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The patent literature is a potentially valuable source of bioactivity data. In this paper we
describe a process to prioritise 3.7 million life science relevant patents obtained from the
SureChEMBL database (https://www.surechembl.org/), according to how likely they were to
contain bioactivity data for potent small molecules on less-studied targets, based on the
classification developed by the Illuminating the Druggable Genome (IDG) project. The
overall goal was to select a smaller number of patents that could be manually curated and
incorporated into the ChEMBL database. Using relatively simple annotation and filtering
pipelines, we have been able to identify a substantial number of patents containing
quantitative bioactivity data for understudied targets that had not previously been
reported in the peer-reviewed medicinal chemistry literature. We quantify the added value
of such methods in terms of the numbers of targets that are so identified, and provide
some specific illustrative examples. Our work underlines the potential value in searching
the patent corpus in addition to the more traditional peer-reviewed literature. The small
molecules found in these patents, together with their measured activity against the
targets, are now accessible via the ChEMBL database.

PeerJ reviewing PDF | (2022:11:79712:1:1:NEW 23 Feb 2023)

Manuscript to be reviewed



1 Illuminating the Druggable Genome through Patent Bioactivity Data

2

3 María Paula Magariños 1, Anna Gaulton 1,2, Eloy Félix 1, Tevfik Kiziloren 1, Ricardo Arcila 1, 

4 Tudor I. Oprea 3, Andrew R. Leach 1

5

6 1 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome 

7 Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK

8 2 Current address: Exscientia, The Schrödinger Building, Heatley Road, Oxford Science Park, 

9 Oxford, OX4 4GE, UK

10 3 Department of Internal Medicine, University of New Mexico School of Medicine, 

11 Albuquerque, NM, USA

12

13 Corresponding Author:

14 Andrew R. Leach 1

15 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome 

16 Campus, Hinxton, Cambridgeshire CB10 1SD, UK

17 Email address: arl@ebi.ac.uk

18

19 Abstract

20 The patent literature is a potentially valuable source of bioactivity data. In this paper we describe 

21 a process to prioritise 3.7 million life science relevant patents obtained from the SureChEMBL 

22 database (https://www.surechembl.org/), according to how likely they were to contain bioactivity 

23 data for potent small molecules on less-studied targets, based on the classification developed by 

24 the Illuminating the Druggable Genome (IDG) project. The overall goal was to select a smaller 

25 number of patents that could be manually curated and incorporated into the ChEMBL database. 

26 Using relatively simple annotation and filtering pipelines, we have been able to identify a 

27 substantial number of patents containing quantitative bioactivity data for understudied targets 

28 that had not previously been reported in the peer-reviewed medicinal chemistry literature. We 

29 quantify the added value of such methods in terms of the numbers of targets that are so 

30 identified, and provide some specific illustrative examples. Our work underlines the potential 

31 value in searching the patent corpus in addition to the more traditional peer-reviewed literature. 

32 The small molecules found in these patents, together with their measured activity against the 

33 targets, are now accessible via the ChEMBL database.

34 Introduction

35

36 One of the most useful and compelling pieces of evidence for the druggability of a new 

37 biological target is the existence of molecules that bind with sufficient affinity to modulate the 
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38 biological activity of the target. However, only about 11 % of the proteome has either an 

39 approved drug or a compound known to modulate it (Sheils et al., 2021). Chemical probes 

40 represent a special type of small molecule for use in target validation studies, not only having 

41 good activity against the target but also selectivity, cellular activity, and potentially other 

42 relevant criteria (Workman & Collins, 2010; Garbaccio & Parmee, 2016) and are subjected to a 

43 peer review process to ensure the quality of any conclusions when used by the wider community.

44 The availability of open-access, public databases such as ChEMBL (Mendez et al., 2019) has 

45 greatly simplified the task of identifying potential molecules by providing easy access to more 

46 than 19 million bioactivity data points on almost 2 million compounds. The source of these data 

47 is primarily the peer-reviewed scientific literature manually extracted by curators; but some of 

48 the data has been integrated from other databases including PubChem BioAssay (Kim et al., 

49 2021) and BindingDB (Gilson et al., 2016), and data is also deposited directly from experimental 

50 groups.

51

52 An additional and potentially valuable source of information and data on bioactive molecules is 

53 the patent literature. In drug discovery, patents are routinely filed to protect novel inventions, by 

54 both industrial organisations and academic institutions. The relationship between the patent and 

55 the �traditional� (academic journal, peer-reviewed) literature has been examined in various 

56 published studies, mostly focussed on key questions relating to overlap/duplication and 

57 publication date. For example, in a 2009 paper the authors found that just 6% of compounds in 

58 patents also appeared in the scientific literature in one of the commercial sources included in 

59 their study (GVKBIO) (Southan, Varkonyi & Muresan, 2009). A later study examined 130 drug-

60 target pairs and on average found them published in patents 3.7 years earlier than in scientific 

61 papers (Senger, 2017). A 2017 study concluded that the first molecules for a novel target are 

62 more likely to be published first in the literature, whereas novel small molecules more frequently 

63 appear first in patents than in literature, regardless of which targets they modulate (Ashenden et 

64 al., 2017). Finally, a more recent study selected medicinal patents published between 2014 and 

65 2019 and identified patents with information on small molecules, antibodies and vaccines that 

66 could potentially be repurposed for cancer related therapies. Some of the drug-disease links 

67 found were not present in scientific literature, while others were found in the papers; in some 

68 cases these were published before the patents and in others afterwards (Mucke, 2021).

69

70 These and similar studies suggest that the patent corpus potentially represents a wealth of 

71 information that is not available elsewhere and/or may appear in the scientific literature only 

72 after a significant time delay.

73

74 Previous studies that have attempted to search or annotate pharmaceutical patents with target-

75 compound information include Akhondi et al. who produced a set of 198 patents manually 

76 annotated with chemical compounds, diseases, targets and modes of action by four different 

77 groups of curators (Akhondi et al., 2014); Suriyawongkul et al. who tried to identify targets in 

78 titles, abstracts and claims of patents that contained bioactive compound information, combining 

79 the search for target names with the search for some keywords that were related to bioactivity 

80 data (Suriyawongkul, Southan & Muresan, 2010); Tyrchan et al. who compared different 

81 methods to extract the key compound from a given patent, and then applied one of the methods 

82 to inform the design of AXL kinase inhibitors (Tyrchan et al., 2012); Fechete et al. who searched 

83 full-text patents using keywords related to diabetic nephropathy and further narrowed the search 
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84 by rules related to frequency and/or patent section of the keywords found, and subsequently 

85 extracted the genes mentioned in the claims section of these patents (Fechete et al., 2011); 

86 Gigani et al. who performed a search in the SureChEMBL database (Papadatos et al., 2016) 

87 using keyword and/or chemical structure searches, with the goal of identifying patents with 

88 compounds that could activate the BKCa channel (Gigani et al., 2016); and Gadiya et al. who 

89 developed a tool (PEMT) to identify patents using genes as a starting point, searching for 

90 compounds in ChEMBL with activity data for each gene and then searching SureChEMBL using 

91 the compounds found in ChEMBL (Gadiya et al., 2022). These, and similar studies, also confirm 

92 that extracting information from patents poses many challenges, given the length and complexity 

93 of these documents.

94

95 Patent data are currently freely available from a number of resources, including Google Patents 

96 (https://patents.google.com/), The Lens (https://www.lens.org/), Espacenet 

97 (https://www.epo.org/searching-for-patents/technical/espacenet.html), Patentscope 

98 (https://patentscope.wipo.int/search/en/search.jsf) and Free Patents Online 

99 (https://www.freepatentsonline.com/). All of these systems allow searching for patents using 

100 various criteria. Pubchem provides links to the Patentscope database from the World Intellectual 

101 Property Organization (WIPO) for more than 16 million compounds, which allows users to find 

102 the patents associated with each of these chemical structures (Kim et al., 2021). BindingDB 

103 (Gilson et al., 2016) includes a curated set of US granted patents, from which protein-compound 

104 activity data is extracted. 

105

106 In the work reported here, we use SureChEMBL (Papadatos et al., 2016) 

107 (https://www.surechembl.org/), which is a fully automated, chemical-structure-enabled database 

108 providing the research community with open and free access to the patent literature. Currently, 

109 SureChEMBL sources data from both patent applications and granted patents via full text patents 

110 from the United States Patent and Trademark Office (USPTO), the European Patent Office 

111 (EPO) and the World Intellectual Property Organization (WIPO), and titles and abstracts from 

112 the Japanese Patent Office (JPO). 

113

114 SureChEMBL currently contains ~140 million patents with ~50,000 added monthly. Of these, 

115 ~25 million patents are chemically annotated. Approximately 80,000 new compounds are 

116 extracted and added each month to the SureChEMBL chemistry database which currently 

117 contains more than 25 million unique structures. The pipeline for the extraction of chemical 

118 compounds from patents has been described in detail (Papadatos et al., 2016). In summary, 

119 chemical entity names, images and molfiles associated with each patent are converted into 

120 chemical structures and then registered into a structure-searchable database. This process is fully 

121 automated, without requiring any manual step or curation. The data in SureChEMBL can be 

122 accessed via a web interface that enables users to perform text and chemical structure queries, 

123 filter the output and then display the results. The complete set of chemical structures and patent 

124 associations is also available for download. 

125

126 The US National Institutes of Health established the Illuminating the Druggable Genome 

127 (henceforth IDG) project in 2014 (https://commonfund.nih.gov/idg), with the goal of increasing 

128 the knowledge about understudied proteins that belong to well-studied protein families, such as 

129 ion channels, G-protein coupled receptors (GPCR) and protein kinases. One of the key 
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130 deliverables of the IDG project is an informatics platform, Pharos (https://pharos.nih.gov/), that 

131 provides researchers with free access to relevant data on targets. An important aspect of the IDG 

132 project (and the data in Pharos) is the classification of human proteins into four Target 

133 Development Level (TDL) families, based on how well studied these proteins are. In the Tclin 

134 category are targets of at least one approved drug; Tchem targets do not have approved drugs but 

135 are modulated by at least one small molecule with a potency above the cut-off specified for the 

136 target protein family ( 30 nM for kinases,  100 nM for GPCRs and nuclear receptors,  10 μM 

137 for ion channels and  1 μM for other target families); Tbio targets do not have chemistry 

138 qualifying for the Tclin/Tchem categories but satisfy the criteria described at 

139 http://juniper.health.unm.edu/tcrd/; while Tdark targets are understudied proteins with little 

140 annotation (Oprea et al., 2018). Of particular relevance to the work here is the availability of 

141 small molecule modulators for new targets, consistent with other work suggesting that the lack of 

142 high-quality chemical probes for understudied targets is an important cause for lack of interest 

143 (Edwards et al., 2011; Oprea et al., 2018). The default IDG process uses bioactivity data from 

144 ChEMBL (Mendez et al., 2019), as well as from Guide to Pharmacology, which contains 

145 manually curated information on ligands and drug targets (Armstrong et al., 2020), and 

146 DrugCentral (Avram et al., 2021), which contains bioactivity data annotated from a variety of 

147 sources, including the scientific literature. DrugCentral has also information on drugs that have 

148 been approved by the United States Food and Drug Administration, the European Medicines 

149 Agency, and the Pharmaceuticals and Medical Devices Agency in Japan. The DrugCentral drug 

150 information is used in the IDG workflow to identify the targets that belong to the Tclin category 

151 (TCRD Home Page, http://juniper.health.unm.edu/tcrd/). At the time of writing, Tclin proteins 

152 represent ~3 % of the human proteome; Tchem proteins represent ~8 %; Tbio proteins represent 

153 ~58 %; and Tdark proteins represent ~31 % (Sheils et al., 2021). 

154

155 In this paper, we describe methods to systematically mine the SureChEMBL patent corpus to 

156 identify new bioactivity data for Tdark/Tbio targets, with the aim of 1) including the bioactivity 

157 data in the ChEMBL database and 2) promoting some of these targets to IDG Tchem status. 

158 Methods

159

160 Patents were processed using perl scripts written for this project, accessible via a GitHub 

161 repository (https://github.com/chembl/idg_patents_paper). 

162

163 The starting point for our work was the set of patents extracted from SureChEMBL covering the 

164 years 2012 to 2018, flagged as life-science relevant according to the International Patent 

165 Classification (IPC) (https://www.wipo.int/classifications/ipc/en/) or the Cooperative Patent 

166 Classification (CPC) codes (https://worldwide.espacenet.com/classification) present in the 

167 patents. These codes classify the patents into different areas of technology. The specific codes 

168 taken into account by the life science flag are: A01, A23, A24, A61, A62B, C05, C06, C07, C08, 

169 C09, C10, C11, C12, C13, C14, G01N, which cover a broader set of patents than required but is 

170 still useful to filter out many patents that would not be relevant. This resulted in a set of 3.7 

171 million patents.

172
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173 The goal was to find patents with bioactivity data on small molecules against understudied 

174 targets (Tdark or Tbio categories according to the IDG classification). Firstly, in order to 

175 determine which patents were likely to have bioactivity data, the files corresponding to the 

176 patents were processed to identify tables containing the following keywords: IC50, XC50, EC50, 

177 AC50, Ki, Kd, pIC50, pXC50, pEC50, pAC50, -log(IC50), -log(XC50), -log(EC50), -

178 log(AC50), concentration to inhibit, IC-50, XC-50, EC-50, AC-50, IC 50, XC 50, EC 50, AC 50.

179 Out of the 3.7 million patents, 69,289 patents (2 %) were thus flagged as potentially containing 

180 bioactivity data in tables (for simplicity called �patents with bioactivity tables�). 

181

182 Separately, we identified patents that might contain information about IDG Tbio and Tdark 

183 targets. A list of Tdark and Tbio IDG target names and gene symbols was obtained from the 

184 Target Central Resource Database (36,044 target names/symbols) (TCRD Home Page, 

185 http://juniper.health.unm.edu/tcrd/). We searched for these target names and their gene symbols 

186 in the patent titles, abstracts, descriptions and claims sections, in the context of specific phrases 

187 that could indicate bioactivity data of small molecules against them:

188

189  X inhibitors

190  Inhibitors of X

191  X inhibitor

192  Modulators of X

193  Modulation of X

194  Targeting X

195  X modulators

196  Binding specifically to X

197  X mutants

198  Inhibit X

199  Antibodies recognis|zing X

200  Modulating the X

201  Selective X inhibitors

202  X antagonists

203  X agonist

204  X selective binding compounds

205  Activity of X

206  X antibodies

207  X activity

208  Inhibitor of X

209  X binding

210  Antibodies directed against X

211  Treatment of X related

212  Antibody for X

213  Anti-X antibody

214  Human anti-X

215  Antibodies to X

216  High X affinity

217  Inhibiting X
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218  Blocks|block X

219  Blocking X

220  Ligand|ligands for X

221  Compounds that interact with X

222  Modulating the function of X

223  X ligand|ligands

224

225 The combination of these two procedures allowed us to classify the patents into six groups: 

226 patents with bioactivity tables, and targets mentioned in titles or abstracts; patents with 

227 bioactivity tables, and targets mentioned in descriptions or claims sections; patents without 

228 bioactivity tables, and targets mentioned in titles or abstracts; patents without bioactivity tables, 

229 and targets mentioned in descriptions and claims; patents with bioactivity tables but no targets; 

230 and patents without bioactivity tables and without targets (Fig. 1). This was done with the goal of 

231 prioritising the patents, with the expectation that most data would be found in Group 1, followed 

232 by Group 2; we expected Groups 3 and 4 to contain fewer patents with bioactivity data (given 

233 that they were not flagged as containing bioactivity tables). The patents in Groups 5 and 6 did 

234 not have target matches and for this reason were not expected to have bioactivity data against the 

235 understudied targets of interest to us.

236

237 Following this automated annotation/filtering process, a number of patents from each group were 

238 manually examined to confirm the presence of the correct Tbio/Tdark target, the presence of 

239 quantitative bioactivity measurements, and that the Tbio/Tdark target was the molecular target to 

240 which these bioactivity measurements applied. This final check is required because some of the 

241 patents were found to have data only on targets that did not belong to the IDG list of 

242 understudied targets; other patents did contain data exclusively on the targets of particular 

243 interest to us. Some patents fell into both categories.

244

245 For patents with confirmed bioactivity data, details of compounds synthesised, biological assays 

246 performed, and bioactivity measurements were manually extracted according to the standard 

247 ChEMBL curation procedure described previously (Gaulton et al., 2015) and loaded into the 

248 ChEMBL database. Briefly, structures and names of all tested compounds were extracted, 

249 together with a description of the assays performed, name of the targets, species, and 

250 measurement values and units. Compound structures were standardised and integrated into 

251 ChEMBL, mapping them to an existing structure or creating a new entry in the database as 

252 appropriate.

253

254 In addition to registering the reported measurement values, the bioactivity data obtained was 

255 standardised to facilitate comparison of results for common activity types. Bioactivity data was 

256 also mapped to existing ChEMBL targets according to species and sequence or accession. When 

257 this was not possible a new target was created and then mapped to the corresponding assay.

258

259 All bioactivities against all the targets present in these patents (irrespective of their inclusion or 

260 not in the IDG Tbio/Tdark categories) were extracted by the curators.

261
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262 Results

263

264 As a result of this work, bioactivity data from 225 patents were loaded into ChEMBL, 

265 corresponding to 657 targets (including single proteins, protein families, protein complexes, 

266 organisms, cell lines and protein-protein interactions) and 18,319 compounds. For 145 of these 

267 targets, this represents the only source of information of bioactivity data in ChEMBL.

268

269 A patent family is a set of patents of identical content (European Patent Office, 

270 https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-

271 families/docdb.html). The scripts described here were run against every patent in SureChEMBL 

272 that belong to the set of 2012-2018 patents flagged as life science related. In order to avoid 

273 duplication of effort, patents were grouped by patent family. For this reason, the patent counts in 

274 the sections below are given as number of patent families rather than number of patents.

275

276 We examined the distribution of positive and negative patent families among the different groups 

277 shown in Fig. 1, to identify which group or groups were more or less likely to contain useful 

278 information, as this might facilitate the task of identifying the most useful patents for future 

279 analyses. The group that had the highest percentage of positive patents was Group 1: 49 positive 

280 patent families in the 291 families examined (16.8 %), followed by Group 3: 88 positive families 

281 in the 1,912 examined (4.6 %). There was 1 patent family in common between the positive 

282 patents of these two groups. Group 2 had 92 positive patent families, but 46 of them were 

283 already present in Group 1. Group 4 had 96 positive patent families, but 86 of them were already 

284 present in Group 3. There were very few patents with data in Group 5 or Group 6 (0.1 % and 

285 0.4 % patent families of the examined ones, respectively) (Fig. 1).

286

287 A full list of patents and the targets they contain can be found in Table S1. Note that one patent 

288 is omitted from this list (US-8409550-B2) because it contains data against a target from Bos 

289 taurus, whereas IDG is focussed solely on human targets. 76 of these targets had at least one 

290 compound with bioactivity data values within the cut-off for its target family, as defined by the 

291 target class-specific IDG criteria outlined earlier. Table S2 shows which targets had bioactivity 

292 data within the cut-offs for its target family, and Table S3 shows how many patents, total 

293 compounds and compounds within the cut-off were found for each IDG target class.

294

295 As BindingDB also extracts data from patents, we were interested in examining the overlap 

296 between the two data sets. For all the targets found, we performed a search by target name in 

297 BindingDB with the goal of comparing the results from the two different databases. Because 

298 BindingDB extracts only US granted patents, we used the patent family to do the comparison. 

299 We found 33 targets in both BindingDB and the dataset from our method. Of the 70 patent 

300 families found by our method for these targets, 20 were also found in BindingDB. 50 families 

301 were found exclusively with our method, and 34 families were found exclusively by BindingDB. 

302 In most cases, the patents that were missed had targets mentioned using a name that was not on 

303 our list of targets to find (for example, �CH24H� instead of �Cholesterol 24-hydroxylase�). In 

304 other cases the patents belonged to Groups 3 or 4 and were not part of the set of patents that we 

305 selected to read.

306
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307 Examples of understudied targets with bioactivities found in patents

308

309 In this section we briefly describe three specific examples of targets for which we were able to 

310 identify and curate bioactivity data from the patent workflow described above. Some of the 

311 compounds found for each target are shown in Fig. 2.

312

313 LATS1

314

315 LATS1 is a Ser/Thr kinase that belongs to the LATS (large tumor suppressor) family (Xu et al., 

316 2015). It is a component of the Hipo pathway which is involved in cancer, organ development, 

317 growth and regeneration (Fu, Plouffe & Guan, 2017), and cell contact inhibition (Zheng & Pan, 

318 2019).

319 This kinase is conserved among several organisms, such as yeast, nematodes, flies, and 

320 mammals. In humans, LATS1 can be found in high levels in most tissues, and it has a role in 

321 regulation of mitosis and apoptosis. In some types of cancer there is evidence of mutations in 

322 LATS1, and of LATS1 inactivation through promoter hypermethylation in others (Furth & 

323 Aylon, 2017).

324 It was found that the expression of this protein is elevated in some cancers, but decreased in 

325 others (Xu et al., 2015; Furth & Aylon, 2017).

326 Without considering data from patents, there are currently 430 molecules in ChEMBL associated 

327 with this target, extracted from 44 different papers, but only four molecules satisfy the IDG cut-

328 off criteria for kinases. These molecules were extracted from four different papers: PMID 

329 19654408 (Zarrinkar et al., 2009), PMID 22037378 (Davis et al., 2011), PMID 29191878 

330 (Klaeger et al., 2017) and PMID 30384048 (Narayan et al., 2019). As a result of the current 

331 work, there are now 289 additional molecules associated with this target, with 184 molecules 

332 satisfying the IDG cut-off criteria to promote the target to the Tchem category. The source of 

333 these compounds is the patent US-20180344738-A1 (Behnke et al., 2018), which describes 

334 molecules designed to promote cell proliferation, with applications such as chronic wound 

335 healing, promoting liver regrowth, or treating limbal stem cell deficiency.

336

337 Histone-lysine N-methyltransferase SUV39H2

338

339 SUV39H2 is a lysine methyltransferase, first identified in Drosophila, which methylates histone 

340 3 on lysine 9 (H3K9). Di- and trimethylation of H3K9 results in gene expression repression 

341 (Kaniskan, Martini & Jin, 2018).

342 This protein is present only in embryogenesis and adult testis of healthy individuals (Li, Zheng & 

343 Yang, 2019), but overexpressed in several cancers, for example lung adenocarcinoma, colorectal 

344 carcinoma and gastric carcinoma (Saha & Muntean, 2021).

345 There are no selective inhibitors for this target (Kaniskan, Martini & Jin, 2018).

346 At the start of this work there were 19 molecules in ChEMBL with bioactivity data against 

347 SUV39H2, all of them from scientific literature, but none of these molecules were within the 

348 IDG cut-off.
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349 Our patent workflow identified 460 molecules from just a single patent (US-20180273529-A1) 

350 (Matsuo et al., 2018), all within the corresponding IDG cut-off.

351

352 G protein-coupled receptor 6

353

354 GPR6 is a G-protein coupled receptor, still classified as orphan by the International Union of 

355 Basic and Clinical Pharmacology (IUPHAR) (Alexander et al., 2019) due to lack of consistency 

356 among reports related to endogenous ligands (Morales, Isawi & Reggio, 2018; Laun et al., 2019).

357 It is expressed mainly in neurons in mammalian striatum and hypothalamus. There is evidence 

358 that it could have a role in several processes and diseases such as neurite outgrowth, instrumental 

359 learning, Alzheimer�s disease, Parkinson�s disease, Huntington�s disease (Morales, Isawi & 

360 Reggio, 2018; Laun et al., 2019), and schizophrenia (Morales, Isawi & Reggio, 2018).

361 At the start of this work, there were 227 molecules in ChEMBL with bioactivity data values 

362 within the IDG cut-off. These molecules were obtained from patents, either from BindingDB, or 

363 our own curation efforts previous to the work described here.

364 As a result of this search, 100 additional molecules with bioactivity against GPR6 with values 

365 within the cut-off of  100 nM were identified, from patents WO-2018183145-A1 (Green et al., 

366 2018) and EP-2882722-A1 (Hitchcock et al., 2015). Figure 3 shows a timeline with patent and 

367 scientific literature numbers by year for GPR6, showing that in this particular case, significantly 

368 more data were reported via patent disclosures than in the scientific literature. Interestingly, a 

369 new clinical candidate (currently in phase 2 clinical trials) for Parkinson�s disease, CVN424 (a 

370 GPR6 inverse agonist), has been disclosed (Sun et al., 2021; Brice et al., 2021). This molecule 

371 can be found in patents as early as 2015 in patent US-9181249-B2 (Brown et al., 2015).

372

373 Discussion

374

375 The overall goal of this work was to identify bioactivity data on understudied targets from the 

376 patent literature, which could allow us to promote targets to the IDG Tchem category. We 

377 focused on small molecules only, but our workflow also identified several patents concerning 

378 antibodies or RNA as therapeutic agents. For the purposes of this work, we did not progress 

379 these patents further, but clearly they could also be useful in the context of �illuminating� new 

380 targets.

381 It should be noted that the work described here was conducted over a period of time, during 

382 which complementary data from other sources was added to the various resources concerned. 

383 This reflects the natural evolution of the underlying databases, each with their own update 

384 mechanism and release schedule procedures. Thus, for example, targets designated as Tdark or 

385 Tbio at the time when the research was initiated may have been promoted to a higher category 

386 based on separate evidence whilst the patent bioactivity work described here was underway. In 

387 the narrative below, the data reflects the particular snapshot corresponding to the time on which 

388 the work was initiated or completed, as appropriate.

389 Two of the proteins included in the list of targets that we searched for (sclerostin and exportin-1) 

390 were originally classified as Tbio at the start of this work, but later promoted to Tclin after the 

391 approval of the first-in-class drugs romosozumab and selinexor respectively. 
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392 Coincidentally, over the same period of time, bioactivity data for 30 Tbio/Tdark targets were 

393 added into ChEMBL from the scientific literature. There was an overlap of 21 targets between 

394 the two sets. This shows the value of using patents as an additional source of bioactivity data.

395 The work described here involved manually reviewing many patents from the six groups 

396 described in Fig. 1. As expected, the group with higher percentage of positive patents was Group 

397 1, unexpectedly followed by the patents in Group 3, which even though they could not be 

398 flagged as containing bioactivity tables, still contained bioactivity data was not detected 

399 automatically with the method used here, and were only found when reviewing the patent 

400 manually. Groups 2 and 4 had lower percentages but still delivered useful and relevant patents. 

401 Even though classifying the patents in this way provided a starting point for prioritisation, clearly 

402 there some limitations to this approach as shown in the comparison with BindingDB and the 

403 reasons for missing some patents, and for future work it would be advantageous to develop 

404 methods that can reduce the level of manual review that is required. This is the focus of currently 

405 ongoing work to develop machine-learning models able to predict which patents should be 

406 prioritised for human examination and potential curation.

407 In addition to the two targets that are now Tclin, 74 Tdark/Tbio targets were promoted to the 

408 Tchem category on the basis of the bioactivity data identified from our patent analysis.

409

410 Conclusions

411

412 Using relatively simple annotation and filtering pipelines, we have been able to identify a 

413 substantial number of patents containing quantitative bioactivity data for understudied targets 

414 that had not previously been reported in the peer-reviewed medicinal chemistry literature. This 

415 underlines the potential value in searching the patent corpus in addition to the more traditional 

416 peer-reviewed literature. The small molecules found in these patents, together with their 

417 measured activity against the targets, are now accessible via the ChEMBL database and Pharos, 

418 and have contributed to the �illumination� of previously dark targets.

419
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Figure 1
Patent group classification.

a) 3.7 million patents were scanned for the presence of 1) tables with bioactivity keywords
and 2) understudied target names mentioned in the context of specific phrases in the titles,
abstracts, description and claims sections of the patents. According to the result of each of
these two independent processes, the patents could be classified in the following groups:
Group 1: patents with bioactivity tables, and targets mentioned in titles or abstracts; Group
2: patents with bioactivity tables, and targets mentioned in descriptions or claims sections;
Group 3: patents without bioactivity tables, and targets mentioned in titles or abstracts;
Group 4: patents without bioactivity tables, and targets mentioned in descriptions and
claims; Group 5: patents with bioactivity tables but no targets; Group 6: patents without
bioactivity tables and without targets. b) A subset of patent families in each group was
manually examined. Total: total number of patent families that belonged to each group;
Read: number of patent families of each group that were read to determine the presence of
relevant data; Positive: number of patent families read that had bioactivity data of small
molecules against at least one understudied target; Negative: number of patent families read
that did not have bioactivity data of small molecules on understudied targets.
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Figure 2
Illustrative examples of bioactive compounds identified from SureChEMBL patent
workflow against three targets.
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Figure 3
Numbers of relevant patents and scientific literature publications for GPR6 per year.

Key compound disclosures in patents and scientific literature indicated by dashed lines: a)
Example of a compound reported in one of the earliest patents with data against GPR6. b)
Example of a compound in one of the earliest patents identified by our method. c) First small
molecule modulator reported in scientific literature.
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