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ABSTRACT
Background. Bupleuri Radix (Chaihu) is a famous traditional Chinese medicine
derived from Bupleurum, Apiaceae. The origin of cultivated Chaihu germplasm
in China is unclear, which has led to unstable Chaihu quality. In this study, we
reconstructed the phylogeny of the main Chaihu germplasm species in China and
identified potential molecular markers to authenticate its origin.
Methods. Three Bupleurum species (eight individuals), B. bicaule, B. chinense, and
B. scorzonerifolium, were selected for genome skimming. Published genomes from
B. falcatum and B. marginatum var. stenophyllum were used for comparative analysis.
Results. Sequences of the complete plastid genomes were conserved with 113 identical
genes ranging from 155,540 to 155,866 bp in length. Phylogenetic reconstruction
based on complete plastid genomes resolved intrageneric relationships of the five
Bupleurum species with high support. Conflicts between the plastid and nuclear
phylogenies were observed, which were mainly ascribed to introgressive hybridization.
Comparative analysis showed that noncoding regions of the plastomes had most of
the variable sequences. Eight regions (atpF-atpH, petN-psbM, rps16-psbK, petA-psbJ,
ndhC-trnV/UAC and ycf 1) had high divergence values in Bupleurum species and could
be promising DNA barcodes for Chaihu authentication. A total of seven polymorphic
cpSSRs and 438 polymorphic nSSRs were detected across the five Chaihu germplasms.
Three photosynthesis-related genes were under positive selection, of which accD
reflected the adaptation fingerprint of B. chinense to different ecological habitats. Our
study provides valuable genetic information for phylogenetic investigation, germplasm
authentication, and molecular breeding of Chaihu species.

Subjects Agricultural Science, Genomics, Plant Science, Taxonomy
Keywords Bupleuri Radix, Genome skimming, Bupleurum, Plastome, Phylogeny

INTRODUCTION
Bupleuri Radix (Chinese name: Chaihu), the dried root of Bupleurum species, has been
used to treat cold, fevers, influenza, menstrual disorders, and hepatitis for more than
2,000 years (Yang et al., 2017; Zhu et al., 2017). Its primary use is as the main constituent
of Chinese medicine prescriptions for soothing the liver and relieving depression, such as
the Xiaochaihu Decoction, Chaihu Liver-soothing Powder, and Xiaoyao Pill (Yang et al.,
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2017; Zhu et al., 2017). Bupleurum chinense DC. and B. scorzonerifolium Willd. have been
authenticated as the official botanical origin of Chaihu in the Chinese Pharmacopoeia
(National Pharmacopoeia Committee, 2020), and are referred to as ‘‘Bei Chaihu’’ and
‘‘Nan Chaihu’’, respectively. More than 20 Bupleurum species are habitually utilized as
Chaihu due to their morphological similarity (Pan et al., 2002). As one of the most popular
medicines in China, the demand for Chaihu in prescriptions and exports is enormous,
while the supply of wild Bupleurum herb is limited. Artificial planting of Chaihu has
become the dominant agriculture industry in some regions, such as the Chencang district
in Shaanxi Province (Ma et al., 2020). However, the use of multiple Bupleurum species in
different districts has also contributed to the complexity and diversity of cultivated Chaihu
germplasms.

Based on plantation surveys, the cultivated germplasms of Chaihu in China are
mainly from five species, B. bicaule Helm, B. chinense, B. falcatum L., B. marginatum
var. stenophyllum (Wolff) Shan et Y. Li, and B. scorzonerifolium (Xu et al., 2014; Zhang
et al., 2021; Zhang et al., 2022). Among these species, B. chinense is the most common
species cultivated in China (Ma et al., 2020; Zhang et al., 2021). As a widespread species,
B. chinense exhibits broad intraspecific morphological variation and different levels of
medicinal quality under different growing conditions. The unclear origins of wild and
cultivated Chaihu resources result in somewhat unstable Chaihu qualities in the Chinese
market. Previous studies have greatly improved our understanding of Bupleurum based
on morphology (Pan et al., 2002; Sheh & Watson, 2005), chromosome counts (Ma et al.,
2015), nuclear ribosomal internal transcribed spacer (nrITS) (Chao et al., 2014; Neves &
Watson, 2004; Xie et al., 2009), and plastid DNA markers (Wang et al., 2008; Wang, Ma &
He, 2011). However, because of limited genetic information, relationships among some
closely related species could not be fully resolved, such as B. bicaule and B. scorzonerifolium.

With the development of high-throughput sequencing technologies, genetic information
from both nuclear and organellar DNA has provided an opportunity for addressing
problems that have remained unresolved using traditional molecular systematics
approaches (Liu et al., 2021a; Liu et al., 2021b). Chloroplast, the plant organelle for
photosynthesis and carbon fixation, provides valuable genetic information for phylogenies
of plants due to its low nucleotide substitution rates and uniparental inheritance (Davis,
Xi & Mathews, 2014; Delsuc, Brinkmann & Philippe, 2005; Thode, Lohmann & Sanmartín,
2020). Compared to plastid barcodes, whole-plastome sequences could generate higher
phylogenetic resolution and improve species identification (Fu et al., 2022; Meng et al.,
2021; Wikström, Bremer & Rydin, 2020). Considering conflicts between chloroplast and
nuclear phylogenies, complementary phylogenetic trees inferred with different datasets
are necessary (Meng et al., 2021). Some regions of the nrDNA repeat, like ITS are widely
used as phylogenetic markers for lower-level plant identification (Baldwin et al., 1995; Liu
et al., 2021a; Liu et al., 2021b; Yao et al., 2010). Genome skimming, which relies on next
generation sequencing, is a kind of shallow genome sequencing that could capture the
plastome, nuclear repeat, and mitogenome regions (Dodsworth, 2015). Benefitting from
abundant datasets and cost-efficiency, genome skimming has been used successfully in
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phylogenetic reconstruction at various levels, especially for taxonomically complex groups
(Dodsworth, 2015; Straub et al., 2012).

In this study, we used the genome skimming approach to obtain the complete chloroplast
genomes and nrDNA of B. bicaule, B. chinense, and B. scorzonerifolium, together with
published genomes of two other Bupleurum species for comparative analysis. We aimed
to: (1) explore the phylogenetic relationships of the five Bupleurum species that are the
germplasm sources for Chaihu in China; and (2) select potential markers for authentication
of Chaihu germplasm by comparative analysis. This study will provide valuable genetic
information and potential markers for authentication of cultivated Bupleurum species,
which will be helpful for cultivation and quality control of Chaihu.

MATERIALS & METHODS
Sample material
Three wild Bupleurum species, B. bicaule (one, BB01), B. chinense (five, BC01-05), and
B. scorzonerifolium (two, BS01-02) were collected fromdifferent districts in China (Table 1).
Field experiments were approved by the Research Council of Xianyang Normal University
(project number: 2019012). Fresh and healthy leaves were dried with silica gel, and
then stored at −80 ◦C for DNA extraction. All species were authenticated by Director
Xue Li (Xianyang Food and Drug Administration) and deposited at the Herbarium of
Xianyang Normal University (http://www.xysfxy.cn/) accession Nos. XSYH202000101-
XSYH202000801 (Table S1). Sampling information is shown in Table 1. To obtain the
sequences of B. falcatum and B. marginatum var. stenophyllum for a broader comparison,
we retrieved their raw sequenced reads from GenBank (B. falcatum, BF01: SRR12513791
and B. marginatum var. stenophyllum, BM01: SRR13195839), and used them for genome
assembly and annotation as with the accessions sequenced in the study.

DNA extraction and sequencing
Total DNA was extracted using the CTAB method. Then, the extracted DNA (about 1 µg)
was randomly sheared by Covaris (Brighton, UK), yielding fragments with an average size
of 200–400 bp for library construction. Genome skimming sequencing was performed on
the BGISEQ-500 platform with paired-end runs (BGI, Shenzhen, China).

Genome assembly and annotation
High-throughput sequencing produced approximately 2 Gb raw data per sample. Raw
reads were filtered and then assembled de novo into contigs using SOAPdenovo2 (Luo et
al., 2012). To isolate plastid sequences, the generated contigswere pooled andmapped to the
reference plastome (B. chinense: MN337347) using Bowtie2 (Langmead & Salzberg, 2012),
then assembled to scaffolds by SPAdes v.3.11.1 (Bankevich et al., 2012). Geneious Prime
(Kearse et al., 2012) was used to align the scaffolds with the aforementioned reference,
resulting in the final plastid genomes. Annotation of the assembled sequences was also
performed in Geneious Prime with B. chinense (MN337347) as a reference. All plastomes
were deposited in GenBank with the accession numbers shown in Table S1.
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Table 1 Sampling information and summary of chloroplast genome features of Bupleurum chinense, B. scorzonerifolium, and B. bicaule.

Taxa Code Locality Longitude, Latitude Genome
size (bp)

LSC
length (bp)

SSC
length (bp)

IR
length (bp)

Unique
genes

Unique
CDS

tRNA rRNA Total GC
content %

GC content
of LSC (%)

GC content
of SSC (%)

GC content
of IR (%)

Herbarium
accession

B. chinense BC01 Heihe, Shaanxi 108.1754, 34.0188 155659 85551 17508 26300 113 79 30 4 37.7 35.8 31.4 42.8 XSYH2022000101

B. chinense BC02 Danfeng,Shaanxi 110.5020, 33.9004 155579 85505 17496 26289 113 79 30 4 37.7 35.8 31.4 42.8 XSYH2022000201

B. chinense BC03 Longde, Ningxia 106.2090, 35.4868 155612 85461 17499 26326 113 79 30 4 37.7 35.8 31.4 42.8 XSYH2022000301

B. chinense BC04 Lanzhou, Gansu 103.6524, 36.4385 155540 85426 17492 26311 113 79 30 4 37.7 35.8 31.4 42.8 XSYH2022000401

B. chinense BC05 Xizhou, Shanxi 112.4409, 38.6399 155573 85449 17510 26307 113 79 30 4 37.7 35.8 31.4 42.8 XSYH2022000501

B. scorzonerifolium BS01 Ansai, Shaanxi 109.2021, 36.7978, 155828 85597 17597 26317 113 79 30 4 37.7 35.8 31.3 42.8 XSYH2022000601

B. scorzonerifolium BS02 Fugu,Shaanxi 110.7683, 39.0646 155848 85612 17602 26317 113 79 30 4 37.7 35.8 31.3 42.8 XSYH2022000701

B. bicaule BB01 Hulunbuir, Neimeng 118.1399, 47.6237 155866 85630 17602 26317 113 79 30 4 37.7 35.8 31.3 42.8 XSYH2022000801
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Comparative analysis and sequence divergence analysis
For comparative analysis, MAFFT v.7 (Katoh et al., 2002) was used to align the plastomes
of Bupleurum individuals. The nucleotide substitution numbers and sequence identities of
Bupleurum plastomes were calculated with Geneious Prime. The IR expansion/contraction
of five Bupleurum species was tested by comparing the IR borders and neighboring genes
of ten chloroplast genomes using an IRscope online program (Amiryousefi, Hyvönen &
Poczai, 2018). To detect and characterize the divergence hotspots, mVISTA (Frazer et al.,
2004) was used to compare the complete plastid genomes of five Bupleurum species with
B. chinense (BC01) as a reference. The nucleotide diversity (Pi) among the plastid genome
sequences was calculated using sliding window analysis in DnaSP v.5 (Librado & Rozas,
2009). The window size was 600 bp, and the step size was 200 bp. The single nucleotide
polymorphisms (SNPs) and insertions-deletions (InDels) were identified using MEGA v.6
(Kumar et al., 2018) and visualized using Circos 0.64 (Krzywinski et al., 2009).

Simple sequence repeats in the chloroplast genome sequences (cpSSRs) were identified
via Perl script in MISA (Thiel et al., 2003) with respective thresholds of 10, 5, 4, 3, 3,
3 for mono-, di-, tri-, tetra-, penta-, and hexanucleotides. The candidate polymorphic
cpSSRs and nuclear SSRs (nSSRs) were identified using CandiSSR (Xia et al., 2016). The
nuclear contigs were used to generate nSSRs by removing the plastid and mitochondrial
contigs from the original contigs using Bowtie2 with B. chinense as a reference (GenBank
accession numbers MN337347 and OK166971 for chloroplast andmitochondrial genomes,
respectively). The parameters implemented in CandiSSR were as follows: flanking sequence
length of 100, blast e-value cutoff of 1e−10, BLAST identity cutoff of 95, and BLAST coverage
cutoff of 95.

Gene selective pressure analysis
To detect whether plastid genes were under selection pressure, the ratio of the non-
synonymous (Ka) to the synonymous substitution rate (Ks) was calculated for all protein-
coding genes by DnaSP. Genes were considered to undergo positive selection when the
value of Ka/Ks was higher than 1, while Ka/Ks < 1 indicated that the genes were under
neutral selection (Yang & Nielsen, 2002).

Phylogenetic analysis
For phylogenetic inference, maximum likelihood (ML) and Bayesian inference (BI)
analyses were performed for three different datasets: (1) complete plastome sequences,
(2) all shared protein-coding sequences (CDS), and (3) nrDNA sequence data (ITS). For
phylogenetic analysis based on plastid data, we selected 32 plastid genomes, including eight
accessions of three species we sequenced, two accessions (MT797174 and MT075712) we
reassembled and reannotated, 20 Bupleurum accessions retrieved from NCBI, together
with two accessions as outgroups (Chamaesium paradoxum MK780227, Pleurospermum
rivulorumMW147504).

To obtain nrDNA data, the original contigs of the accessions studied in the plastid
phylogeny were mapped to the ITS sequence of B. chinense (MH710800) and extracted by
Bowtie2. The species used in the plastid and nrDNA datasets were kept largely consistent.
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For species without nrDNA data, the ITS sequences were downloaded according to
Wang, Ma & He (2011). Finally, 49 nrITS sequences of Bupleurum accessions, together
with Pleurospermum hookeri var. thomsonii HQ824799 and P. rivulorum HQ824798, were
selected for the phylogenetic reconstruction.

The software jModelTest v.2.1.4 (Posada, 2008) was used to determine the best-fit
nucleotide substitution model, resulting in GTR+I+G for the plastid datasets and GTR+G
for the nrITS data under the Akaike Information Criterion (AIC). ML analyses were
conducted using RAxML v.8.2.11 (Stamatakis, 2014) with 1,000 bootstrap iterations. BI
analyses were performed in MrBayes v.3.2.6 (Ronquist & Huelsenbeck, 2003). Four Markov
chains starting with a random tree were run simultaneously for 5,000,000 generations,
followed by a sampling point at every 1,000 generations. The resulting trees were visualized
using FigTree v.1.4.4 (Rambaut, 2018). Bootstrap support (BS) value and posterior
probability (PP) were used to evaluate the feasibility of each branch for ML and BI,
respectively.

RESULTS
Chloroplast genome structure and characteristics analyses
Plastid sequences were successfully assembled for ten accessions, of which B. falcatum
(MT797174, BF01) and B. marginatum var. stenophyllum (MT075712, BM01) were
reassembled. For Bupleurum species sequenced in this study, the complete plastomes
ranged from 155,540 bp in BC04 to 155,866 bp in BB01. Sequences of the B. chinense
plastomes ranged from 155,540 bp to 155,659 bp, while those from B. scorzonerifolium
ranged from 155,828 bp to 155,848 bp. All chloroplast genomes exhibited a typical
quadripartite structure, consisting of a large single-copy (LSC) region (85,426–85,630
bp) and a small single-copy (SSC) region (17,492–17,602 bp) separated by two inverted
regions (IRs, each with 26,289–26,326 bp) (Table 1, Fig. 1). The overall GC content of
each plastome was 37.7%, whereas the GC contents in the LSC, SSC, and IR were 35.8%,
31.3–31.4%, and 42.8%, respectively.

Each Bupleurum chloroplast genome encoded a total of 132 genes, of which 113 were
unique, containing 79 protein-coding genes (CDS), 30 transfer RNA genes (tRNA), and
four ribosomal RNA genes (rRNA). The different functional genes were divided into three
categories, namely self-replication, photosynthesis, and other (Table S2). A total of 19 genes
were duplicated in the IRs, including six CDSs (rps 12, rps 7, ndh B, ycf 2, rpl 23, and rpl
2), seven tRNAs (trn N-GUU, trn R-ACG, trn A-UGC, trn l-GAU, trn V-GAC, trn L-CAA,
and trn l-CAU), four rRNAs (rrn 4.5, rrn 5, rrn 23, and rrn 16), and two pseudogenes (ycf
1 and rps 19) with incomplete copies. The rps 12 gene was a particular trans-splicing gene
with the 5′-end exon located in the LSC region, while two copies of the 3′-end exon were
situated in the IR. There were 18 genes containing introns, including six tRNAs and 12
CDSs. Among these, ycf 3, clp P, and rps 12 had two introns. The gene trn K-UUU had the
largest intron with 2,531 bp, where the mat K gene was located.
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Figure 1 An overview of gene distribution and genome variation among Bupleurum plastomes using
Circos. Genes located outside and inside of the outer layer circle represent clockwise and counterclock-
wise transcription, respectively. The inner circles exhibit the SNPs and InDels every 600 bp across five Bu-
pleurum species with B. chinense (BC01) as a reference. The histograms of SNPs are outside the circles,
while the histograms of InDels are inside the circles.

Full-size DOI: 10.7717/peerj.15157/fig-1

Comparisons of the Bupleurum plastomes
Differences and evolutionary divergences were tested based on ten Bupleurum plastomes,
including five B. chinense, two B. scorzonerifolium, one B. bicaule, one B. falcatum, and
one B. marginatum var. stenophyllum. The ten Bupleurum plastomes exhibited a high level
of sequence similarity and structure (Table 2). The percentage of identity was 96.72–
99.97%, with 49-5,160 nucleotide differences. Among B. chinense plastomes, the identity
narrowly ranged from 99.4% to 99.81%. At the interspecies level, B. chinense (BC01) and B.
marginatum var. stenophyllum (BM01) exhibited the most significant sequence difference
with 96.72% identity (Table 2).

To further observe the contraction and expansion of IR, the exact IR border positions
and their adjacent genes among the Bupleurum plastomes were compared (Fig. 2). Genes
rps 19, rpl 2, and trn H were in the junctions of LSC/IR, while ycf 1, ndh F, and trn N
flanked the junctions of SSC/IR. Genes in the junction regions were the same length, except
the ycf 1 gene, which ranged from 5,483 bp to 5,490 bp. In all ten Bupleurum plastomes,
rps 19 crossed the LSC/IRb region with 279 bp in length, of which 70 bp occurred in the
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Table 2 Numbers of nucleotide substitutions (upper) and sequence identity (lower) in ten plastomes
of five Bupleurum species.

BC01 BC02 BC03 BC04 BC05 BS01 BS02 BB01 BF01 BM01

BC01 451 293 522 930 2131 2155 2165 1499 5160
BC02 99.71 415 438 869 2082 2114 2126 1441 5121
BC03 99.81 99.73 456 869 2062 2098 2106 1476 5141
BC04 99.67 99.72 99.71 924 2126 2159 2167 1436 5142
BC05 99.4 99.44 99.44 99.41 2034 2064 2078 1517 5139
BS01 98.64 98.67 98.68 98.64 98.7 224 243 1733 5062
BS02 98.62 98.65 98.66 98.62 98.68 99.86 49 1731 5050
BB01 98.62 98.64 98.65 98.62 98.67 99.84 99.97 1745 5065
BF01 99.04 99.08 99.06 99.08 99.03 98.89 98.89 98.89 4947
BM01 96.72 96.74 96.73 96.73 96.73 96.78 96.79 96.78 96.85

IRb region. The pseudogene fragment of rps 19 was located aside the IRa/LSC junction
with 70 bp. The rpl 2 gene was separated from the LSC/IRb junction with 126–127 bp
in B. chinense; 127 bp in B. bicaule, B. falcatum, and B. scorzonerifolium; and 130 bp in B.
marginatum var. stenophyllum. The trn H gene was 4 bp away from the IRa/LSC region in
all ten Bupleurum plastomes. In the SSC/IR junctions, ycf 1 crossed the SSC/IRa junction,
and the pseudogene fragment narrowly ranged from 1,876–1,877 bp in IRb. The length
of the ycf 1 gene was 5,484 bp in B. chinense and B. falcatum, while it was 5,483 bp in B.
bicaule and B. scorzonerifolium, and 5,490 bp in B. marginatum var. stenophyllum. The ndh
F gene was 26–34 bp away from the IRb/SSC junction, and the trn N gene was 2,204–2,228
bp away from the SSC/IRa junction.

Sequence variation analysis
Abundant polymorphic sites were observed among the five Bupleurum species. In addition,
B. chinense sequences also exhibited intraspecies divergence. With B. chinense (BC01) as
a reference, the mVISTA result indicated that noncoding sequences exhibited a higher
level of divergence than CDS, and most of the sequences were situated in the LSC and SSC
regions (Fig. 3). We characterized genomic polymorphisms of the Bupleurum plastomes,
including SNPs and InDel-variable loci (Fig. 1, Table S3). At the interspecies level, the
number of SNPs varied from 420 (BF01 vs. BC01) to 2,091 (BM01 vs. BC01), and the InDel
loci varied from 163 (BF01 vs. BC01) to 340 (BM01 vs. BC01). At the intraspecies level, the
numbers of SNPs and InDels amongB. chinense plastomes ranged from70–303 and 39–114,
respectively. The LSC regions harbored the largest number of genomic polymorphism sites,
followed by SSC regions (Fig. 4). The IRs were conserved among Bupleurum species. The
nucleotide diversity (Pi) of the chloroplast genomes was calculated to assess the sequence
divergence level. Among all ten Bupleurum species, atp F-atp H, pet N-psb M, rps 16-psb
K, pet A-psb J, ndh C-trn V/UAC, and ycf 1 had relatively higher divergence values (Pi
>0.015). Chloroplast genome diversity at the intraspecies level of B. chinense was also
detected, of which rps 16 intron, ccs A-ndh D, rbc L-acc D, rps 16-psb K, and ndh C-trn
V/UAC had high Pi values.
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Figure 2 Comparison of the IR border regions among the ten plastid genomes of five Bupleurum
species.

Full-size DOI: 10.7717/peerj.15157/fig-2

Simple sequence repeats (SSRs) analysis showed that the total number of cpSSR loci
in plastomes ranged from 57 (BC05) to 81 (BM01) (Fig. 5A, Table S4). As shown in Fig.
5A, the SSRs were mainly located in the intergenic spacer (IGS), followed by CDS and
intron regions. Monomers were the primary type, accounting for 60–68.9% of the SSRs in
ten Bupleurum plastomes. As the patterns of SSR distribution were similar among the ten
Bupleurum plastomes, BC01 was chosen as an example to exhibit the SSR characters. A total
of 60 SSRs were detected in BC01, of which 58.3% were monomers, 18.3% were dimers,
13.4% were trimers, 6.7% were tetramers, 3.3% were pentamers, and no hexamers were
present. Hexamers were only found in BF01 and BM01. Moreover, 65% of the SSRs were
located in the IGS region, followed by the CDS region (20%) and the intron (15%). The
genes rps 16-psb K, rps 2-rpo C2, trn T/GGU-psbD, and ycf 1 harbored more than two SSRs
in each Bupleurum plastome. By comparing the cpSSRs across the five Bupleurum species
using CandiSSR, a total of seven polymorphic cpSSRs were identified (Fig. 5B, Table S5).
Specifically, four were dimers, two were trimers, and one was a pentamer. All polymorphic
cpSSRs were detected in noncoding regions, of which trn T/GGU-psb D harbored two
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Figure 3 MVISTA-based sequence identity among the plastid genomes of five Bupleurum species with
B. chinense (BC01) as a reference.

Full-size DOI: 10.7717/peerj.15157/fig-3

Figure 4 Nucleotide diversity (Pi) among the plastomes with sliding window analysis (window length:
600 bp). The y-axis represents nucleotide diversity of the alignment of five Bupleurum species (in black)
and the B. chinense alignment (in blue), while the x-axis represents the position of the window midpoint.

Full-size DOI: 10.7717/peerj.15157/fig-4

polymorphic cpSSRs. Additionally, 438 candidate polymorphic nSSRs were identified from
the nuclear contigs of the five Bupleurum species (Fig. 5C, Table S6). More specifically,
dimers were the primary type of polymorphic nSSR (55%), followed by trimers (22.6%)
and tetramers (18%). Polymorphic pentamers and hexamers accounted for 3% and 1.4%,
respectively.

Selective pressure analysis
To pinpoint whether genes underwent adaptive evolution in Bupleurum plastomes, the
Ka/Ks values of the protein-coding genes were calculated. At the interspecies level, the
Ka/Ks values of psa J and ndh B were greater than 1, indicating that the corresponding
genes experienced positive selection (Fig. 6). The Ka/Ks values of the photosynthetic genes
and self-replication genes were 0.1853 ± 0.3804 and 0.1926 ± 0.2377, respectively. Both
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Figure 5 Analysis of SSRs in the five Bupleurum species. (A) Number and location of six types
of cpSSRs in ten plastomes of the five Bupleurum species. (B) Seven polymorphic cpSSRs across five
Bupleurum species identified using CandiSSR. (C) Polymorphic nSSRs across five Bupleurum species
identified using CandiSSR.

Full-size DOI: 10.7717/peerj.15157/fig-5

were lower than those of other genes (0.4127± 0.2489). Among the B. chinense plastomes,
acc D related to the subunit of acetyl-CoA-carboxylase had the highest of Ka/Ks (1.076),
followed by rpo C2 (Ka/Ks = 0.827) which is related to self-replication (Fig. 6).

Phylogenetic analysis
Phylogenetic trees based on complete plastid genomes and the CDS showed the same
topology, therefore, only the tree based on the complete plastid genomes with a slightly
higher bootstrap support valuewas shown.AllBupleurum accessionswere clustered into two
main groups with absolute support (Fig. 7). B. marginatum var. stenophyllum (MT075712)
and the other three congeneric species that are mainly distributed in Southwestern China
formed a monophyletic group, appearing as an early branching clade within Bupleurum
(Clade I). The remaining accessions could be divided into two subgroups, Clade II
and Clade III (Fig. 7). B. chinense accessions and the B. falcatum accession were both
in Clade II. B. chinense grouped with B. commelynoideum and B. yinchowense forming
a clade with absolute support. Within Clade III, morphologically similar species B.
angustissimum, B. bicaule, and B. scorzonerifolium were clustered together, sister to B.
rockii and B. euphorbioides.
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Figure 6 Ka/Ks values of 79 shared coding genes in the alignment of five Bupleurum species (in black)
and the B. chinense alignment (in blue). The genes with Ka/Ks values larger than one are in grey.

Full-size DOI: 10.7717/peerj.15157/fig-6

Figure 7 Phylogenetic tree reconstructed using maximum likelihood (ML) and Bayesian inference
(BI) based on 32 complete plastid genomes.Numbers shown at the corresponding nodes represent ML
bootstrap support (BS) values and Bayesian posterior probabilities (PP), respectively.

Full-size DOI: 10.7717/peerj.15157/fig-7

The Bupleurum accessions were also clustered into two groups based on ITS data (Fig. 8).
Though some of the branch nodes were poorly supported, each Bupleurum species studied
formed amonophyletic lineage with high support, except for B. chinense, B. angustissimum,
and B. scorzonerifolium. However, incongruences were observed between the phylogenies
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Figure 8 Phylogenetic tree reconstructed using maximum likelihood (ML) and Bayesian inference
(BI) based on ITS.Numbers shown at the corresponding nodes represent BS/PP.

Full-size DOI: 10.7717/peerj.15157/fig-8

based on nuclear ITS and chloroplast datasets. Based on ITS data, B. chinense and its forms
were nested with B. yinchowense, while distinct from B. falcatum. The B. scorzonerifolium
accessions from northwestern China were grouped with B. angustissimum as shown in the
tree based on the chloroplast dataset. B. bicaule represented an independent lineage in the
nuclear dataset.

DISCUSSION
Infrageneric relationships within Bupleurum and taxonomic
implications
Bupleurum L. is one of the largest genera in Apiaceae, represented by 150–180 species,
of which nearly 50 species occur in China (Sheh & Watson, 2005). Due to the similar
morphological characteristics and broad intraspecific morphological variation under
different ecological habitats, species delimitation based on traditional classification systems
is extremely difficult in this genus. The complicated infrageneric relationships also result
in problems with cultivation. Based on more extended sampling, Wang, Ma & He (2011)
proposed to divide the Chinese Bupleurum into two groups. Specifically, one group
contained species from the southwest, while another consisted of the species mainly
distributed in northern China. However, the statistical support of the main clade was
relatively low based on the combined dataset of mat K and trn H-psb A. In this study,
the phylogenetic topology based on complete chloroplast genomes was congruent to the
framework of Wang, Ma & He (2011), but with much higher internal resolution. Among
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the five Chaihu germplasm resources, B. marginatum var. stenophyllum clustered in the
early branching group of the phylogenetic trees, separated from the other four Bupleurum
species. Due to the high yield and high content of saikosaponins, B. marginatum var.
stenophyllum was introduced from Tibet to Gansu and Shanxi Provinces in China with
widespread planting (Liu et al., 2021a; Liu et al., 2021b). Modern pharmacological studies
have shown that saikosaponins are not only the main bioactive components of Chaihu,
but also the main toxic components (Huang & Sun, 2010; Lv et al., 2009; Zhou et al., 2021).
Wang et al. (2020) demonstrated that B. marginatum var. stenophyllum contained higher
content of saikosaponins A and D, and had a higher level of acute toxicity. Xia et al.
(2021) compared the overall chemical components of B. marginatum var. stenophyllum
and B. chinense, and showed clear species-clustering. Thus, the use of B. marginatum var.
stenophyllum as Chaihu should be done with caution.

In the plastid and ITS trees, B. chinense accessions were clearly distinct from those of B.
scorzonerifolium. Morphologically, the two species are distinguished by a combination of
characteristics, including leaf veins, fibrous remnant sheaths, and color of the root bark.
Notably, phylogenetic trees based on complete plastid genomes and nuclear ITS datasets
both supported close affinities of B. yinchowens and B. chinense, and B. angustissimum
and B. scorzonerifolium. The delimitation confusion has long been an issue in these
species (Wang, Ma & He, 2011). Based on similar morphology and overlapping ecological
distributions (Sheh & Watson, 2005), we proposed B. yinchowens as conspecific to B.
chinense, and B. angustissimum as conspecific to B. scorzonerifolium, but more evidence
was needed. B. falcatum showed a closer phylogenetic relationship with B. chinense in
the plastid trees, while the species was resolved as a distinct clade not closely related to
B. chinense and B. scorzonerifolium but to B. bicaule. B. falcatum is a cultivated species
originating from Japan, where it is the official botanical origin of Bupleuri Radix in the The
Society of Japanese Pharmacopoeia (2011). Consequently, we speculated that introgressive
hybridization during years of cultivation might contribute to the conflicts between
plastid and nuclear ITS phylogenies. Theoretically, evolutionary processes including
incomplete lineage sorting, introgressive hybridization, and paralogy conflation might
contribute to phylogenetic incongruence among different datasets (Liu et al., 2020;
Wendel & Doyle, 1998). Many studies suggested that introgressive hybridization was a
prominent factor for phylogenetic incongruence at lower taxonomic levels. Based on the
plastid datasets, B. bicaule and B. scorzonerifolium were clustered with B. angustissimum.
Morphologically, these three species are highly similar, with fibrous remnant sheaths
around the stem. However, B. bicaule accessions did not cluster with B. angustissimum
and B. scorzonerifolium in the nrDNA tree. Considering the corresponding node had
low support, we cannot exclude the possibility that insufficient information from ITS
sequences resulted in the incongruence. Moreover, B. bicaule was considered to be involved
in hybridization events to coexist with other Bupleurum species. The delimitation of B.
bicaule needs further study.

Wang et al. (2023), PeerJ, DOI 10.7717/peerj.15157 14/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.15157


Conserved plastid genome structure
For the five Bupleurum species examined here, the chloroplast genomes displayed a typical
quadripartite structure, as in most angiosperms (Palmer, 1985). The chloroplast genome
structures were found to be largely conserved with lengths varying from 155,540 bp to
155,866 bp. Previous studies have reported that gene loss (Wakasugi et al., 1994; Wolfe,
Morden & Palmer, 1992), expansion and contraction of the IRs (Lin et al., 2003; Parks,
Cronn & Liston, 2009), and intergenic region variation (Tang et al., 2004; Wu et al., 2011)
are three important factors driving size variation in the plastid genome. Across the five
Bupleurum species in this study, the genes distributed around the junction boundaries
slightly varied in length. Among these, the SSC/IR borders showed a higher level of
differences than LSC/IR, in contrast to the study of Huang et al. (2021) in a broader
comparison of Bupleurum species. As expected for the intraspecific divergence inferred
from plastid genomes, the junction boundaries in B. chinense accessions were more
convergent. We proposed that size variations in the chloroplast genome within Bupleurum
were due to variation of intergenic regions.

Variable regions for potential molecular markers
In this study, abundant sequences with SNPs and SSRs were detected across the five
Bupleurum species. As expected, large-scale sequencing provided abundant variable
sequences, which could be used for species authentication and phylogenetic inference. Our
results showed that the majority of variable sequences were located in noncoding regions at
either the interspecific level or the intraspecific level. Previous studies have demonstrated
that noncoding sequences of the chloroplast genome performwell as phylogenetic markers,
and in phylogenetic construction and population genetic studies (Shaw et al., 2007; Borsch
& Quandt, 2009). In addition, the majority of noncoding sequences with high nucleotide
diversity were situated in single-copy regions. Perry & Wolfe (2002) showed that the
nucleotide mutation rate of single-copy regions was 2.3 times higher than that of the
inverted repeats.

In this study, atp F-atp H, pet N-psb M, rps 16-psb K, pet A-psb J ndh C-trn V/UAC,
and ycf 1 regions had high values of nucleotide diversity across the five Bupleurum species.
Atp F-atp H has been proposed as a potential DNA barcode for identifying plant taxa at
the species level (Lahaye et al., 2008; Thakur et al., 2019). The high nucleotide diversity of
the remaining five genes has been reported in Bupleurum before (Huang et al., 2021; Li et
al., 2020; Xie et al., 2021). In particular, ycf 1 has been proposed as the most promising
plastid DNA barcode of land plants (Dong et al., 2015). The Pi values of the corresponding
genes were slightly lower than that in Huang et al. (2021), mainly because of the limited
Bupleurum species involved in our study.

Repeat units, distributed in genomes with high frequency, are essential in the
rearrangement and divergence of the genome (Weng et al., 2014). Microsatellites (SSRs),
containing repetitive sequences of 1–6 bp in length, are used as molecular markers for
population genetics, phylogeography, and systematics (George et al., 2015). Owing to the
rapid development of next-generation sequencing, abundant genomic microsatellites with
a high level of polymorphisms are available for plant species (Xia et al., 2016). Based on
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complete plastomes, numerous cpSSRs were detected for the five Chaihu germplasm
resources, varying from 51 (B. chinense BC05) to 81 (B. marginatum var. stenophyllum).
The mononucleotide category was the most abundant, followed by di-, tri-, tetra- and
pentanucleotides. Further, seven cpSSRs were found to be polymorphic across the five
Bupleurum species, and were located in noncoding regions. One polymorphic cpSSR was
located in ndh C-trn V/UAC, which also exhibited high nucleotide diversity. We propose
that ndh C-trn V/UAC might be candidate molecular markers for cultivated Bupleurum
species. At the same time, a total of 438 candidate polymorphic nSSRs were detected, most
of which were dimers. Among polymorphic cpSSRs and nSSRs, the di- and trinucleotide
repeats were dominant categories and no monomers were detected, consistent with the
characteristics of the identified polymorphic SSRs in other taxonomic studies (Bhandari
et al., 2020; Dabral et al., 2021). Notably, all regions with high variability possessed SSRs.
The identified SSRs are helpful in intraspecific phylogeographic and population-level
genetic studies of Chaihu germplasms as in Angelica heterocarpa (Revardel & Lepais, 2022),
Grevillea robusta (Dabral et al., 2021), and Erysimum teretifolium (del Valle, Herman &
Whittall, 2020).

Adaptive evolution among Bupleurum species
Plants might leave fingerprints in plastid genomes in response to environmental changes,
within which some genes exhibit positive selection. The value of Ka/Ks is used to measure
the selective pressure of the coding genes in angiosperms (Yang & Nielsen, 2002). The
chloroplast functions directly in photosynthesis and carbon fixation, and three genes
with essential roles in photosynthesis showed positive selection in this study. Among five
Bupleurum species, the Ka/Ks values of psa J and ndh B were greater than one. Among the
plastomes of B. chinense, we identified acc D as a positively selected gene. The substitution
rates of the functional genes at intraspecies and interspecies levels were different, which
might be caused by the diverse evolutionary history of Bupleurum species. Interestingly,
the nucleotide diversity of psa J, ndh B, and acc D in coding regions was not significant
(Figs. 3 and 4), presumably due to the close affinity among the Bupleurum species. Similar
results were found in Huang et al. (2021) and Li et al. (2020). The psa J gene is involved
in the excitation of photosystem I, which has been essential during the life history of
plants (Schöttler et al., 2007). The ndh B gene encodes for the subunits of NAD(P)H
dehydrogenase complex involved in photosystem I cyclic and chlororespiratory electron
transport in higher plants (Martín & Sabater, 2010). Horváth et al. (2000) showed that
ndh B-inactivated tobacco plants cause a moderate decline in photosynthesis via stomatal
closure under humidity stress conditions. The acc D gene, encoding the β-carboxyl
transferase subunit of acetyl-CoA-carboxylase, has been demonstrated as an essential gene
in plastid genome evolution (Kode et al., 2005).Madoka et al. (2002) confirmed that acc D
affected leaf longevity and seed yield.

B. chinense is a widespread species in China, within which three forms were recognized
by Sheh & Watson (2005)with differences in leaves and bracteoles. Environmental variation
drives leaf morphology variation within species (Byars, Papst & Hoffmann, 2007). We also
observed leaf variations in the B. chinense populations under different ecological conditions
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during field sampling. Han et al. (2006) identified three types of B. chinense based on leaf
shapes, namely broad, long, and medium. The mutation accumulation of functional genes
affects photosynthesis efficiency, which may cause ecological diversity of plants (Zheng et
al., 2017). Consequently, positively selected genes provide important insights into adaptive
molecular evolution of Bupleurum species.

CONCLUSIONS
In this study, the complete chloroplast genomes and nuclear ITS of five Bupleuri
Radix germplasm resources, namely B. bicaule, B. chinense, B. falcatum, B. marginatum
var. stenophyllum, and B. scorzonerifolium, were obtained using genome skimming. All
plastomes we sequenced were conserved and exhibited a typical quadripartite structure,
encoding 113 identical genes including 79 protein-coding genes, 30 tRNA genes, and
four rRNA genes. Phylogenetic analysis inferred using the chloroplast genomes and nrITS
resolved the relationships of the five Bupleurum species and their closely related species. B.
marginatum var. stenophyllum was separate from the other four Bupleurum species studied.
B. chinense and B. scorzonerifolium, which are the official botanical origins of Chaihu
in the Chinese Pharmacopoeia, were in two separate clades. However, the phylogenetic
delimitation of B. bicaule and B. falcatum needs further study, because introgressive
hybridization might be involved. By comparison analysis, molecular markers, including
plastid hotspots and polymorphic SSRs, were generated for authentication of Chaihu
germplasms. Photosynthesis related genes psa J, ndh B, and acc D were found to be under
positive selection as a response to adapting to diverse environments.
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