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18 Abstract

19 Background.

20 Metabolism shifts from glycolysis to mitochondrial oxidative phosphorylation is important 

21 during differentiation of stem cells. Mitochondria function as directors in cell differentiation 

22 rather than bystanders. However, metabolic shift and the effect of mitochondria regulating 

23 differentiation of human dental pulp stem cells (hDPSCs) remain unclear.

24 Methods.

25 Human dental pulp stem cells were collected from 5 healthy donors. Cell differentiation was 

26 induced by osteogenic mineralized medium. The activities of alkaline phosphatase, hexokinase, 

27 pyruvate kinase, and lactate dehydrogenase were measured by enzyme activity kits. The 

28 extracellular acidification rate and the mitochondrial oxygen consumption rate were detected. 

29 The mRNA level of COL-1, ALP, TFAM and NRF1 was analyzed. The protein level of p-AMPK 

30 and AMPK were measured by western blot. 

31 Results.

32 Glycolysis decreased after a slight increase, while mitochondrial oxidative phosphorylation kept 

33 on rising when cells growing in osteogenic mineralized medium. Thereby, the metabolism of 

34 differentiating cells switched to mitochondrial respiration. Next, inhibition of mitochondrial 

35 respiration with carbonyl cyanidem-chlorophenylhydrazone, a mitochondrial uncoupler, 

36 depressed hDPSCs differentiation with less ALP activity and decreased ALP and COL-1 mRNA 

37 expression. Furthermore, mitochondrial uncoupler leaded to AMPK activation.5-

38 aminoimidazole-4-carboxamideribonucleotide, an AMPK activator simulated the effect of 
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39 mitochondrial uncoupler by inhibiting cell differentiation, mitochondrial biogenesis and 

40 mitochondrial morphology. Mitochondrial uncoupler and activation of AMPK depressed 

41 mitochondrial oxidative phosphorylation and inhibited differentiation, suggesting that they may 

42 serve as a regulator to quit osteogenic differentiation from impaired mitochondrial oxidative 

43 phosphorylation. 

44 Keywords: dental pulp stem cells; osteogenic differentiation; glycolysis; mitochondrial 

45 oxidative phosphorylation; 

46

47
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48 Introduction

49 Human dental pulp stem cells (hDPSCs), as a source of adult multipotent stem cells, present 

50 the ability to differentiate into multiple types of cell types, including but not limited to 

51 odontoblast/osteoblast, chondrocyte, adipocytes, myogenic and neural cells(Sui et al., 2020; 

52 Tsutsui, 2020). Due to their easily isolation and great potential in tissue engineering and 

53 regenerative medicine, DPSCs are widely used in various fields. Numerous studies are 

54 dedicating to uncover the detailed mechanisms involved in their self-renewal ability and multi-

55 lineage differentiation potential. The capacity of dental pulp stem cells to differentiate is 

56 important for dental pulp repair and dentin rebuilding(Sui et al., 2020). 

57 Energy metabolism plays the critical role in guiding the proliferation, differentiation and 

58 many life processes of stem cells. Energy production by aerobic oxidative phosphorylation is the 

59 main function of mitochondria(Rossmann et al., 2021). In stem cells, mitochondria produce the 

60 energy not only for the maintenance of homeostasis, but also for differentiation(Tsutsui, 

61 2020).The metabolism predilection shifts between mitochondrial oxidative phosphorylation 

62 (OXPHOS) and glycolysis change along cell status and different levels of mitochondrial 

63 maturation, which depend on the pluripotency stage. (Khacho & Slack, 2018; Wanet et al., 2015). 

64 For instance, fully differentiated cells rely more on OXPHOS, while undifferentiated stem cells 

65 rely more on glycolysis(Ly ,Lynch & Ryall, 2020). Some evidence also shows a metabolic 

66 switch from anaerobic glycolysis toward OXPHOS upon differentiation of hematopoietic stem 

67 cells (HSCs). Quiescent HSCs rely on glycolysis, while the active HSCs change to OXPHOS 

68 metabolism when cells undergo differentiation(Morganti ,Cabezas-Wallscheid & Ito, 2022).
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69 Moreover, the dynamic distribution, subcellular content and structural of mitochondria, 

70 have been shown to exhibit peculiar functions in the processes of cellular differentiation and 

71 reprogramming(Khacho & Slack, 2017). Mitochondrial-mediated shift accompanied by 

72 mitochondrial remodeling and dynamics are vital to the differentiation and the fate of neural 

73 stem cells(Coelho et al., 2022). Our previous study demonstrated that at the initial stage of 

74 hDPSCs differentiation, both the OXPHOS and glycolysis were upregulated(Wang et al., 2016). 

75 It should be emphasized whether the mitochondrial and glycolysis change exist during hDPSCs 

76 continuous differentiation. Other questions that need to be addressed are the role of mitochondria 

77 upon differentiation of hDPSCs.

78 Some studies are underway to unveil the bidirectional crosstalk between mitochondria and 

79 differentiation, such as reactive oxygen species production, energy-sensing pathways, hypoxia-

80 inducible factor pathway. Adenosine monophosphate (AMP)ñactivated protein kinase (AMPK), 

81 as a central metabolic sensor sensitive to the AMP/ATP ratio, can be activated by various types 

82 of cellular stress(Aslam & Ladilov, 2022; Li et al., 2013). AMPK is involved in the regulation 

83 the fate of stem cell, and serves as a key regulator of cell differentiation(Liu et al., 2021; Sun et 

84 al., 2017; Yang et al., 2016).Previous reports showed that AMPK was required for immune cell 

85 differentiation and adipogenic differentiation(Rambold & Pearce, 2018; Son et al., 2019; Yang 

86 et al., 2016). AMPK activation established a metabolic barrier to impede the cellular 

87 reprogramming into iPSCs(Vazquez-Martin et al., 2013; Vazquez-Martin et al., 2012). AMPK 

88 influenced osteogenic differentiation of human dental pulp mesenchymal stem cells (Pantovic et 

89 al., 2013). The study also detected the change of AMPK when OXPHOS was intervened. 
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90 Metabolism is an important regulator for stem cells and fate decision. Anaerobic glycolysis 

91 may be an adaption to the low oxygen niche for stem cells and maintain their stemness. The shift 

92 from glycolysis to OXPHOS is required for stem cells to differentiate. The reverse transition 

93 from OXPHOS to glycolysis is required for the induction of pluripotency from somatic 

94 cells(Zhang ,Menzies & Auwerx, 2018). Metabolism regulating of stem cells would be a 

95 potential target for tissue engineer or regeneration medicine. 

96 In all, the aim of the study is to study the change of mitochondrial OXPHOS and glycolysis 

97 during hDPSCs differentiation and its possible regulating factors.

98

99 Materials & Methods

100 Reagents and antibodies

101 Hexokinase (HK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and alkaline 

102 phosphatase(ALP) enzyme activity kits were obtained from Jiancheng (Nanjing, China). 

103 MitoTracker Red CMXRos (M7512) and Alexa Fluor 488 Phalloidin (A12379) were obtained 

104 from Invitrogen (Carlsbad, CA, USA). XF Cell Energy Phenotype Test Kit, XFp extracellular 

105 flux analyzer, XFp culture microplates and bicarbonate-free DMEM were obtained from 

106 Seahorse BioscienceóAgilent Technologies (North Billerica, MA, USA). Hoechst 33342 

107 (B2261), Carbonyl cyanide 3-chlorophenylhydrazone (CCCP, C2759) was purchased from 

108 Sigma-Aldrich (St Louis, MO, USA). The following antibodies were used: AMPK (1:1000, 

109 Abcam, ab80039), p-AMPK (1:1000, Abcam, ab133448), anti-GAPDH (1:1000, Abcam, 

110 ab9485), and HRP-conjugated secondary antibodies (Bio-Rad Laboratories, Hercules, CA, USA), 
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111 Alexa Fluor 594-conjugated secondary antibody (Invitrogen).

112 Cell culture and treatment

113 After receiving the informed consents from patients and their parents, human dental pulp 

114 tissues were collected from caries- and periodontitis-free third molars extracted for orthodontic 

115 purposes from healthy donors (n=5). The experimental procedures were conducted according to 

116 the Declaration of Helsinki. The protocol was approved by the Institutional Ethics Committee of 

117 West China Hospital of Stomatology (WCHSIRB-D-2017-052; WCHSIRB-D-2020-075-R1). 

118 Briefly, after washing with sterile PBS, dental pulp tissues were cut into fragments, digested with 

119 3 mg/ml type I collagenase at 37# for 30 min, placed on 25 cm2 culture dishes, and maintained 

120 in standard medium which was low glucose Dulbecco modified Eagle medium (DMEM) 

121 containing 10% fetal bovine serum (FBS) (Gibco, Carlsbad, CA, USA), penicillin (100 

122 units/mL), and streptomycin (100 mg/mL) at 37C in 5% CO2. Cells were sub-cultured when 

123 cells reached 80% conûuence, and used at passage 3 in this study. Differentiation was induced 

124 by osteogenic mineralized medium (MM), which was the standard medium supplemented with10 

125 mM b-glycerophosphate, 50 mg/mL ascorbic acid and 100 nM dexamethasone (SigmañAldrich, 

126 St. Louis, MO, USA). All media were replaced every 2 days. Flow cytometry was used to 

127 analyze cell surface marker expressions and the cells were also incubated in MM for further 

128 alizarin red staining (Supplementary Fig. S1).

129 To inhibit OXPHOS activity, cells were cultured in a mineralized medium with a 

130 mitochondrial uncoupler, carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 2¿M). In some 

131 experiments, cells were treated with 5-aminoimidazole-4-carboxamideribonucleotide (AICAR, 
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132 500¿M)

133 Enzyme activities assay

134 Cells were collected and ultrasonically decomposed on ice. After centrifugation, the 

135 supernatant was to measure the activities of ALP, HK, PK and LDH with corresponding enzyme 

136 activity kits. Enzyme activities were calculated from optical density value and total protein.

137 Cell energy phenotype analysis

138 Our previous results showed that hDPSCs initiated to differentiate on day 3 induced in MM. 

139 At this critical point, cells possessed increased glycolytic and mitochondrial function. With the 

140 further differentiation, extracellular flux rates were measured in this study. Cells (4103 

141 cells/well) were plated on XFp cell culture microplates and divided into experimental group and 

142 control group. The experimental group was cultured in MM, while the control was grown in 

143 standard medium at 37 C and 5% CO2. On day 1, 3, 5 and 7, the extracellular acidification rate 

144 (ECAR) as an indicator of the glycolysis potential, and the mitochondrial oxygen consumption 

145 rate (OCR) as parameter of mitochondrial respiration were analyzed on a Seahorse XFp 

146 Bioanalyzer, using the Seahorse XF Cell Energy Phenotype Test Kit according to the 

147 manufacturer's instructions. One hour before beginning the measurement, cells were switched to 

148 Seahorse bicarbonate-free DMEM, adjusted to pH 7.4 with NaOH, were subsequently incubated 

149 in a non-CO2 incubator at 37C for 1 h. Then, OCR and ECAR tests were performed under 

150 baseline and stressed conditions, after Oligomycin (1 ¿M), an ATP synthase inhibitor, and CCCP, 

151 2¿M, a mitochondrial uncoupling agent, were injected into the microplates. Extracellular flux 

152 rates were analyzed by using Seahorse XF software after normalized to the total protein units, 
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153 and the ratio of OCR/ECAR were calculated.

154 Real-time quantitative PCR (qPCR)

155 Total RNA was extracted from hDPSCs treated in different conditions using TRIzol 

156 (Invitrogen) and cDNA was reverse transcribed with PrimeScript RT reagent Kit (TakaKa, 

157 Osaka, Japan). A negative control without the reverse transcriptase was also implemented. Real-

158 time PCR was performed using a SYBR Green PCR kit (Takara) and the Roche LightCycler480 

159 Real-Time PCR System (Roche, Basel, Switzerland). GAPDH was used as the internal reference 

160 gene, and levels were relativized to the control group. The sequences of specific primers were: 

161 5'-AAGGAGAAAGAGGAGCCAAAGG-3'(forward) and 5'-

162 AGCACCAGGGAAACCAGTCATAC-3'(reverse) for COL-1; 5'-

163 CAGATGAAGTGGGAGTGCTTGT-3'(forward) and 5'-

164 CTGATGTGGAGTATGAGAGTGACG-3'(reverse) for ALP; 5'-

165 ATGGCGTTTCTCCGAAGCAT-3'(forward) and 5'-TCCGCCCTATAAGCATCTTGA-

166 3'(reverse) for TFAM; 5'-AGGAACACGGAGTGACCCAA-3'(forward) and 5'-

167 TATGCTCGGTGTAAGTAGCCA-3'(reverse) for NRF1; 5'-

168 CTTTGGTATCGTGGAAGGACTC-3'(forward) and5'-GTAGAGGCAGGGATGATGTTCT-3' 

169 (reverse) for GAPDH.

170 Fluorescence microscopy

171 Cells were seeded on the coverslips at 1104 cells/well, and incubated with MitoTracker 

172 Red CMXRos (MRC) in the FBS-free DMEM at a concentration of 100 nM at 37# for 30 min. 

173 After washing, cells were fixed in 4% paraformaldehyde for 10 min, and permeabilized with 
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174 0.05% Triton X-100 in PBS for 10 min at room temperature. Then, cells were incubated with 

175 Alexa Fluor 488 Phalloidin to show the cytoskeleton for 1 hour at room temperature. Nuclei 

176 were stained with Hoechst 33342 for 5 min.

177 For the immunofluorescence experiment, cells were first fixed in 4%paraformaldehyde for 

178 10 min, and were permeabilized with 0.05% Triton X-100 in PBS for 10 min. After washing, 

179 cells were blocked with 5% BSA in PBS for 30 min and incubated with primary antibody against 

180 p-AMPK overnight at 4#. Following further washing, cells were incubated with Alexa Fluor 

181 594-conjugated secondary antibody. Nuclei were also visualized by Hoechst 33342 for 5 min. 

182 Fluorescence signals were obtained using an Olympus microscope (Olympus, Munster, 

183 Germany).

184 Immunoblotting

185 Total proteins from hDPSCs were extracted using total protein extraction kit (KeyGEN 

186 BioTECh, Nanjing, China) according to the manufacturerís recommendation. SDS/PAGE was 

187 performed on Bio-Tris 5-10% gradient polyacrylamide gels acrylamide. Proteins were 

188 transferred to PVDF membranes (Bio-Rad), and membranes were blocked with 5% BSA in 

189 TRIS-buffered saline, 0.1% Tween (TBS-T) for 60 min at room temperature. The membranes 

190 were incubated overnight with appropriate primary antibodies. Detection was subsequently 

191 performed with HRP-conjugated secondary antibody for 1 hour at room temperature, and the 

192 membranes were scanned using the GelDoc XR+ System (Bio-Rad Laboratories, Hercules, CA, 

193 USA). The density of Western blot band signals was monitored using Quantity One software.

194 Statistical analysis
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195 Every experiment was independently replicated a minimum of three times, ANOVA and 

196 Studentís t-test were performed to determine statistical significance between control group and 

197 experimental group using SPSS version 17.0 software. P-values were considered to be 

198 significant when p < 0.05 (*p< 0.05).

199

200 Results

201 During osteogenic differentiation, glycolysis function declined after an initial slight increase 

202 In order to assess the status of osteogenic differentiation, the mRNA expression of cell 

203 differentiation makers (ALP and COL-1) and ALP activity were detected on day 0, 1, 3, 5, and 7 

204 cultured in control and mineralized medium (MM). By q-PCR, the expression of ALP mRNA 

205 increased at 3 days after differentiation induction (p=0.005), and COL-1 started to upregulate 5 

206 days after treatment (p=0.044), compared with the control (Fig. 1A and B). To further 

207 understand the hDPSC differentiation, ALP activity was also monitored. As is reported in Fig. 

208 1C, the increase of ALP activity occurred from day 3, and kept on rising during the process of 

209 differentiation (p=0.000).

210 The activity of several important enzymes in glycolysis was measured. The activities of HK 

211 (p=0.023), PK (p=0.013) and LDH (p=0.005) had a slight increase at day 3 when hDPSC started 

212 to differentiate, then gradually decreased to a much lower level than that of control at day 7 

213 during differentiation of hDPSC (Fig. 1D, E, and F). 

214 Mitochondrial OXPHOS predominated in energy production of the differentiating hDPSCs.

215 The data showed that mitochondrial transcription factor A (TFAM, controlling mtDNA 
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216 expression and mitochondrial biogenesis) expressions were elevated at day 3ÿ5 and 7 compared 

217 to the control (Fig. 2A, p=0.016, p=0.002, p=0.001). The expressions of TFAM in MM were also 

218 gradually upregulated since day 3 (Fig. 2A, p=0.000). However, the expression level of Nuclear 

219 Respiratory Factors 1 (NRF1, controlling nuclear encoded respiratory chain components 

220 expression) was unchanged compared to control cells (Fig. 2B).

221 Later, the mitochondrial OCR(mitochondrial respiration indicator) and ECAR(glycolysis 

222 indicator) during hDPSCs differentiation in baseline and stressed condition were analyzed by 

223 Seahorse XF Cell Energy Phenotype Test Kit. Two stressor compounds, oligomycin that causes 

224 an increase of glycolysis and carbonyl cyanide p-trifluoro methoxyphenylhydrazone that drives 

225 OCR rates higher, were used as to induce a stressed condition. Under the basal condition, 

226 consistent with upregulated TFAM mRNA expression, OCR of differentiating cell was greater 

227 than that of control at day 3 (Fig. 2C), but the ratio of OCR/ECAR had no difference (Fig. 2D). 

228 At the days 5 and 7, ECAR was down-regulated, and OCR was still rising. Moreover, the cells in 

229 MM exhibited higher OCR/ECAR compared to the control at day 5 and 7(Fig. 2D, p=0.004, 

230 p=0.001). On the metabolic stressed condition, a similar pattern of specific dynamic changes in 

231 mitochondrial OXPHOS and glycolysis could be observed (Fig. 2E).

232 Mitochondrial uncoupling interfered with hDPSCsí differentiation

233 A mitochondrial uncoupler, CCCP, was used to attenuate mitochondrial respiration(Kane et 

234 al., 2018). The cells were cultured in osteogenic mineralized medium with or without CCCP. 

235 Upon differentiation, both the basal and stressed mitochondrial OCR depressed after CCCP 

236 treatment, compared to cells cultured in MM (Fig. 3A). The ECAR of cells growing in presence 
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237 of CCCP showed a decrease compared to the control at day 3 in baseline conditon (p=0.002), 

238 while there was no difference in other days (Fig. 3B). With the MitoTracker Red CMXRos 

239 staining, the mitochondrial morphology showed to be punctate, and failed to form functional 

240 network at the initial stage of differentiation (yellow arrow, Fig. 3C). Importantly, this 

241 suppression of mitochondrial respiration attenuated the differentiation of hDPSCs, manifested as 

242 the inhibited ALP activity and the restrained ALP and COL-1 mRNA expression, compared to 

243 cells growing in absence of CCCP (Fig. 3D). 

244 The activation of AMPK impaired OXPHOS-driven differentiation

245 The activation of AMPK was detected in cells cultured in MM with or without CCCP (2¿M) 

246 for 1-7 days. The ratio of AMPK phosphorylation/AMPK protein were increased at day 3,5,7 by 

247 using CCCP (Fig. 4A). Would AMPK influence hDPSCs differentiation? As shown on Fig. 4B, 

248 the activation of AMPK was induced significantly by AICAR treatment. Crucially, consistent 

249 with CCCP treatment, AICAR suppressed hDPSCs differentiation (Fig. 4C). Furthermore, the 

250 mRNA expression of TFAM was suppressed, and the mitochondrial fragmentation was observed, 

251 compared to the control since day 3 after treatment of AICAR (Fig. 4D and 4E). Collectively, 

252 these results indicated that the activation of AMPK contributed to hDPSCs differential inhibition 

253 and impaired OXPHOS.

254

255 Discussion

256 In this study, it was demonstrated that the dynamic shift of glycolysis and mitochondrial 

257 OXPHOS took place during differentiation of hDPSCs. Attenuating mitochondrial respiration 
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258 with uncoupler CCCP suppressed hDPSCs differentiation and activated the central metabolic 

259 sensor, AMPK. 

260 Metabolic shift accompanied hDPSCsí osteogenic differentiation

261 Recent studies have displayed that stem cells depend mostly on anaerobic glycolysis for 

262 ATP supply, while the differentiating cells depend on mitochondrial aerobic respiration. The 

263 metabolic shift and mitochondrial resetting into mature bioenergetic states are considered a 

264 hallmark of stem cell differentiation(Wanet et al., 2015). When hDPSCs differentiated, cells 

265 presented distinct energy phenotypes. At day 3, the level of ECAR showed that glycolysis 

266 increased rather than decreased. Studies have shown that glycolysis supplies rapid energy 

267 generation and substrates for the biosynthesis. Increased glycolysis can provide a quick 

268 production of ATP and sufficient substrates for the biosynthesis, which meet the anabolic 

269 demands of initial differentiation(Palmer et al., 2015). This implies that differentiation requires 

270 the supply of enough energy and substrates. The joint effects of glycolysis and mitochondrial 

271 OXPHOS may support the tremendous energy demand on day 3 of differention. Simutanously, 

272 higher level of OCR and increased ratio of OCR/ECAR herald a shift toward a characteristic of 

273 mitochondrial OXPHOS. The results showed that mitochondrial OXPHOS predominated in 

274 energy production of the differentiating hDPSCs at day 5 and day 7, when metabolic shift of 

275 hDPSCs were observed. The finding was similar to other reported stem cells(Coelho et al., 2022; 

276 Folmes et al., 2011; Prigione et al., 2010).

277 Some studies suggested that mitochondrial content, such as mitochondrial DNA (mtDNA) 

278 copy number, mitochondrial mass and biogenesis, tightly adapted to the change of cell 
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279 metabolism during pathological or physical activity(Clark & Parikh, 2020; Procaccio et al., 

280 2014). In order to assay the mitochondrial content-related modulating factors during hDPSCs 

281 differentiation, the mRNA expression of TFAM and NRF1 were detected in the study(Kang ,Chu 

282 & Kaufman, 2018; Quan et al., 2020).As hDPSCs differentiation went onto day 5 and 7, up-

283 regulated TFAM expression were observed, which might induced increased mtDNA content and 

284 increased mitochondrial biogenesis(Tsutsui, 2020; Vega-Naredo et al., 2014). Nevertheless, it 

285 seemed that NRF1 was not involved in the process of hDPSCs differentiation. The reason might 

286 be related to the difference of cell types.

287 AMPK participated in differential inhibition when mitochondrial activity attenuated

288 Metabolic shift plays an essential role in regulating cellular function, particularly in stem 

289 cell self-renewal, pluripotency, and plasticity(Andre et al., 2019). Mitochondrial biogenesis and 

290 metabolic shift toward OXPHOS are deemed as early events in differentiation process of 

291 multiple stem cells. Furthermore, Inoue S et al. suggested that mitochondrial respiration was 

292 more important in mouse hematopoietic stem cell commitment and differentiation than in 

293 reaching the final phase of cell differentiation(Inoue et al., 2010). Consistent with previous 

294 reports, our data showed that inhibiting mitochondrial function by CCCP from the beginning 

295 prevented differentiation of hDPSCs. It turned out that mitochondrial OXPHOS was required for 

296 differentiation. CCCP-treated hDPSCs exhibited an apparent fragmentation of mitochondrial 

297 tubules, likely due to a block in mitochondrial fusion. 

298 The energy sensor AMPK was activated by the decreased intracellular ATP due to impaired 

299 OXPHOS. It was speculated that AMPK may be the direct regulator of the mitochondrial fission 
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300 and fusion machinery to mediate subsequent events. As an intracellular energy sensor, the vital 

301 role of AMPK was to restore the energy balance. Once activated, AMPK induces catabolic 

302 pathways to produce energy and prevents anabolic pathways, such as lipid and protein synthesis, 

303 to save energy(Wanet et al., 2015). On the other hand, considerable evidence shows that AMPK 

304 is involved in regulating cell fate, including controlling stem cell pluripotency and 

305 differentiation(Afinanisa ,Cho & Seong, 2021; Fernandez-Veledo et al., 2013; Liu et al., 

306 2021).In the study, CCCP-treated hDPSCs exhibited an elevated level of p-AMPK, showing that 

307 the energy sensor AMPK was involved in the process of metabolism that influenced 

308 differentiation. AMPK activation was a potential modulator when the differentiation of hDPSCs 

309 had switched on.

310 To further verify the effect of AMPK activation. AICAR, a direct AMPK activator was 

311 applied. AICAR resulted in mitochondrial fragmentation and differential inhibition, which were 

312 similar to that induced by CCCP. For cell differentiation, numerous anabolic pathways, including 

313 the biosynthesis of proteins and lipids, are required to support specific function of differentiated 

314 cells. The mitochondrial biogenesis and stimulation of metabolism are also needed to produce 

315 adequate energy for the processes. CCCP-induced or AICAR-induced AMPK activation may 

316 serve as a regulator for the cells to quit differentiation from impaired OXPHOS, which might be 

317 useful for keeping stemness or to maintain homeostasis. Mitochondrial dysfunction as a regulator 

318 may be a viable therapeutic target for stem-cell-based therapies and interventions for cognitive 

319 defects(Khacho ,Harris & Slack, 2019).

320 However, the detailed mechanism between mitochondria and cell differentiation requires 
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321 further investigation. Whether metabolic shift is prerequisite for cell differentiation and whether 

322 mitochondrial OPHOXS can regulate cell differentiation in vivo remains to be further studied. 

323

324 Conclusion

325 It was demonstrated that increased mitochondrial function was indispensable for hDPSCs 

326 differentiation, while the glycolysis gradually decreased in the stage of energy supply. It was also 

327 unveiled that mitochondrial uncoupler CCCP depressed mitochondrial OXPHOS and inhibited 

328 hDPSCs differentiation. Activation of AMPK also interfere with the mitochondrial morphology, 

329 mitochondrial OXPHOS and cell differentiation. The findings helped to reveal the relationship 

330 among glycolysis, mitochondrial OXPHOS and cell differentiation. CCCP or AMPK activation 

331 may be a potential regulator to quit differentiation from impaired OXPHOS or to maintain 

332 homeostasis. 
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