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ABSTRACT

Leporinus is one of the most speciose genera of the order Characiformes, with 81 valid
species distributed throughout much of Central and South America. The considerable
diversity of this genus has generated extensive debate on its classification and internal
arrangement. In the present study, we investigated the species diversity of the genus
Leporinus in central northern Brazil, and conclude that six valid species—Leporinus
maculatus, Leporinus unitaeniatus, Leporinus affinis, Leporinus venerei, Leporinus cf.
friderici, and Leporinus piau—are found in the hydrographic basins of the Brazil-
ian states of Maranhdo, Piaui, and Tocantins. We analyzed 182 sequences of the
Cytochrome Oxidase subunit I gene, of which, 157 were obtained from Leporinus
specimens collected from the basins of the Itapecuru, Mearim, Turiagu, Pericuma,
Perid, Preguicas, Parnaiba, and Tocantins rivers. The species delimitation analyses,
based on the ABGD, ASAP, mPTP, bPTP, and GMYC methods, revealed the presence
of four distinct molecular operational taxonomic units (MOTUs), identified as L.
maculatus, L. unitaeniatus, L. affinis, and L. piau (from the Parnaiba River). The bPTP
method restricted L. venerei to a single MOTU, and confirmed the occurrence of this
species in the rivers of Maranhao for the first time. The separation of L. cf. friderici
into two clades and the subsequent formation of different operational taxonomic
units was consistent with polyphyly in this species, which indicates the existence of
cryptic diversity. The arrangement of L. cf. friderici and L. piau in two different clades
supports the conclusion that the L. piau specimens from Maranhao were misidentified,
based on their morphological traits, reflecting the taxonomic inconsistencies that exist
among morphologically similar species. Overall, then, the species delimitation methods
employed in the present study indicated the presence of six MOTUs—L. maculatus, L.
unitaenitus, L. affinis, L. cf. friderici, L. venerei, and L. piau. In the case of two other
MOTUs identified in the present study, one (L. venerei) is a new record for the state of
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Maranhdo, and we believe that the other represents a population of L. piau from the
basin of the Parnaiba River.

Subjects Aquaculture, Fisheries and Fish Science, Genetics, Molecular Biology, Zoology,
Freshwater Biology

Keywords Molecular identification, Freshwater fish, Leporinus, Neotropical biodiversity,
Systematics

INTRODUCTION

The family Anostomidae is a prominent group of Neotropical fish that includes 15 genera
and approximately 151 valid species (Ramirez et al., 2016; Britski ¢ Birindelli, 2019; Ramirez
et al., 2020). The most speciose genus is Leporinus, which has approximately 81 valid
nominal species (Fricke, Eschmeyer ¢& Laan, 2021). Géry (1977) concluded that Leporinus is
one of the most diverse genera of the order Characiformes, which is distributed between
Central America and southern South America.

The considerable diversity found in the genus Leporinus has led to numerous attempts
to classify its species and determine its internal arrangement. A number of studies
have proposed subdivisions based on the position of the mouth, and the shape and
arrangement of the teeth (Borodin, 1929; Myers, 1950; Garavello, 1979). Britski ¢ Garavello
(1978) divided the genus into three groups based on coloration patterns, that is, banding,
spots, and longitudinal lines, although these proposals have been contradicted by more
comprehensive studies, such as those of Sidlauskas ¢ Vari (2008) and Ramirez et al. (2016).
In their cytogenetic study, Galetti, Lima & Venere (1995) confirmed the existence of a well-
defined ZZ/ZW sex chromosome system in six Leporinus species. These authors proposed
that the presence of the ZW system represents a synapomorphy, and that the six species with
this system form a monophyletic group. This conclusion is reinforced by morphological
traits, such as coloration patterns, relatively large body sizes, and the number of teeth,
as confirmed by Ramirez et al. (2016), which led to the allocation of this group to a new
genus, Megaleporinus, by Ramirez, Birindelli & Galetti (2017).

Using osteological markers, Sidlauskas ¢ Vari (2008) evaluated the phylogenetic
relationships of the anostomids, and concluded that this family is monophyletic, although
they were unable to confirm the monophyly of the genus Leporinus. Ramirez et al. (2016)
used nuclear and mitochondrial molecular markers to confirm the paraphyly of the genus
Leporinus, and concluded that the recuperation of the monophyly of the group would
depend on further taxonomic reviews, including the creation of new genera and the
description of new species.

Traditional taxonomic approaches have been essential for the delimitation of anastomid
species based on morphological traits, although this does not necessarily resolve some
natural groups, given that morphologically similar species may be assigned to the same
nominal taxon (Bickford et al., 2007). Deciphering and defining cryptic diversity accurately
is fundamental to the understanding of the ecological, biogeographic, and evolutionary
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patterns of a group of organisms, in addition to its other biological features (Kress et al.,
2015).

Hebert et al. (2003) proposed the use of a DNA barcode, based on a standard sequence
of the mitochondrial Cytochrome Oxidase subunit I (COI) gene, as the basis for a global
species identification system. This approach has been widely-used for the identification
of species and the resolution of cryptic diversity within genera and, in particular, in
species complexes. A species complex consists of a group of closely-related taxa that have
typically undergone recent speciation, which means that their taxonomic differences are
still incipient, as observed in the case of the Leporinus cf. friderici species complex, in which
Silva-Santos et al. (2018) confirmed the presence of eight distinct Molecular Operational
Taxonomic Units (MOTUs) arranged in three clades.

Leporinus is not only one of the most diverse fish genera, but its species also play an
important ecological role in many freshwater ecosystems, as well as having considerable
economic and social importance for local fisheries. Given this, we compiled a dataset of
the mitochondrial COI gene of 182,179 Leporinus specimens, which included specimens
from the hydrographic basins of the Brazilian state of Maranhao to verify the potential
intrageneric diversity of this genus, i.e., the presence of different putative species for the
study region.

Here we present the diversity of Leporinus from hydrographic basins of central northern
Brazil. We used integrative taxonomy tools to assess the species diversity of Leporinus
based on (i) morphological identification from external characters, (ii) morphological
identification from dentary characters, and (iii) molecular identification from COI gene
fragment.

MATERIAL AND METHODS

Sampling

The present study was based on the analysis of a total of 185 sequences, of which 182 were of
Leporinus species, with the other three representing the outgroup. The vast majority (157)
of these 182 Leporinus sequences were collected during the present study, being extracted
from specimens collected from basins in the Brazilian states of Maranhao (Itapecuru,
Mearim, Turiacu, Pericumai, and Perid rivers), Piaui (Parnaiba River), and Tocantins, that
is, the Tocantins River (Fig. 1 and Table S1). The other 25 sequences were obtained from
GenBank (Table S2).

The samples from the rivers of Maranhao, Piaui and Tocantins were obtained during
extensive fieldwork, which has been ongoing since 2006. This research was authorized by the
Brazilian Institute of the Environment and Renewable Natural Resources (IBAMA) through
license 02012.004159/2006, and licenses ICMBio/MMA 42119-1/2013, ICMBio/MMA
46367-1/2015, ICMBio/MMA 83138-1/2022, ICMBio/MMA 73790-6/2022 issued by the
Chico Mendes Institute for Biodiversity Conservation.

After collection, the specimens were taken to the Genetics and Molecular Biology
Laboratory (GENBIMOL) of the Advanced Studies Center of Maranhao State University
(CESC/UEMA), where they photographed and registered using a coding system. Samples
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Figure 1 Sample localities. Each data point indicates the location where Leporinus samples were col-
lected.
Full-size Gl DOI: 10.7717/peerj.15184/fig-1

of muscle tissue were extracted from the specimens for the genetic analyses. The specimens
were then fixed em 10% formaldehyde and conserved in 70% alcohol, before being sent
to the Museum of Zoology at Londrina State University (MZUEL) in Londrina, Parang,
Brazil, for morphological identification and cataloguing. The study of wild animals was
approved by the Regulatory Committee for the Ethical Treatment of Animals of Maranhdo
State University (protocol 47/2022) and by the Committee for the Ethical Use of Animals
of the National Institute for Amazonian Research, registered under protocol number
006/2021, SEI 01280.000116/2021-45.

The total DNA was extracted using the Wizard Genomic DNA Purification kit
from Promega, following the maker’s instructions. The genomic region was isolated
and amplified by Polymerase Chain Reaction (PCR), using the universal primers
COI FishF1 5-TCAACCAACCACAAAGACATTGCCAC-3" and COI FishR1 5'-
TAGACTTCTGGGTGGCCAAAGAATCA-3, described by Ward et al. (2005). The samples

Nascimento et al. (2023), PeerdJ, DOI 10.7717/peerj.15184 4/21


https://peerj.com
https://doi.org/10.7717/peerj.15184/fig-1
http://dx.doi.org/10.7717/peerj.15184

Peer

were sequenced by the Sanger, Nicklen ¢ Coulson (1977) method, using the Big Dye kit in
an ABI Prism™ 3500 automatic sequencer (Applied Biosystems, EUA).

The sequences were aligned and edited in the Clustal W (Thompson, Higgins ¢» Gibson,
1994) application of the Bioedit 7.2.5 program (Hall, 1999). All newly generated sequences
(175) were deposited in GenBank under accession numbers OP781850-OP781884,
OP782222-0P782283, OP782350-0OP7882375 and OP782385-0OP782418 (Table S1).
The haplotypes were delineated in DnaSP 5.1 (Librado ¢» Rozas, 2009). The mean genetic
distances and the Maximum Likelihood (ML) tree were obtained in MEGA X (Kumar et
al., 2018), using the Kimura 2-Parameter and Hasegawa-Kishino-Yano (HKY) models,
respectively, with the trees being reconstructed using 1,000 bootstrap replicates.

The optimum evolutionary model for the construction of the Bayesian Inference (BI)
and Maximum Likelihood (ML) trees was generated in JModelTest2 (Darriba et al., 2012),
which is available at CIPRES Science Gateway v3.3 (Miller, Pfeiffer ¢& Schwartz, 2010), using
the Hasegawa-Kishino-Yano (HKY+G+I) algorithm. The BI tree was generated in BEAST
v.1.10.4 (Drummond et al., 20125 Suchard et al., 2018), using the relaxed lognormal clock
(Drummond et al., 2006) and the birth-death speciation model (Gernhard, 2008).

This analysis was based on 40,000,000 generations with the log files being verified in
Tracer v1.6 (Rambaut et al., 2014) to evaluate convergence and the most adequate burn-in,
with the convergence being considered adequate when the Effective Sample Size (ESS)
was over 200. The trees generated in BEAST were summarized in TreeAnnotator v.10.4
(Suchard et al., 2018) to obtain the consensus tree, which was then visualized and edited
in Fig Tree v1.4.2 (Rambaut, 2014) and the Inkscape image editing system. Clades with a
bootstrap percentage of at least 85% or posterior probability of at least 0.95 were considered
to be well supported.

The delimitation analyses of the MOTUs of the COI gene were run using the
following models: the Automatic Barcode Gap Discovery (ABGD), Assemble Species
by Automatic Partitioning (ASAP), Poisson Tree Process (PTP), and the Generalized
Mixed Yule Coalescent (GMYC) model. The ABGD test (Puillandre et al., 2012) was
run in https:/bioinfo.mnhn.frabifpublic/bgd/ using the dataset of aligned sequences,
while the ASAP test (Puillandre, Brouillet ¢~ Achaz, 2020) was implemented in https:
/bioinfo.mnhn.fr/abifpublic/asap/asapweb.html using the matrix of genetic distances,
extracted using MEGA X, as the input. The PTP (Zhang et al., 2013) was run on the
web server https:/species.h-its.org/ In this case, the input was the Maximum Likelihood
phylogenetic tree produced in RaxML v.8.29 (Stamatakis, 2014), which is available in the
CIPRES Science Gateway v3.3 (Miller, Pfeiffer ¢~ Schwartz, 2010). The GMYC (Fujisawa
¢ Barraclough, 2013) was based on the ultrametric consensus tree constructed in BEAST
v1.10.1, which was processed in the Ape (Paradis ¢ Schliep, 2019), Splits (Ezard, Fujisawa
& Barraclough, 2009), Paran (Dinno, 2009), and Mass (Venables ¢& Ripley, 2002) packages
available in the R v. 4.1.0 software (R Core Team, 2021).

RESULTS

The present study focused on 182 sequences of the COI gene of Leporinus, each consisting
of 620 base pairs (bps). The phylogenetic trees generated by the ML and BI analyses were
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highly congruent and well-supported at both the intra- and interspecific levels (Figs. 2—4),
except in the case of Leporinus piau, which grouped with either Leporinus cf. friderici or
Leporinus venerei. The ABGD analysis delimited 12 MOTUs, while the ASAP defined 15,
the mPTP and bPTP each delimited nine, and the GMYC, six MOTUs (Fig. 2).

The results of the five delimitation methods applied in the present study had three
species in common—L. maculatus, L. unitaeniatus, and L. affinis—as well as differentiating
two specimens (PALEPO1 and PALEP09) from the basin of the Parnaiba River in a distinct
molecular taxonomic unit, which indicates the occurrence of a fourth species, which we
believe to be L. piau.

In the present study, the five delimitation methods had three species in common—L.
maculatus, L. unitaeniatus, and L. affinis—and differentiated specimens from the basin of
the Parnaiba River in a distinct molecular taxonomic unit, which is more basal than the
other Leporinus species, and groups with the the Megaleporinus species that were previously
assigned to Leporinus.

Clade VI (Fig. 3) was strongly supported, and includes L. venerei, L. lacustris, L. piau, and
L. cf. friderici, with L. piau occurring in Maranhao, in the Mearim, Itapecuru, Pericuma,
Turiagu, Preguigas and Perid basins. In this case, the clade was formed by L. venerei from the
Tocantins basin, L. lacustris from the basin of the Parand River, L. piau from the Jaguaribe,
Itapecuru, Mearim, Pericumai, Turiagu, Preguicas and Perid basins, and L. cf. friderici from
the Amazon and Mearim basins, which all share a single molecular taxonomic unit. Only
the bPTP analysis separated L. venerei from L. lacustris, L. piau, and L. cf. friderici, which
together formed a single MOTU in the ABGD, ASAP, mPTP, and GMYC models (Fig. 2).

The BI and ML analyses identified the formation of subclades within clade VI (Figs.

2 and 3), in which the L. piau from Maranhao, in the Itapecuru, Turiagu, Mearim, and
Perid basins, grouped with L. venerei from the Tocantins basin, with genetic distances
ranging from only 0.16% to 1.54% (Table S3). Other L. lacustris and L. piau subclades
were identified in the Jaguaribe basin, where the genetic distances ranged from 0.0% to
3.5% (Table S3). The L. piau subclade from Maranhao, found in the Itapecuru, Mearim,
Pericuma, and Turiagu basins, grouped with L. cf. friderici from the Mearim (Maranhio)
and Amazon basins (Amazonas state), with genetic distances of between 0.16% and 5.88%
(Table S3). All three groups were supported by significant posterior probability (BI) and
bootstrap(ML) values (Figs. 2 and 3).

Leporinus cf. friderici, whose type locality is the basin of the Tampok River in French
Guiana, formed a group together with L. piau from the basins of the Sao Francisco, Amazon,
and Mearim rivers, an arrangement found in both the species delimitation models and the
BI and ML trees. In the ABGD, ASAP mPTP, and bPTP delimitation models, however, L.
cf. friderici was differentiated in its own operational unit (Fig. 2).

The genetic distance matrix derived from the molecular taxonomic units revealed
relatively high values for both the intra- and inter-MOTU distances. The highest mean
intra-MOTU distance was 5.9%, in L. maculatus, while the lowest mean was 0.4%, in L.
unitaeniatus, whereas the mean inter-MOTU distances ranged from 7.8% to 17.4% The
MOTUs formed by L. venerei, L. lacustris, L. piau, and L. cf. friderici were separated by a
mean genetic distance of 2.2% (Table 1). In this context, it is important to note the genetic
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Figure 2 Bayesian Inference tree showing the arrangement of the MOTUs of the Leporinus species
analyzed in the present study. This arrangement was obtained using the ABGD, ASAP, mPTP, bPTP,
and GMYC species delimitation approaches for the analysis of the mitochondrial COI gene, based on the
Hasegawa-Kishino-Yano (HKY+G+I) algorithm, generated in BEAST. The species delimitated by the spe-
cific estimates are shown by the vertical bars, with the color representing the current status of the species.
The blue bars correspond to valid species, while the gray bars indicate the species delimited ditGerently
from the current classification.
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Figure 3 Maximum Likelihood tree of the Leporinus species. Maximum Likelihood tree showing the ar-
rangement of the Leporinus species based on the analysis of 185 samples of the mitochondrial COI gene
using the Hasegawa-Kishino Yano (HKY+G+I) algorithm, generated in MEGA X. The node support, that
is, is given by the Bayesian posterior probability/ML bootstrap values, respectively. Each clade and its sub-
divisions (when present) are demarcated by the brackets. The Roman numerals in upper case represent
the clades, while those in lower case indicate the subclades.

Full-size & DOI: 10.7717/peerj.15184/fig-3
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distance of 7.8% between L. piau (MOTU 1) and L. cf. friderici (MOTU 2), which may be
the result of an error in the identification of the species of one of the groups.

Given the levels of congruence identified in the different delimitation analyses applied
in the present study, the ASAP method appeared to be the most effective interpretation, in
biological terms, of the dataset considered here, given that it identified 10 MOTUs, which
distinguished four of the seven nominal species, including L. venerei, in a distinct MOTU.
This confirmed the occurrence of this species the Itapecuru, Mearim, Turiagu, Preguicas
and Perid basins, which constitutes the first record of L. venerei in the Brazilian state of
Maranhao.

DISCUSSION

An adequate taxonomic assessment is fundamental for the success of many types of
biological research, and DNA data have provided additional insights for the resolution of
taxonomic questions in many groups of organisms, including elements of the megadiverse
Neotropical fish fauna, such as the anostomids. The COI barcode proved to be an extremely
valuable tool for the identification and separation of the species assessed in the present
study, based on the analysis of genetic distances and species delimitation, which identified
evidence of the potential presence of more than one taxon in some nominal species.

In many previous studies of DNA barcoding and molecular diversity, the number of
species or lineages delimited by the analysis has tended to exceed the number of nominal
taxa or even the morphospecies analyzed (Carvalho et al., 2018). A similar tendency was
observed here, in addition to the opposite pattern, given that, in some species delimitation
analyses, more than one valid species was allocated to the same MOTU, as in the case of L.
venerei, L. lacustris, L. cf. friderici, and L. piau.

In the present study, the L. venerei, L. lacustris, L. cf. friderici, and L. piau specimens were
assigned to a single molecular taxonomic unit by the ABGD, ASAP, mPTP, and GMYC
methods, reflecting their similar morphological characteristics, such as their coloration
pattern, dental formula, and meristic parameters (Table 2), although the intra-MOTU
analyses revealed mean genetic distances of 2.7% (Table 1), ranging from 0.0% to 6.11%
(Table S3). This is consistent with the current classification of the valid nominal species
(BI and ML analyses: Figs. 2—4; Table 1). All the species of clade VI shared the same
morphological pattern, which is considered to be diagnostic of L. friderici, such as the
number of spots along the lateral line (1-3) and the 4/4 dental formula, except for L.
venerei, which has four teeth in the pre-maxilla and three in the dentary row. Leporinus
lacustris and L. venerei are highly similar morphologically, given their relatively tall body,
terminal mouth, long, dark anal fin, and three spots on the lateral line (Britski ¢ Birindelli,
2008; Silva-Santos et al., 2018). Leporinus piau presents the D-type coloration pattern
described by Garavello (1979), which consists of three well-defined black spots on the
lateral line, and four teeth in both rows, with a dental formula of 4/4. The L. venerei, L.
lacustris, L. cf. friderici, and L. piau MOTU was subdivided into three subclades (i, 7, iii and
iv—TFig. 3). Subclade i includes L. piau from Maranhao and L. venerei from the Tocantins
basin, while subclade ii has L. cf. friderici from the Amazon and L. piau from the Turiagu
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0.56

0.83

0.03

0.59

Leporinus piau Mearim

Leporinus piau Pericuméd v
Leporinus piau Itapecuru
Leporinus piau Turiagu iii
Leporinus cf friderici Amazonas
= Clade VI
Leporinus lacustris Parand ji

Leporinus piau Jaguaribe

Leporinus piau Itapecuru
Leporinus piau Mearim

Leporinus piau Preguicas .
Leporinus piau Perid i
Leporinus piau Turiagu

Leporinus venerei Tocantins
Leporinus venerei Araguaia

Leporinus piau Mearim

Leporinus piau Sao Francisco

Leporinus piau Parnaiba Clade V
Leporinus piau Amazonas

Leporinus friderici Parand

Leporinus friderici Tampok

Leporinus affinis Tocantins
Leporinus affinis Amazonas

| Clade IV

Leporinus unitaeniatus Tocantins | Clade 1l

Leporinus Maculatus Tocantins Clade Il
Leporinus maculatus Maroni

Megaleporinus obtusidens Sao Francisco
Megaleporinus elogatus Sao Francisco Clade |
Megaleporinus gaeiros Contas

Leporinus piau Paranaiba

MZ051328 Anostomus ternetzi

MZ051919 Curimata cyprinoides

MN996701 Prochilodus nigricans

Figure 4 Collapsed Bayesian inference tree of the MOTUs of the Leporinus species. Collapsed Bayesian
inference tree showing the arrangement of the MOTUs of the Leporinus species based on 185 samples of
the mitochondrial COI gene analyzed using the Hasegawa-Kishino-Yano (HKY+G+I) algorithm, applied
in BEAST. The groups were detined by observing the congruence between the MOTUs generated in the
species delimitation analyses based on the ABGD, ASAP, mPTP, bPTP, and GMYC methods.

Full-size & DOI: 10.7717/peerj.15184/fig-4
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Table 1 Mean genetic distance of the Leporinus and Megaleporinus. Mean genetic distance, based on the Kimura 2-Parameter algorithm, gener-
ated by MEGA X for the MOTUs defined by the ABGD, ASAP, mPTP, bPTP, and GMYC analyses.

MOTU Genetic Distance
1 2 3 4 5 6
1. Leporinus lacustris + Leporinus venerei + Leporinus piau 2.7
+ Leporinus cf friderici
2. Leporinus piau + Leporinus friderici 7.91 2.2
3. Leporinus maculatus 10.89 10.58 5.9
4. Leporinus affinis 12.61 11.26 11.05 1.8
5. Leporinus unitaeniatus 13.04 13.49 11.97 11.27 0.4
6. Leporinus piau 15.49 16.24 15.64 17.45 14.53 0.5

basins. Subclade iii groups L. lacustris and L. piau from the Jaguaribe basin, and subclade
iv groups L. piau from Maranhdo and L. cf. friderici from the Mearim. The composition

of subclade i (L. piau and L. venerei—Fig. 3), together with the diagnostic morphological

features of the species, indicates that the specimens from the basins of Maranhao identified
as L. piau may in fact be L. venerei, which would be the first record of this species from this
Brazilian state.

The L. venerei, L. lacustris, L. cf. friderici, and L. piau MOTU was subdivided into three
subclades (i, i1, iii and iv—Fig. 3). Subclade i includes L. piau from Maranhao and L.
venerei from the Tocantins basin, while subclade ii has L. cf. friderici from the Amazon
and L. piau from the Turiacu basins. Subclade iii groups L. lacustris and L. piau from the
Jaguaribe basin, and subclade iv groups L. piau from Maranhao and L. cf. friderici from
the Mearim. The composition of subclade i (L. piau and L. venerei—Fig. 3), together with
the diagnostic morphological features of the species, indicates that the specimens from the
basins of Maranhio identified as L. piau may in fact be L. venerei, which would be the first
record of this species from this Brazilian state.

One other clade, formed by L. friderici from French Guiana and Parana with L. piau
from the Mearim, Sdo Francisco, Parnaiba, and Amazon basins, is also well supported
(Fig. 3). This raises two important points: (1) the clear polyphyly of L. friderici and L.
piau, which, in the latter case implies a possible error of identification based on the type
specimen, and (2) the existence of cryptic diversity in the genus Leporinus, in particular in
L. friderici. Silva-Santos et al. (2018) concluded that the samples identified morphologically
as L. friderici are in fact a polyphyletic group, given that the specimens collected from
the basins of the Brazilian Shield are different from those of L. friderici from the type
locality. The polyphyly of L. ¢f. friderici was also confirmed in the present study, which
is consistent with Silva-Santos et al. (2018), in which a species complex is revealed by the
genetic differentiation of the populations present in distinct hydrographic basins. In this
case, individuals identified consistently as L. cf. friderici may not in fact be conspecific
with L. friderici from the type locality, that is, they represent different species. Ramirez,
Birindelli ¢ Galetti (2017) confirmed the presence of cryptic diversity in this taxon, which
may represent a typical scenario of recent diversification, when closely-related taxa may be
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Table2 Meristic traits of the adult Leporinus species. Meristic traits of the adult Leporinus used to identify the samples analyzed in the present
study, following Garavello (1979), Garavello (1989), Garavello & Santos (2007), Britski, Sato & Rosa (1984), and Britski ¢ Birindelli (2008).

Species Body Coloration Number of Dental Number of Fin
scales around formula scales in the coloration
the peduncle lateral line
L. affinis Pre-dorsal some- Body yellowish, 16 4/4 Peitoral and pelvic
Giinther what convex; dor- with 7 dark fins light yellow; all
(1864) sal inclined slightly transversal stripes other fins hyaline.
between the dorsal on the body and
and adipose fins, 3—4 on the head.
and concave be-
tween the adipose
and caudal fins.
L. friderici Body tall and ro- Body browny 16 4/4 38 to 40 Anal fin dark
Bloch (1794) bust; large, with chestnut, with gray; all other fins
Standard Length 2—4 dark spots, yellowish-gray.
(SL) of ca. 40 cmy; rounded or oval,
body height 26— on the lateral line.
30% of SL, head
length 27-29% of
SL; mouth termi-
nal.
L. lacustris Body elongated, 2-3 dark, rounded, 16 4/4 33 to 36 All fins yellowish,
Campos with a maximum mediolateral spots except the adipose
(1945) standard length on the dorsal fin, and anal fins, que
of 20 cm; mouth the first larger and which are dark-
terminal; incisors more conspicuous. ened.
truncated.
L. macula- Body small, with Body with 4 black, 16 4/4 39 to 40
tus Miiller Standard Length rounded spots
and Troschel (SL) of ca. 10 cmy; connected by 3
(1844) body height 22— transversal stripes,
26% of SL, head which cross the lat-
length 23-25% of eral line.
SL; mouth subter-
minal.
L. piau Body relatively tall. Body with 3 black 16 4/4 35to 37
spots on the flank,
which are elon-
gated horizontally.
L. unitae- Body elongated Body yellowish, 16 4/4 40 to 44 Hyaline.
niatus Gar- and fusiform; with a conspicuous
avello ¢ San- small, with black longitudi-
tos (2007) maximum nal streak running
standard length of along the lateral
12 cm; relatively line; 11-13 dark
low body (23% chestnut transver-

of the standard
length); mouth
subterminal.

sal stripes sepa-
rated from the lat-
eral line by two
rows of scales.

(continued on next page)
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Table 2 (continued)

Species Body Coloration Number of Dental Number of Fin
scales around formula scales in the coloration
the peduncle lateral line
L. venerei Body tall; mouth 3 small, dark spots 16 4/3 36 to 37
Britski & terminal; anal fin on the lateral line,
Birindelli long and dark. of which, the last
(2008) 2, in particular, the
last, are typically
faded.
Notes.

*Data not available.

poorly-distinguished morphologically, creating predictable taxonomic uncertainties, such
as those observed in the populations of L. friderici.

In the present study, the relationship found among L. piau, L. friderici, and L. cf.
friderici (Figs. 2—4) alludes to a possible taxonomic inconsistency derived from Fowler’s
(1941) description of L. piau, as well as the geographic origin of the specimen analyzed
in the present study, which was from the Sdo Francisco basin. Fowler (1941) described
Leporinus piau based on a type specimen from the Salgado River in the Jaguaribe basin
of the Brazilian state of Ceard, but included a paratype from the Jatoba River, in the Sao
Francisco basin, which led to the subsequent identification of most Leporinus specimens
from the Sao Francisco River as L. piau (Garavello & Britski, 2003; Carvalho et al., 2011).
However, Silva-Santos et al. (2018), who analyzed nuclear and mitochondrial genetic
markers, including COI, noted that the Leporinus specimens from the Sdo Francisco basin
represent a species distinct from L. piau from the type locality in the Jaguaribe basin.
Clearly, Fowler’s (1941) inclusion of a paratype from a distinct hydrographic basin have
contributed fundamentally to the taxonomic uncertainties surrounding L. piau.

In the present study, L. maculatus, L.unitaeniatus, and L. affinis are valid nominal
species, which presented considerable congruence between the traditional and molecular
taxonomies. These three species constitute distinct MOTUs, which reflect their arrangement
in different clades (BI and ML analyses: Figs. 2—4). All these species present easily
distinguished diagnostic traits, such as the numerous spots dotting the body of L. maculatus,
the single longitudinal stripe of L. unitaeniatus, and the lateral bands with no subdivisions
observed in L. affinis (Britski ¢ Garavello, 2005; Sidlauskas ¢ Vari, 2012).

The samples from the Parnaiba basin identified here as L. piau and defined as a single
MOTU by all the species delimitation models were grouped in a single clade with a
genetic distance of 0.5%. These samples were delimited clearly as a more basal species
separate from all the others, with evidence that they had been wrongly identified, and are
in fact representatives of the genus Megaleporinus. This genus was described recently by
Ramirez, Birindelli ¢ Galetti (2017), based on a combined morphological, chromosomal,
and molecular approach, which assigned the large-bodied Leporinus to a monophyletic
clade, which was denominated Megaleporinus. In the present study, these samples were
delimited clearly as a single, basal species well separated from all the others, although a
more detailed analysis would be necessary to better determine their taxonomic status.
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The samples from the basins of Maranhao and Piaui, together with those from the
Tocantins River collected for the present study revealed the cryptic diversity found in
Leporinus, given that the specimens from the basins of the Itapecuru, Mearim, Pericuma,
Turiagu, Perid, and Preguicas rivers in Maranhao, and the Parnaiba River in Piaui were
identified as L. piau based on their morphological traits. The study of the DNA barcode and
the analytical tools employed here confirmed that L. friderici likely constitutes a polyphyletic
species complex, leading to the frequent misidentification of specimens as L. piau. It will
only be possible to resolve this scenario definitively with a systematic re-evaluation of the
specimens collected from the hydrographic basins of the states of Maranhao and Piaui.

In the specific case of subclade i (Fig. 3; Tables S3-54), which groups L. piau from
Maranhao with L. venerei from the Tocantins basin, the most parsimonious interpretation
of the results of this analysis, together with the diagnostic traits of the two species, would
be to consider them to be a single taxon, that is, L. venerei. This would thus be the first
record of L. venerei from the basins of the Itapecuru, Mearim, Turiagu, and Perid rivers, in
the state of Maranhao.

Prior to the present study, three Leporinus species were considered to be present in
the hydrographic basins of the Brazilian state of Maranhao—L. affinis, in the Itapecuru
basin(Abreu et al., 2019), L. friderici in the Itapecuru, Mearim, Maracagumé, Munim, Peria,
and Parnaiba basins (Piorski et al., 1998; Soares, 2005; Ramos, Ramos ¢ Ramos, 2014; Melo
etal., 2016; Abreu et al., 2019; Brito et al., 2019; Brito et al., 2020; Guimardes et al., 2021a;
Guimaraes et al., 2021b; Guimaraes et al., 2021c), and L. piau in the basins of the Itapecuru,
Mearim, Turiagu, and Parnaiba rivers (Barros, Fraga ¢ Birindelli, 2011; Ramos, Ramos ¢
Ramos, 2014; Ribeiro et al., 2014; Assega ¢ Birindelli, 2019; Abreu et al., 2019). Based on
analyses of molecular data, however, Fraga et al. (2014) and Nascimento et al. (2016) found
evidence of two distinct lineages in the L. piau group from the Itapecuru basin, while in
the present study, L. piau was assigned to three different clades, being associated strongly
with L. cf. friderici in two clades and with L. venerei in one. This leads us to conclude that L.
piau is, in fact, absent from the basins of Maranhao, which are instead populated by L. cf.
friderici and L. venerei, with the latter being recorded in Maranhao for the first time. This
restricts L. piau to the basin of the Parnaiba River.

CONCLUSIONS

The molecular analyses presented here, including the different species delimitation
approaches, identified the presence of four Leporinus species in the hydrographic
basins of central northern Brazil—L. maculatus, L. unitaenitus, L. affinis, and L. venerei.
However, the species delimitation analyses also assigned L. cf. friderici and L. piau to two
different molecular operational units, which leads us to believe that an additional species,
morphologically indistinguishable from L. cf. friderici, may be present. The analyses also
revealed a distinct group of two of the specimens, which indicates emphatically the presence
of L. piau in the basin of the Parnaiba River, which indicates the presence of a total of six
nominal species in the hydrographic basins of central northern Brazil. The confirmation
of the presence of L. venerei in the Itapecuru, Mearim, Turiacu, Preguicas and Peria basins
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represents a new record for the state of Maranhao, amplifying the known distribution of
this species in Brazil.
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