. Approximate distribution and location of samples utilized in this study for molecular and morphological analyses (A); and approximate distribution of *Oligodon transcaspicus* comb. et stat. nov in the Köpet–Dag Mountain range of Iran and Tur

Triangle icons denote specimens with only molecular data; square icons denote specimens with only morphological data; rhombic icons denote specimens without molecular and morphological data (only locality is known); round icons denote specimens with both molecular and morphological data. Stars/asterisks next to numbers indicate type localities. Localities: (1) Ashgabat, Ahal Prov., Turkmenistan (type locality of Oligodon transcaspicus comb. et stat. nov); (2) Chuli, Ahal Prov., Turkmenistan; (3) Geok-Tepe, Ahal Prov., Turkmenistan; (4) Karanki, Ahal Prov., Turkmenistan; (5) "Goalon" (Goudan), Ahal Prov., Turkmenistan; (6) Aidere, Ahal Prov., Turkmenistan; (7) Bazangan Lake, Razavi Khorasan Prov., Iran; (8) Punjab Prov., Pakistan; (9) Kallar Kahar, Punjab Prov., Pakistan; (10) Chamba Distr., Himachal Pradesh, India (type locality of Oligodon churahensis); (11) Jalalabad, Nangarhar Prov., Afghanistan; (12) Dara-i-Pech district, Kunar Prov., Afghanistan; (13) Maharashtra, India; (14) Chitwan NP, Bagmati Prov., Nepal; (15) Ganjam, Odisha, India; (16) 24.1 km SW of Rajamahendravaram, Andhra Pradesh, India; (17) Bangalore, Karnataka, India; (18) Tamil Nadu, India; (19) Puttalam Distr., North Western Prov., Sri Lanka; (20) Udawalawe National Park, Uva Prov.; (21) Monargala Distr., Southern Prov., Sri Lanka; (22) Hambantota Distr., Southern Prov., Sri Lanka; (23) Gampaha Distr., Western Prov., Sri Lanka; (24) Polonnaruwa Distr., North Central Prov., Sri Lanka; (25) Paramikulam, Kerala, India; (26) Barengabari, Assam, India.

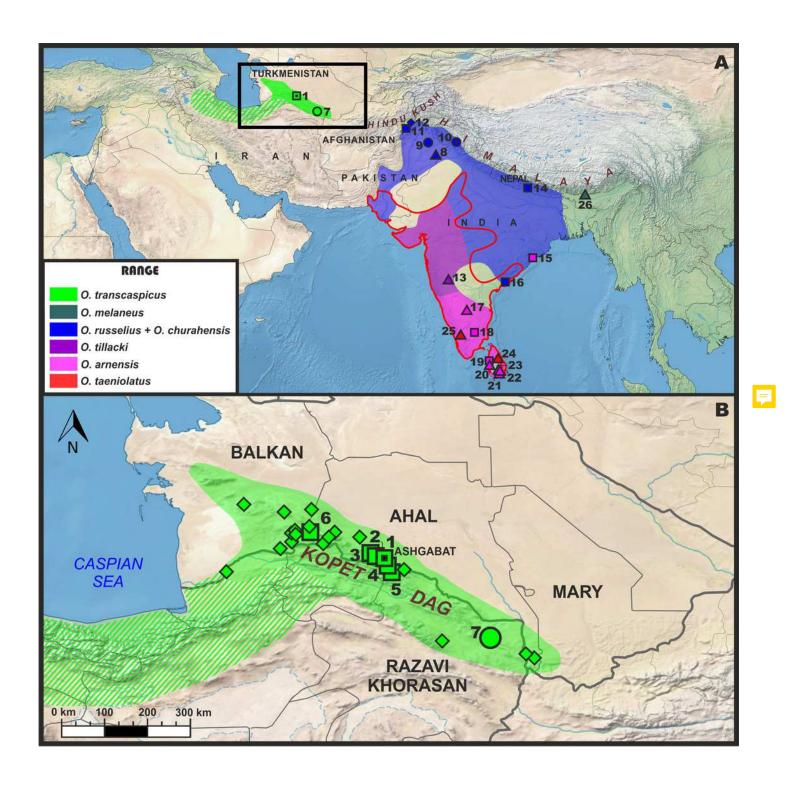


Figure 2. Phylogenetic tree of *Oligodon* derived from the analysis of 3,019 bp of 12S rRNA, 16S rRNA and cyt *b* mitochondrial DNA gene sequences.

For voucher specimen information and GenBank accession numbers see Table 1. Numbers at tree nodes correspond to BI PP/ML BS support values, respectively; n-dash denotes no support. Outgroup taxa are not shown. Colors of clades and locality numbers correspond to Figure 1.

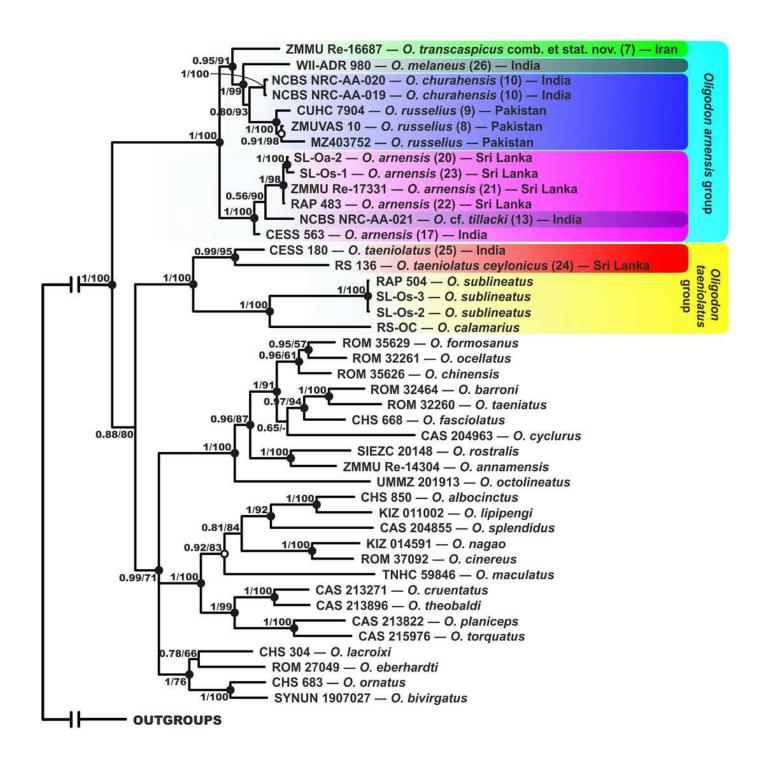


Figure 3. Species distribution model (SDM) map based on geolocation points of *Oligodon transcaspicus* comb. et stat. nov. from Iran and Turkmenistan.

Darker red coloration indicates more suitable habitat, whereas lighter colors indicate less suitable habitat.

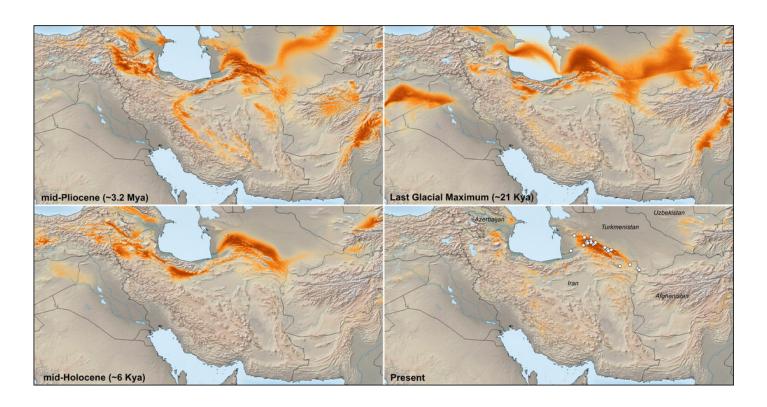


Figure 4. Photographs of the preserved holotype specimen of *Contia transcaspica* (ZISP 9868) now *Oligodon transcaspicus* comb. et stat. nov. from "Köpet-Dag, Transcaspica".

Scale bars equal 10 millimeters. Photos by Konstantin D. Milto.

Figure 5. Live photographs of *Oligodon transcaspicus* comb. et stat. nov. (ZMMU Re-16687; field number RAN-3264) from Khorasan Province, Iran.

(a) Right lateral, (b) left lateral, (c) ventral, (d) ventral views of the head, and (e) general habitus. Photographs by Roman A. Nazarov.

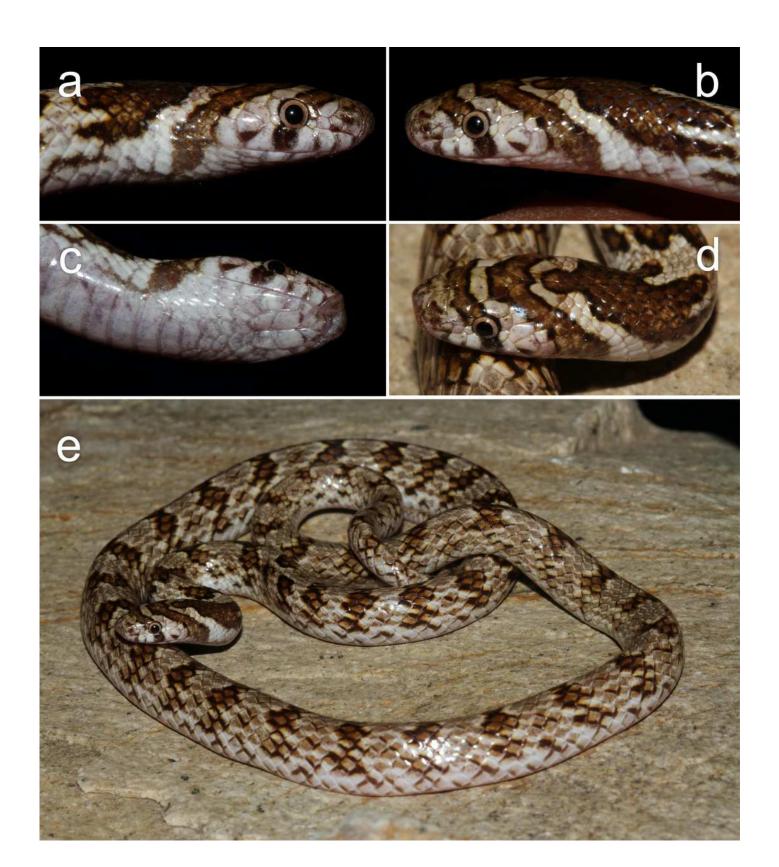


Figure 6. Two unvouchered specimens of Oligodon transcaspicus comb. et stat. nov.

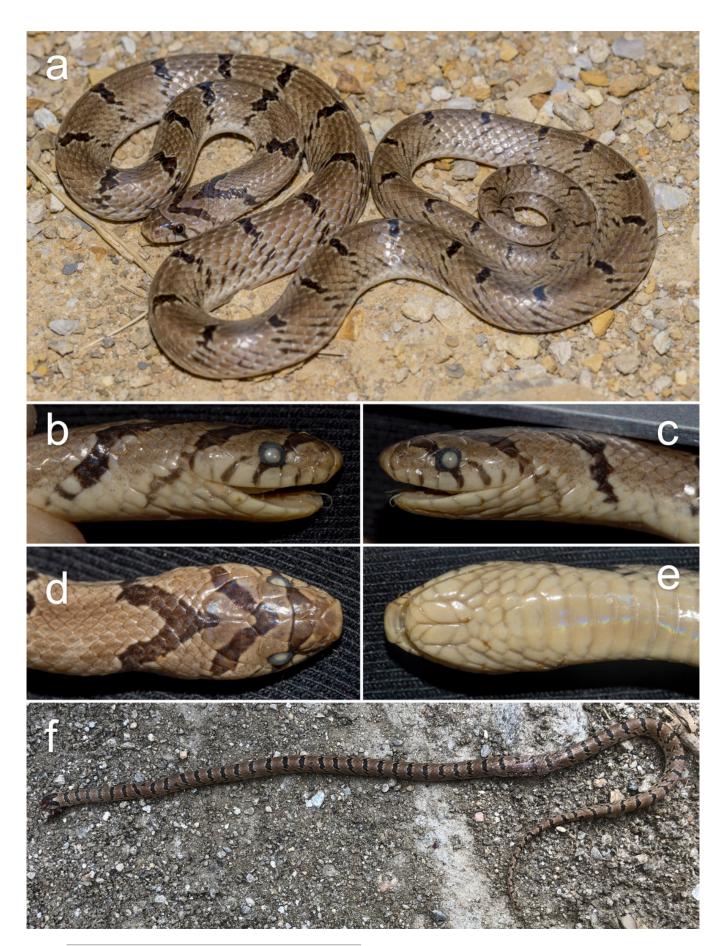

Specimens photographed from (a) Podere, Sumbar Valley, Turkmenistan and (b) Seqiz-Khan Gorge, Turkmenistan. Photographs taken by Alexander V. Pavlenko.

Figure 7. Photographs of Oligodon russelius from Pakistan (a-e) and Afghanistan (f).

Shown in a-e is specimen CUHC 7904 from Kallar Kahar, Punjab Province, Pakistan, showing (a) general habitus in life, (b) right lateral, (c) left lateral, (d) dorsal, and (e) ventral views of the head in preservative. Shown in (f) is a cropped image of *O. russelius* from Kunar Province, Afghanistan observed on iNaturalist (obs. 110932106, user mohammadfarooq). Photographs a-e by Daniel Jablonski, photograph f taken by Mohammad Farooq from iNaturalist.org.

PeerJ reviewing PDF | (2022:12:80933:0:1:NEW 9 Jan 2023)