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ABSTRACT
Bats are known reservoirs of seemingly-innocuous pathogenic microorganisms
(including viruses, bacteria, fungi, and protozoa), which are associated with
triggering disease in other zoonotic groups. The taxonomic diversity of the bats’
microbiome is likely associated with species-specific phenotypic, metabolic, and
immunogenic capacities. To date, few studies have described the diversity of bat
blood microbial communities. Then, this study used amplicon-based next generation
sequencing of the V4 hypervariable region of the 16S-rRNA gene in blood samples
from omnivorous (n = 16) and frugivorous (n = 9) bats from the department of
Casanare in eastern Colombia. We found the blood microbiota in bats to be
composed of, among others, Bartonella and Mycoplasma bacterial genera which are
associated with various disease phenotypes in other mammals. Furthermore, our
results suggest that the bats’ dietary habits might determine the composition and the
persistence of some pathogens over others in their bloodstream. This study is among
the first to describe the blood microbiota in bats, to reflect on co-infection rates of
multiple pathogens in the same individual, and to consider the influence of diet as a
factor affecting the animal’s endogenous microbial community.

Subjects Bioinformatics, Microbiology, Molecular Biology, Veterinary Medicine, Zoology
Keywords Bats, Microbial communities, Omnivorous, Bacteria

INTRODUCTION
The ecological features of microbial communities in diverse hosts are determined by
intrinsic (age, genetics, sex) and extrinsic (antibiotics, infections and diet) factors.
The dietary niche, one of the most important factors regulating host physiology and
ecology, modulates structure and ecological relationships of microbial communities
(Lozupone et al., 2012). In the case of the gut microbiota, dietary variability is one of the
principal mechanisms affecting stability in these communities (Lozupone et al., 2012;
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Anders et al., 2022). For instance, the type and concentration of nutrients determine the
abundance and composition of some bacteria, fungi and protozoa (Yang et al., 2017). Also,
the availability of nutrients influences the ecological relationships between symbionts,
pathogens and commensals (Lozupone et al., 2012). Thus, the variety of biomolecules from
the dietary niche of the host modulates the ecological features and interactions of
microorganisms. Although this effect is widely studied in gut microbes, little is known in
other communities from other host anatomical zones, such as blood, which harbors a great
variety of essential biomolecules from other systems and different cell populations (Castillo
et al., 2019).

The circulatory system, considered one of the most sterile systems (Païssé et al., 2016;
Castillo et al., 2019), covers different microbial communities that interact with the immune
response, red blood cells and nutrients available in the host. These communities, mainly
composed of bacteria, are derived from different host physiological systems such as
respiratory, intestinal and reproductive (Païssé et al., 2016). Like the intestinal microbiota,
the microbial ecology in blood presents dynamic effects associated with the genetic and
immune features of the host, the translocation of microorganisms from other organs and
the availability of nutrients (Païssé et al., 2016; Castillo et al., 2019). The latter depends on
absorption by intestinal cells as they modulate the type and concentration of biomolecules
in the bloodstream (Lee et al., 2022), thus regulating the transport and distribution of
nutrients. Therefore, the dietary niche could regulate the structure, composition and
ecological relationships of different microorganisms in the host’s bloodstream. However,
this effect has not been studied profoundly.

Bats are an order of mammals featuring a broad spectrum of ecological tendencies and
traits that favor adaptation and colonization to different ecological niches. These traits
come from evolution with long-term adaptation to the climates and altitudes they now
inhabit (Liu et al., 2015; Jebb et al., 2020; Meng et al., 2021). Also, these ecological
adaptations determined that these mammals have fundamental ecological roles, such as
pollinators, seed dispersers and indispensable components of the food web for pest control
(Kunz et al., 2011; Kasso & Balakrishnan, 2013). Besides their functional role in
ecosystems, the evolutionary adaptations in bats allowed them to be reservoirs of
potentially-pathogenic microorganisms, mainly viruses (Calisher et al., 2006; Irving et al.,
2021), protozoa (Brook & Dobson, 2015; Colunga-Salas et al., 2021), fungi (Zhang et al.,
2014; Li et al., 2018) and bacteria (Brook & Dobson, 2015; Allocati et al., 2016). Most of
these microbes are identified using specific and unique molecular markers that enable the
description of some components of these communities. However, the employment of
next-generation sequencing techniques has allowed not only the identification of
pathogens in bats but also the composition and structure of the microbial communities
present in these mammals (Banskar et al., 2016; Selvin et al., 2019; Li et al., 2020).

As for the microbiota, bats harbor a variety of microorganisms that can range from
commensals (Sun et al., 2020; Vanderwolf et al., 2021) to pathogens (Mühldorfer, 2013).
All these microorganisms, especially the pathogenic ones, are of interest due to their close
relationship with bats and their potential as emerging pathogens (Ingala, Simmons &
Perkins, 2018). Regarding microbial ecology, the structure and composition of the
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microbiota in wild bats varies depending on the biological sample or anatomical sites and
the ecological features of the bats (Phillips et al., 2012). The dietary niche of these mammals
regulates the intestinal microbial communities and the differential enrichment of
metabolic pathways associated with the diet, thereby modulating the composition of
symbiotic and zoonotic microorganisms (Banskar, Mourya & Shouche, 2016; Lutz et al.,
2019; Ingala et al., 2021). On the other hand, the physiological system or anatomical zone
of bats affects the distribution of some microbes, especially viruses (Wille, 2020), regulating
their transmission dynamics (Dietrich et al., 2017, 2018).

Although several studies on the ecology of the microbiota in bats have been conducted,
where intestinal microbial communities are the most widely analyzed, little is known about
the communities of microorganisms present in the blood of these mammals. In this
physiological and anatomical system, several studies report the presence of protozoa, such
as Leishmania (de Rezende et al., 2017), Plasmodium (Schaer et al., 2013) and Trypanosoma
(Jaimes-Dueñez et al., 2020), and zoonotic bacteria, such as Leptospira (Silva-Ramos et al.,
2022), Bartonella (Becker et al., 2018), Mycoplasma (di Cataldo et al., 2020) and Borrelia
(Muñoz-Leal et al., 2021). On the other hand, few studies using next-generation
sequencing technologies describe the microbial communities in blood, mainly in parasites,
where the co-existence of Leishmania and Trypanosoma stand out, as well as the role of
blood as a source of transmission of zoonotic diseases and the spread of pathogens (Phillips
et al., 2012; Patiño et al., 2021). Therefore, it is essential to comprehend the composition of
the microbial communities present in these biological samples, given their relationship and
impact on public health and pathogen spillover (Letko et al., 2020).

In this study, we describe the prokaryote communities in blood samples of two genera of
bats (Chiroptera: Phyllostomidae) with different dietary habits from Casanare in eastern
Colombia (Fig. 1) using 16S-rRNA amplicon-based sequencing and the subsequent
amplicon sequence variants (ASVs) analysis. We found different potentially zoonotic
prokaryotes whose abundance might differ according to the food sources of the bats. These
results highlight the co-existence of various potentially zoonotic bacteria circulating in bats
blood. Furthermore, these results implicate microbe-microbe and microbe-host
interactions in relation with spread of zoonotic diseases.

MATERIALS AND METHODS
Sample collection and processing
During 2022, with the institutional approval of Universidad del Rosario and the Autoridad
Nacional de Licencias Ambientales-ANLA-(Resolution N� 01735), 25 bats were captured
using mist nets in four municipalities (Pore, Yopal, Aguazul and Támara) in the
department of Casanare, eastern Colombia (Fig. 1). All methods were carried out in
accordance with relevant guidelines and regulations. The captured bats were anesthetized
with ketamine and had 1 mL of blood drawn by cardiac puncture with an insulin syringe.
The samples were transferred to guanidine-EDTA buffer for complete blood lysis and
DNA preservation. All animals were released once they recovered from anesthesia.
Subsequently, these samples were subjected to DNA extraction using the High Pure PCR
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Template Preparation kit (Roche Life Science, Mannheim, Germany) according to the
manufacturer’s instructions.

Identification of bat species and associated dietary habits
For bat species determination, a 215 bp fragment of the mitochondrial 12S gene was
amplified using primers L1085 5′-CCCAAACTGGGATTAGATACCCCC-3′ and H1259

Figure 1 Geographical map of the 25 bat blood samples collected in four municipalities of the
department of Casanare, Colombia. Each sample was identified by bat species: Carollia perspicillata
(n = 5), Carollia brevicauda (n = 4), Phyllostomus hastatus (n = 14), Phyllostomus elongatus (n = 2); and
classified according to their dietary habits: Frugivorous (n = 9) and omnivorous (n = 16).

Full-size DOI: 10.7717/peerj.15169/fig-1
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5′-GTTTGCTGAAGATGGCGGCGGTA-3′ in a PCR reaction (Kitano et al., 2007).
The amplification profiles included an initial denaturation at 95 �C for 5 min followed by
35 cycles of denaturation at 95 �C for 30 s, annealing at 57 �C for 15 s and extension at
72 �C for 30 s, and finally an extension at 72 �C for 10 min. The PCR products obtained
were purified by ExoSAP-IT� and then subjected for Sanger sequencing. The sequences
obtained were analyzed with UGENE software and taxonomically assigned by BLAST
from the data reported in NCBI (Madden, 2013). Once identified, species were classified
according to their dietary habits (frugivorous and omnivorous) (Table 1) using the
classification scheme proposed by Ingala et al. (2021). This scheme considers the diets
reported in the literature and the food sources of each species in the EltonTraits database
(Wilman et al., 2014).

Sequencing and bioinformatics analysis to determine the bacterial
communities
We initially verified that the DNA samples complied with the best quality criteria (DNA
concentration ≥10 ng/mL and a ratio of A260/280 = 1.8–2.0) for amplicon-based
sequencing by an independent entity (Novogene, Bioinformatics Technology Co., Ltd,
Beijing, China). The Sequencing was performed according to the following workflow. PCR
amplification of the V4 hypervariable region of the 16S-rRNA gene was conducted, which
allows genus-level identification of bacteria and archaea, using specific primers (515F and
806R) (Caporaso et al., 2011). The bacterial amplicons were then purified for library
preparation using end pairing, the addition of A to tails and ligation of the index adapter.
This library was subjected to the sequencing process on a paired-end Illumina platform
(Illumina NovaSeq 6000 PE250; Illumina, San Diego, CA, USA) to generate 250 bp
paired-end raw reads assuming a minimum expected depth of 100 thousand reads per
sample.

Table 1 Analysis of the 10 most abundant genera in the blood microbiota of bats based on their
dietary habits.

Comparison Genus t p-value Sig

Frugivorous—Omnivorous Mycoplasma −9.005 0.001 *

Bartonella 1.732 0.114

Gemella −1.665 0.117

Mannheimia 1.429 0.191

Ottowia 0.672 0.510

Cloacibacterium 2.088 0.063

Acinetobacter 2.335 0.044 *

Ottowia 0.672 0.510

Pseudomonas 1.840 0.098

Lachnoclostridium −0.834 0.415

Streptococcus 1.074 0.309

Note:
Each genus was analyzed using the Wilcoxon signed-rank non-parametric paired test. Significance codes: “*” 0.05.
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After sequencing, raw paired-end de-multiplexed sequences were obtained without
primers and adapters. We assessed the quality scores of these sequencing data using
FastQC version 0.11.7 (Andrews, 2010). This quality control was consolidated using
MultiQC version 1.6 (Ewels et al., 2016). Subsequently, the taxonomic assignment of the
amplicon sequence variant (ASVs) was performed using version 1.16 of the DADA2
(Divisive Amplicon Denoising Algorithm) package (Callahan et al., 2016) in R software
version 4.0.2 (R Core Team, 2022). For this package, we implemented the recommended
parameters of the pipeline for microbiome analysis (https://benjjneb.github.io/dada2/
tutorial.html). This pipeline filters individual reads considering a Phred score equal to or
higher than 30 to minimize misreads, merges forward and reverse sequences, and infers
the amplicon sequence variants (ASVs), defined as the different unique sequences
(Callahan et al., 2016), using the central sample inference algorithm. Once the ASVs were
obtained, the chimeric structures of the sequences were removed. Finally, with DADA2,
each ASV was taxonomically assigned by comparison with the SILVA database version
138.1 (Quast et al., 2012). A minimum confidence bootstrap of 50 was considered for this
taxonomic assignment, based on the functions provided by the DADA2 package.

Blood microbiota composition and diversity metrics
The ASVs corresponding to mitochondrion, chloroplast and eukaryote were filtered from
the abundance and taxonomic assignment tables using the R Phyloseq package version
1.40.0 (McMurdie & Holmes, 2013). Then, the ten most abundant phyla and genera of bat
blood microbiota were identified considering the dietary habits of bats. This was done
based on the proportion of reads of each ASV to the total (relative abundance) of the
sample dataset. On the other hand, we generated rarefaction curves to determine the
diversity of ASVs of each sample based on the number of reads obtained from the
sequencing. These curves were made and visualized with phyloseq (McMurdie & Holmes,
2013), ampvis2 version 2.7.31 (Andersen et al., 2018) and iNext version 3.0.0 (Hsieh, Ma &
Anne, 2022) packages. Differences in the abundances of each ASV according to dietary
habits were analyzed using Welch’s t-test of the stats package version 4.2.0 (R Core Team,
2022).

To quantify the diversity of ASVs for each dietary habit (alpha (a) diversity), we used
the Shannon-Wiener (species diversity) and Simpson (species dominance) indices from
microbiome package version 1.18.0 (Lahti & Shetty, 2017) and the rarefaction analysis that
conducts iNterpolation and EXTrapolation of iNext package version 3.0.0 (Hsieh, Ma &
Anne, 2022). We evaluated the differences obtained between dietary habits using variances
and 95% confidence intervals (CI) from diversity estimation based on Hill numbers.
In terms of beta (β) diversity, the dissimilarities of the microbiota between dietary habits
were assessed and visualized by principal coordinate analysis (PCoA) of the phyloseq
package (McMurdie & Holmes, 2013). To assess changes in microbiota communities
associated with bat dietary habits, we applied a permutational multivariate analysis of
variance test (PERMANOVA), considering the assumptions, from the vegan package
version 2.6-2 (Oksanen et al., 2019) with 9,999 permutations. Both PCoA and

Luna et al. (2023), PeerJ, DOI 10.7717/peerj.15169 6/22

https://benjjneb.github.io/dada2/tutorial.html
https://benjjneb.github.io/dada2/tutorial.html
http://dx.doi.org/10.7717/peerj.15169
https://peerj.com/


PERMANOVA analyses were performed on Bray-Curtis distances obtained from the
relative abundances of each ASV.

Analysis of differential microbial genera according to bat feeding
habits
To determine the differential microbial genera for each dietary habit, we used the
differential analysis of DESeq2 (Love, Huber & Anders, 2014; Cao, 2020). For this analysis,
the relative log expression (RLE) was used as a method of normalizing abundance data, the
Bonferroni test was used as a method of correcting the significance of the data and a p-
value cutoff of 0.05. Subsequent to the identification of the differential genera, the
sequences of those genera whose species have been associated with different zoonotic
diseases were taxonomically assigned at the species level by BLASTn (Madden, 2013).
The taxonomic assignment for each genus was performed by comparing the reads with a
reference database constructed from 16S-rRNA gene sequences reported in RefSeq
(O’Leary et al., 2016), an e-value of less than 10 and a percentage of sequence identity
greater than 95%. The information obtained was cross-referenced with the respective
abundance values and visualized by means of a sinkplot of the ggalluvial package version
0.12.3 (Brunson, 2020).

RESULTS
Identification of bat species and dietary habits
Of the 25 individuals sampled in the localities of the department of Casanare (eastern
Colombia), we identified four species of bats: Carollia perspicillata (n = 5), Carollia
brevicauda (n = 4), Phyllostomus hastatus (n = 14), Phyllostomus elongatus (n = 2).
Regarding species feeding habits, we found that P. hastatus and P. elongatus are mainly
classified as omnivorous (n = 16), and C. perspicullata and C. brevicuada as frugivorous
(n = 9) (Fig. 1 and Table S1).

Quality control of reads associated with ASVs
After sequencing, our samples had between 85,000 and 174,000 raw reads with a Phred
quality score above 30 and a sequence size between 216 to 234 bp (Table S2). These data
assigned 10,420 ASVs, of which 763 correspond to eukaryotes, chloroplasts and
mitochondria. The remaining 9,657 ASVs belonged to 51 phyla and 961 genera of
prokaryotes, mainly bacteria (Table S3). On the other hand, the rarefaction curves results
demonstrated that the sequencing depth employed was sufficient to analyze the diversity
and composition of ASVs present in the bat blood samples (Fig. S1).

Composition of microbial communities based on dietary habits
Of the 51 phyla identified in bat blood microbiota, Proteobacteria and Firmicutes were the
dominant phyla (Fig. 2). Concerning their abundance, these phyla vary according to bat
dietary habits (Fig. 2A), where Proteobacteria was predominant in frugivorous individuals
(~80%) while Firmicutes was prevalent in omnivorous (~60%). At the genus level,
Bartonella, Mycoplasma, Pseudomonas, Mannheimia and Gemella were the predominant
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Figure 2 Composition of microbial communities in blood samples of omnivorous and friguivorous
bats (Chiroptera: Phyllostomidae). The relative abundance of the ten most frequent (A) phyla and
(B) genera of bat blood microbiota. The relative abundance of the 10 most frequent (C) phyla and (D)
genera of the blood microbiota of each individual sampled. In each panel, the group “Others” represents
the sum of the relative abundances of the other phyla or genera of the blood microbiota of bats.

Full-size DOI: 10.7717/peerj.15169/fig-2

Luna et al. (2023), PeerJ, DOI 10.7717/peerj.15169 8/22

http://dx.doi.org/10.7717/peerj.15169/fig-2
http://dx.doi.org/10.7717/peerj.15169
https://peerj.com/


groups in the blood microbiota of bats (Fig. 2B). Likewise, the abundances of these genera
showed a similar pattern to the phyla, where Bartonella, Mannheimia and Pseudomonas
were abundant in frugivorous bats while Mycoplasma and Gemella were abundant in
omnivorous bats (Fig. 2B).

In terms of dietary habits, we found that only the relative abundances of the dominant
phyla differ significantly (Firmicutes: p = 0.000001958 and Proteobacteria: p = 0.00004405;
Fig. S2). Likewise, at a finer taxonomic scale, the relative abundances of the 10 most
abundant genera varied by this ecological trait (Fig. 3A). This variation was significant only
in Mycoplasma (p = 0.001; Table 1) and Acinetobacter (p = 0.044; Table 1). In terms of
relative abundance, Acinetobacter showed higher relative abundance in frugivorous than
omnivorous (Fig. 3B). In contrast, omnivores showed a higher abundance of Mycoplasma
than frugivores (Fig. 3B and Table 1). Even though at the dietary habit level, we observed a
dominance of Proteobacteria (Bartonella,Mannheimia and Acinetobacter) and Firmicutes
(Mycoplasma). At the individual level, we identified variations in relative abundances of
these taxonomic groups (Fig. 2C), mainly in the ten most abundant genera (Fig. 2D),
where the microbiota of some frugivorous individuals was dominated by Bartonella and
others by Mannhemia. Similarly, in omnivorous bats, the blood microbiota of some
individuals was predominated by Mycoplasma and others by Gemella. Nevertheless, these
variations do not modify the previous patterns of abundance observed.

Alpha and beta diversity metrics
The alpha diversity indices (Shannon–Wiener and Simpson) indicate that the blood
microbiota in bats does not present dominance of taxonomic groups in their microbial
communities (Fig. S3). Furthermore, we found significant variations in these indices based
on the dietary habits of these mammals (Table 2 and Fig. 4A). In terms of beta diversity,
PCoA analysis shows two clusters associated with dietary habits that differ substantially
(Fig. 4B). Besides observing differences in dispersion between clusters, these are not
randomly distributed based on their dietary habits (PERMANOVA test: F = 4.6372,
p = 0.0001, R2 = 0.16779, Df of groups = 1, Df of residuals = 23).

Differential microbial genera by bat dietary habits
DESeq analysis indicated that Gemella, Mycoplasma, Acinetobacter, Cloacibacterium and
Mannheimia were differentially present according to the dietary habit of bats (Fig. 5A).
Gemella andMycoplasma were genus-specific in the microbiota of omnivorous individuals
while Acinetobacter, Cloacibacterium and Mannheimia were differential in frugivorous
individuals. Taxonomic assignment of the reads of these differential genera and pathogens
(e.g., Bartonella), showed different species, whose abundance differs based on dietary
habits (Table S4). Among the species, the abundances of Bartonella alsatica, Bartonella
elizabethae, Gemella sanguinis and Mycoplasma spp. were higher than 1% in the blood
microbiota of omnivorous bats (Fig. 5B and Table S4). In contrast, in frugivorous bats
Mannhemia varigena, Bartonella senegalensis, Bartonella clarridgeiae and Acinetobacter
coliniresistens predominate with an abundance greater than 1% in the blood microbiota of
these bats (Fig. 4B and Table S4).
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DISCUSSION
Diverse microorganisms such as bacteria, have been hypothesized as potential symbionts
that regulate the physiology of bats (Lutz et al., 2019; Ingala et al., 2021). In contrast, some
taxa, mainly parasites and viruses are known as potential zoonotic microorganisms (Brook
& Dobson, 2015). Although these communities are differentially distributed in various

A

B

Figure 3 Changes in the relative abundances of the ten most frequent genera according to the dietary
habits of bats. (A) Relative abundance of the ten most abundant genera. (B) Relative abundance of
significantly different genera by dietary habit. Significance codes: �p < 0.05; ��p < 0.01; ���p < 0.001;
����p < 0.0001. Full-size DOI: 10.7717/peerj.15169/fig-3
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anatomical sites of bats (Dietrich et al., 2017; Lutz et al., 2019), raising relative questions
about microbe-host interactions, little is known about the ecological structure of
microorganisms in other anatomical sites, such as the blood. As for this anatomical zone,
few studies have characterized and analyzed microbial communities by amplicon-based
sequencing, (Dario et al., 2017; Patiño et al., 2021), especially on prokaryote communities.
Herein, we described the prokaryote communities in blood samples from omnivorous and
frugivorous bats and analyzed the effect of the dietary niche on the composition of
microbial communities.

The composition and diversity in blood microbiota of omnivorous and frugivorous bats
indicate variability of bacterial taxa. This result is consistent with the microbial ecology
reported in other body fluids (feces, saliva and urine), having a high variability of
microorganisms (Carrillo-Araujo et al., 2015; Dietrich et al., 2017; Ingala et al., 2021).

Figure 4 Alpha and beta diversity metrics of bat blood microbiota. (A) Individual-based rarefaction
(solid lines) and extrapolation (dashed lines) of microbial’s Shannon and Simpson diversity according to
the dietary habits of the bats. Each curve shows the diversity of prokaryote genera (ASVs) in terms of the
number of reads with a 95% CI. (B) Principal coordinate analysis (PCoA) based on the dissimilarity of
blood microbial communities of omnivorous and frugivorous bats.

Full-size DOI: 10.7717/peerj.15169/fig-4

Table 2 Analysis of the alpha diversity of the blood microbiota of bats based on their dietary habits.

Dietary habit Alpha diversity measure Estimator [CI 95%]

Frugivorous Shannon 10.00 [9.949–10.06]

Simpson 3.488 [3.473–3.503]

Omnivorous Shannon 8.644 [8.612–8.674]

Simpson 3.285 [3.277–3.292]
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Moreover, the diversity and composition patterns herein portrayed differ from those
reported in other mammals (Song et al., 2020). This difference, due to the difference in
life-history (evolutionary adaptations and ecological traits), such as flight, migration, or
dietary niche, allowing bats to host different microorganisms (Song et al., 2020). Even

Figure 5 Analysis of differential microbes and pathogenic agents according to bat dietary habits.
(A) Differentially abundant genera in the blood microbiota of omnivorous (yellow) and frugivorous
(blue) bats according to DESeq analysis. (B) Differential and pathogenic species with a relative abundance
greater than 1% in the blood microbiota of bats by their dietary habit. The thickness of the sinkplot
indicates the relative abundance corresponding to the genera or species.

Full-size DOI: 10.7717/peerj.15169/fig-5
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though the relationships between microbial communities and bats may differ from
variables such as geography and host phylogeny (Phillips et al., 2012). Most of the variation
is mainly explained by ecological and behavioral characteristics such as dietary traits
(Phillips et al., 2012; Ingala, Simmons & Perkins, 2018). Moreover, the ecological features of
these species, we observed no variation in the clusters when analyzing the geographical
location and bat species variables (Figs. S4 and S5) and migration (Karesh et al., 2012) and
the distance between the sampled areas (<100 km) could explain the clusters found.
However, we were unable to collect blood samples of different dietary habits in many of the
municipalities. Therefore, future studies that control sampling should evaluate the
ecological and geographical factors shaping the blood microbiota of these mammals.

We observed changes in the relative abundance based on the dietary traits of the bats of
different taxonomic groups. These changes in abundance might be determined by the
quality and availability of nutrients in blood, related to dietary habits. Previous studies
report dietary features as one of the main factors in determining the microbiota of bats
(Phillips et al., 2012; Lutz et al., 2019; Ingala et al., 2021); where the diet habits and
physiological features modulate the structures of microbial communities through
differential expression of metabolic pathways associated with diverse microbial genera
(Phillips et al., 2012; Lutz et al., 2019). Therefore supporting our findings, where a possible
effect of bat diet might regulate the abundance of microbial communities in blood.
For instance, the abundant genera in frugivorous bats are characterized by a high
metabolism of carbohydrate-derived sugars (Barbe, 2004). By contrast, the dominant
bacteria of omnivorous bats display metabolic pathways associated with protein
metabolism (Schuster et al., 2002; García López & Martín-Galiano, 2020). However,
further studies are needed to assess this host effect and to determine whether other factors
promote this variation.

In terms of the ecological features of the communities of bat blood microbiota, the most
abundant bacteria genera (Mycoplasma, Bartonella, Acinetobacter and Mannhemia) have
been detected in blood as well as other histological samples (spleen and heart) (Correia Dos
Santos et al., 2020; Corduneanu et al., 2021; Descloux et al., 2021). In bats, the information
is scarce in terms of the functional roles and ecological features of these bacteria, but some
species are associated with different zoonotic diseases such as Bartonellosis and
Pneumonia (Mühldorfer, 2013; Morris et al., 2019; Komatsu et al., 2019). The several
studies that described these zoonotic species used specific tools (PCR or Sanger
sequencing) to determine the presence or absence of these microbes (Mühldorfer, 2013;
Morris et al., 2019; Komatsu et al., 2019). However, these techniques cannot characterize
and/or describe the ecology of these bacteria. Therefore, our results from 16S-rRNA
sequencing highlighted not only the ecological features or potential bacteria-bat
interactions but also the coexistence of zoonotic genera, an interesting finding especially
given that in bats only the coexistence of parasites is documented (Patiño et al., 2021).

We observed a whole diversity of Bartonella species in bat blood microbiota. These
species have been documented in other bat species (Corduneanu et al., 2018), other
mammals such as rodents, cattle, and wild animals (Jiyipong et al., 2014) and ectoparasitic
vectors, such as mosquitoes, ticks and fleas (Nabeshima et al., 2022). Moreover, the
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epidemiology and genomics of these species relate to bats as wild reservoirs associated with
the transmission cycle of different Bartonella species and genotypes (Sándor et al., 2018;
André et al., 2019), independently of the ecological characteristics of the mammals. Thus,
abundances found of these hematic bacteria in both omnivorous and frugivorous bats
could hint a unique microorganism-bat interaction that deserved further study. In contrast
to Bartonella, we found thatMycoplasma species are most abundant and differential in the
blood microbiota of omnivorous bats. Some species of this genus have been found
circulating in other bats species (Correia Dos Santos et al., 2020), wild mammals (André
et al., 2020) and some ectoparasites such as ticks and mosquitoes (Shi et al., 2019).
The biology of mycoplasmas shows close evolutionary relationships dependent on the
phylogeny of bats (Becker et al., 2020). Nonetheless, our study did not find a phylogenetic
effect of omnivorous bats on Mycoplasma; hence the dominance of this genus seems to be
more associated with the ecological features of bats than with their phylogenetic
relationships. As for Acinetobacter and Mannhemia, these genera are associated with
intestinal and urinary diseases, mainly in livestock (Morris et al., 2019; Komatsu et al.,
2019). In bats, interactions and dynamics with these genera are so far unknown. However,
the abundance of these circulating zoonotic bacteria in bats is striking given that these are
associated with disease outbreaks in livestock (Morris et al., 2019; Komatsu et al., 2019).
Therefore, it is possible that bats might be an intermediate host that allows the
transmission of these genera. Whether bats play a fundamental role in the epidemiology of
these bacteria needs to be further investigated.

Although blood is considered one of the most sterile physiological systems, the presence
of microorganisms in bat blood highlights the microbe-host interaction, especially the role
of the immune system of these reservoirs. To date, there are two hypotheses under
discussion that relate to the microbe-host interaction in this physiological system: (1) An
immune dampening, in which the bat has evolved suppressive/inactive inflammatory
pathways to blood pathogens that would sustain shock in mammalian circulations
(Randolph & Barreiro, 2018). (2) A resistance, describing particularly potent immune
responses which allows for mild seroprevalence and states of premonition as a protective
mechanism from future infection without exacerbated response (Randolph & Barreiro,
2018). Each of these hypotheses have been supported by analyzing the genetic and cellular
components of the immune system in different bat species (Ahn et al., 2016). Nevertheless,
these theories leave unanswered questions: is there a similarly hematophagous vector
transmitting the pathogen directly to the animal’s blood stream? or is the origin of bacterial
transmission from ecological niche to circulation a function of poor surveillance/leaky
junctions at the level of gastrointestinal endothelium? From the microbe-to-host
perspective now, it may be speculated that successfully persisting pathogens somehow
mitigate their own virulence factors allowing them to live within a host that serves as a
casual ecological reservoir. This implies that there are still several questions about the
microbial ecology of neotropical bats that remain to be answered.
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Based on the ecological characteristics and evolutionary adaptations of the bats studied
(Karesh et al., 2012). The abundance and circulation of different bacteria, mainly zoonotic,
could imply a potential dispersal/transmission of these bacteria in sylvatic and urban
environments since the bats studied were captured in the proximity of human settlements
(Table S1). On the other hand, according to reports from Global Forest Watch (https://
www.globalforestwatch.org/dashboards/country/COL/9/?category=forest-change), in
recent years the ecosystems of the localities where the bats were captured presented losses
in tree cover as consequence of anthropogenic factors. The habitat loss would imply a
displacement of bats to urban settlements. Thus, it leads to a higher probability of the
occurrence of spillover processes from bats to other hosts (humans or domestic animals/
livestock), whose health may be affected by the transmission of these bacteria. Therefore,
we highlight the need for studies focusing on the frequency of associated diseases, vector
dispersal and transmission efficiency to provide information on the mechanisms of
transmission and spread of these microorganisms and avoid the possible emergence of new
disease outbreaks caused by the spread of bats to humans, other mammals or livestock.

The main limitation of the study is the sample size and the distribution of the sampled
species, which despite finding patterns associated with ecological features, does not show
the effect of environmental or geographical variables. Another limitation is not knowing
whether environmental variables and ecological interactions might be contributing to the
differentiation of the blood microbiota in bats. Therefore, future studies should include
more samples to analyze the different variables that could modulate the blood microbiota
of bats. These studies should also describe the viral and eukaryotic (parasite and fungi)
communities present in the blood of bats. Finally, a study evaluating the microbiota
ecological dynamics in different anatomical sites and fluids is needed. Despite its
limitations, this study is the first to describe the bacterial communities in bat blood and the
possible role of dietary habits on the structure and diversity of these microbes.

CONCLUSIONS
In summary, the blood microbiota of omnivorous and frugivorous bats is composed of
different potentially pathogenic bacterial genera, such as Bartonella andMycoplasma, that
might depend on the ecological and physiological features of the host. Furthermore, the
abundances of these communities might differ according to the bat’s food sources, which
could influence the prevalence of the microbiota genera. Further, metagenomic and
metabolomics studies coupled with epidemiological data are required, which will provide
information on the microbial species, associated metabolites, virulence factors and the
ecology of the genera present in the blood microbiota. This study presents as limitations
the low sample size, geographical restricted and the lack of complementary estimations of
oral and fecal microbiota from the same individual. In turn, future studies should
circumvent these limitations including other dietary habits (insectivore, carnivore and
hematophagous) and extend the description of microbial communities to parasites,
viruses, and fungi.
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