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Eûects of plant age on antioxidant activity and endogenous
hormones in Elymus sibiricus in Alpine region of the Tibetan
Plateau
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Elymus sibiricus L. shows rapid and substantial reductions of aboveground biomass and
seed yield after 3 or 4 years of growth, and has an accelerated aging process.To
understand possible mechanisms of aging, we planted E. sibiricus seeds in triplicate blocks
in 2012, 2015, and 2016, respectively, and harvested samples of aboveground biomass
(leaves) and roots at the jointing and heading stages in 2018 and 2019 for determinations
of antioxidant enzyme activities and endogenous hormone s. The results showed that the
fresh and hay biomass and seed yield declined substantially in plants aged 3, 4, and 5
years. The superoxide radical generation rate in leaves and roots at the jointing and
heading stages did not show any apparent pattern with plant age. There was an increasing
trend of the malondialdehyde concentration with plant age, particularly in leaves and roots
at the heading stage in 2019. The superoxide dismutase (SOD) activity appeared declining
with plant ages in roots, but not in leaves; the peroxidases activity declined with plant age
in both leaves and roots; whereas the catalase activity declined with plant age in leaves at
the heading stage in 2018. Overall, the concentrations of plant hormones, auxin (IAA),
gibberellin (GA), zeatin (ZT), and abscisic acid (ABA) were many-fold lower in roots than in
leaves. The IAA concentration presented diûerent patterns with plants age between leaves
and roots. The ZT concentration in roots declined with plant age. The changes of the GA
concentration with plant age varied between the physiological stages and between years.
The ABA concentrations appeared increasing with plant age particularly in leaves. In
conclusion, the aging process of E. sibiricus was apparently associated with an increase of
oxidative stress, a decrease of ZT and an increase of ABA, particularly in roots. However,
these plant age-related trends were inûuenced signiûcantly by plant physiological stages
and year-to-year variations, which need to be carefully minimized in future studies.
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13 ABSTRACT

14 Elymus sibiricus L. shows rapid and substantial reductions of aboveground biomass and seed 

15 yield after 3 or 4 years of growth, and has an accelerated aging process. To understand possible 

16 mechanisms of aging, we planted E. sibiricus seeds in triplicate blocks in 2012, 2015, and 2016, 

17 respectively, and harvested samples of aboveground biomass (leaves) and roots at the jointing 

18 and heading stages in 2018 and 2019 for determinations of antioxidant enzyme activities and 

19 endogenous hormones. The results showed that the fresh and hay biomass and seed yield 

20 declined substantially in plants aged 3, 4, and 5 years. The superoxide radical generation rate in 

21 leaves and roots at the jointing and heading stages did not show any apparent pattern with plant 

22 age. There was an increasing trend of the malondialdehyde concentration with plant age, 

23 particularly in leaves and roots at the heading stage in 2019. The superoxide dismutase (SOD) 

24 activity appeared declining with plant ages in roots, but not in leaves; the peroxidases activity 

25 declined with plant age in both leaves and roots; whereas the catalase activity declined with plant 

26 age in leaves at the heading stage in 2018. Overall, the concentrations of plant hormones, auxin 

27 (IAA), gibberellin (GA), zeatin (ZT), and abscisic acid (ABA) were many-fold lower in roots 

28 than in leaves. The IAA concentration presented different patterns with plants age between 

29 leaves and roots. The ZT concentration in roots declined with plant age. The changes of the GA 

30 concentration with plant age varied between the physiological stages and between years. The 

31 ABA concentrations appeared increasing with plant age particularly in leaves. In conclusion, the 

32 aging process of E. sibiricus was apparently associated with an increase of oxidative stress, a 

33 decrease of ZT and an increase of ABA, particularly in roots. However, these plant age-related 
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34 trends were influenced significantly by plant physiological stages and year-to-year variations, 

35 which need to be carefully minimized in future studies.   

36 Subjects Agricultural Science, Plant Science, Ecosystem Science

37 Keywords: Elymus sibiricus, Aging, Growth stage, Antioxidant system, Endogenous hormone

38

39 INTRODUCTION 

40 Perennial herb Elymus sibiricus L. belongs to Poaceae genus and is an important species in the 

41 alpine region of the Tibetan Plateau and the steppe region of northern EurasiaÿMa et al., 2009; 

42 Xiong et al.,2009ÿ. E. sibiricus has many prominent characteristics that can be used for the new 

43 grassland and restoration of deteriorated grasslands for livestock farming (Yan et al.,2007; Ma et 

44 al.,2008). However, E. sibiricus populations in grasslands are vulnerable to decline and the yield 

45 reduces with increasing plant age, which prevents its use for long-term plantation in large areas 

46 (Jin, 2021). Recent studies indicate that physiological burdens, such as the changes of 

47 phytohormones in the aging process, age-induced oxidative stress and age-related changes in 

48 water relations and photosynthesis are responsible for reduced growth as plants age (Munné-

49 Bosch & Lalueza, 2007). It seems obvious that with the increase of planting years for E. sibiricus, 

50 the intrinsic changes of physiology and biochemistry metabolism will affect the population 

51 stability and productivity reduction. Therefore, studying the aging-related physiological 

52 mechanism of occurrence and regulation of E. sibiricus has important theoretical significance 

53 and a practical application value. 
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54 Plant aging is a highly complex process influences by the metabolism of plants and 

55 environmental factors (Munné-Bosch & Lalueza, 2007). For plant aging regulation, many 

56 mechanisms have been proposed, such as nutrient deficiency, the excessive free radical related 

57 aging process, and plant hormones changes(Ashok & Ali, 1999; Jibran, Hunter & Dijkwel, 2013; 

58 Kraj, 2016). The excessive accumulation of free radicals and the disturbance of endogenous 

59 hormone profile in the cells can cause an oxidant stress and deteriorate plant growth 

60 and metabolism (Ashok & Ali, 1999, Rustin et al., 2000; Chen, et al.,2020). ROS are by-products 

61 of many metabolic processes, and ROS accumulation is a key feature of plant senescence 

62 ÿAshok & Ali, 1999ÿ. With the onset of plant senescenceÿROS such as superoxide anion (O2-) 

63 and other free radicals are excessively producedÿJing et al.,2008ÿ, which results in 

64 peroxidation of membrane lipids, damage of macro molecules, and even programmed cell death 

65 (Breusegem & Dat, 2006).

66 Plants have a variety of defense strategies, such as antioxidant enzymes and non- enzymatic 

67 antioxidants, to cope with ROS stress (Shri et al., 2009; Farooq et al.,2015). Super-oxide 

68 dismutase (SOD) is the first line of antioxidant enzyme to scavenge ROS by converting O2
- to 

69 oxygen (O2) and H2O2. Then, H2O2 is reduced rapidly to H2O and O2 catalyzed by catalase (CAT) 

70 and peroxidase (POD) (Noodén, Guiamet & John, 1997; Palma et al.,2006). Malondialdehyde 

71 (MDA) is a primary end-product of lipid peroxidation in plants, and its concentration is usually 

72 used to indicator the severity of oxidative stress. For example, plant tissues under abiotic stress 

73 had an increase of MDA content (Duan et al.,2014; Suzuki et al.,2012). The role of oxidative 

74 stress in plant senescence and aging has been demonstrated especially in annual and biennial 
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75 (Quirino, Normanly & Amasino, 1999)

76 Previous research has also shown that, in general, senescence promoters encompass ethylene 

77 (Eth) and abscisic acid (ABA) promote senescence in the aging process of perennial plants. 

78 Ethylene and ABA are recognized as key hormones in plant aging, stress-induced ethylene and 

79 ABA production have been reported to involve in the generation of reactive oxygen species and 

80 were also closely associated with the ROS generation (Zakari et al.,2020). It has been shown that 

81 endogenous ABA concentrations in 7-year-old Cistus clusii plants were higher than 2-year-old 

82 (Munné-Bosch & Lalueza, 2007). In this case, 2-year-old plants had already reached the mature 

83 stage, in which the growth rate was delayed (Finkelstein, Gampala & Rock, 2002). In contrast, 

84 retardants include cytokinin (CK), auxin (IAA), gibberellin (GA) and their related compounds 

85 have been well known to delay plant aging, respectively (Saniewski et al., 2020). The ability of 

86 newly emerged leaves to produce auxins and cytokinins declines with plant aging in conifers, 

87 thus supporting a link between the reduced growth and decreases of auxin and cytokinins levels 

88 during aging process in perennials (Valdés, Fernández & Centeno, 2004; Aldés, Centeno & 

89 Fernández, 2004). It is also important to mention that these phytohormones do not work alone, 

90 and they are often functioning concomitantly to achieve the regulation of plant senescence 

91 (Noodén & Leopold, 1988). Currently, researches on the hormone regulation and mechanisms of 

92 perennial plants focus mainly on trees and crops(Chen et al.,2020; Cui et al., 2020), and little 

93 information is available for the hormonal changes in various tissues of perennial grasses during 

94 plant aging process. Specifically, research on the regulatory mechanism of the aging process has 

95 been focused mainly in annual plants such as Arabidopsis and rice (Zakari et al., 2020; Xiao et 
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96 al., 2020), and the information about the aging regulation in perennial herbs is limited.

97 In this study, we used E. sibiricus Qingmu 1 (a novel variety) planted in the Tibet Plateau 

98 region for 3, 4, 5, 7, and 8 years and determined the changes in the antioxidant system and 

99 endogenous hormones in leaves and roots at jointing and heading stages to investigate their roles 

100 in the process of plant aging. The study was repeated in two years.

101 MATERIALS & METHODS

102 Field site

103 The experiment was carried out at the Haiyan Research Station of Qinghai Province, China 

104 (E100 85�, N36 45�) from June to October 2018 and repeated in 2019. The averaged altitude of ° °

105 the location is 3,159 m, with mean monthly temperatures ranging from 233.8# in January to 

106 30.5# in July and the mean annual temperature at 0.6#. The average annual precipitation is 

107 about 369-403 mm, mostly occurring during the plant growing season (July to September). The 

108 average annual evaporation is 1435 mm, the sunshine duration 2985 h, and the frost-free period 

109 about 30 days. The distributions of monthly rainfall and mean temperature in 2018 and 2019 are 

110 shown in Fig.1. The changes of temperature and rainfall synchronized throughout the year, and 

111 the hot season from July to September had higher rainfall. The soil is the chernozem soil type 

112 (Chinese classification), and the chemical properties of soil are shown in Table1. 

113

114 Experimental design and field management

115 E. sibiricus seeds were planted in 2012, 2015 and 2016 respectively in three replicate plots each 
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116 year. Each plot sized 4 m × 5 m with 0.5m distance between two plots. Seeds were sown in rows 

117 with 30 cm space between rows, sown depth 3 cm, and the seeding rate of 4.5 g/m2. Fertilizer 

118 was applied before sowing, and no fertilizer applied afterwards. There was no irrigation system 

119 for the plots. Weeds were removed manually and regularly throughout the experimental periods. 

120 In 2018 and 2019, plants were sampled in late June (for the jointing stage of the grasses) and late 

121 July (for the heading stage of the grasses) respectively for various measurements and analyses, 

122 so the plant ages were 3, 4, 5, 7, and 8 years respectively, as shown in Table 2.

123

124 Samples

125 More than 100 uniformly growth tiller branches at the jointing and heading growth stages, 

126 respectively, were randomly selected in each plot. Leaves of similar parts were collected from 

127 the first to third leaves (counting from the tip of each branch) on each of the branches. The 

128 leaves were immediately separated from stems. The roots within 20 cm-deep soil were fully dug 

129 out and cleaned with water. All samples were immediately snap-frozen in liquid nitrogen and 

130 stored in -80# for subsequent analyses. 

131 The aboveground biomass was harvested in flowering period from 1 m2 quadrats per plot in 

132 2019. Samples were weighed and oven-dried at 65# for 48 h to determine dry matter content. 

133 At the late stage of seed maturity of each plant age, the reproductive branches were cut from 

134 randomly selected 1 m2 quadrats per plot. After natural drying, the seeds were threshed, selected, 

135 and weighed, and the average value was used to calculate the seed yield per unit area (kg/hm2).
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136

137 Sample processing and assays

138 Samples were cut into smaller pieces and well-mixed. The concentration of superoxide anion 

139 (O2
-) in leaves and roots were determined according to the hydroxylamine oxidation method with 

140 some modifications (Hao, Kang & Yu, 2007). One g of leaves was ground in 3 mL of 50 mM 

141 potassium phosphate buffer (pH 7.8) solutions. The reaction mixture comprised of 0.5 mL of the 

142 extracts, 0.5 mL of 50mM potassium phosphate (pH 7.8) buffer and 1 mL of 10mM 

143 hydroxylamine and was incubated at 30# for 1h. Subsequently, 1 mL of 17mM sulfanilic acid 

144 (water preparation) and l mL of 7mM ³-naphthylamine were added, and the mixture was kept at 

145 30°C for 30 min. Then O2
- concentration was determined at 530 nm against a calibration curve 

146 with known concentrations of nitrite as the standard. 

147 The concentration of MDA was measured according to the method of Qiu et al. (2008) with 

148 some modifications. Briefly, 0.5 g frozen leaf or root was homogenized in 10 mL of phosphate 

149 buffer (pH: 7.8) on an ice bath and centrifuged at 15,000 ×g and 4°C for 20 min. One milliliter of 

150 supernatant was mixed with 2 mL of 0.6% thiobarbituric acid solution, incubated at 95# in a 

151 water bath for 15 min, quickly cooled for 2 min to room temperature and the mixture was 

152 centrifuged at 5000×g for 10 min at 25°C. The absorbance of the solution was determined at 450, 

153 532, and 600 nm (A450, A532 and A600) respectively using UV-2450 spectrophotometer 

154 (Shimadzu, Japan). 

155 To determine anti-oxidant enzymes activities, 0.5 g frozen leaves or roots were grounded 
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156 using liquid N, and added 2 mL of phosphate buffer (0.05M, pH 7.8, a mixture of Na2HPO4 and 

157 NaH2PO4).The mixture was centrifuged at 11,000 ×g for 20 min at 4°C and the supernatant was 

158 used to determine the activities of antioxidant enzymes. For the SOD activity, 100 ¿L 

159 supernatant was added into 4 mL of the reaction mixture that consisted of 2 mL of 0.05M 

160 phosphate buffer, 0.5 mL of 104 mM methionine, 1 mL of 300¿M nitroblue tetrazolium, and 0.5 

161 mL of 0.3mM disodium ethylenediaminetetraacetic acid (EDTA-Na2). The solution was placed 

162 under 4000 lx fluorescent lamps for 10 min and the absorbance was recorded at 560 nm. The 

163 CAT activity was determined using Zhang�s method (2004). 100 ¿L of the supernatant was 

164 mixed with 3.4 mL of the reaction mixture that consisted of 2.8 mL Na2HPO4 and NaH2PO4 

165 (0.05M pH 7.8) buffer and 100 ¿L 0.1M of H2O2 solution and 0.5 mL of 2mM EDTA. The 

166 absorbance at 240 nm was recorded for 3 min and the attenuation of the absorbance of was used 

167 to calculate the CAT activity against a calibration curve generated with H2O2. For the control 

168 group, 100 ¿L of 0.05M pH 7.8 phosphate buffer was used instead of the crude enzyme solution. 

169 Absorbance at 240 nm was recorded. 

170 The peroxidase (POD) activity was determined according to the method described by 

171 Zhang�s method (2004). 3 mL of reaction solution contained 1 mL 0.3% H2O2, 0.95 mL 0.2% 

172 guaiacol, 1 mL 50mM phosphate buffer (pH 7.0) and 0.05 mL enzyme extract, and the reaction 

173 was started with the addition of the enzyme extract. For the control group, 50 ¿L of 0.05M 

174 phosphate buffer (pH 7.8) was used instead of the crude enzyme solution. The change in 

175 absorbance at 470 nm was recorded for 1 min.
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176

177 Determination of plant hormones

178 The concentrations of endogenous hormones, including IAA, ABA, GA, and zeatin (ZT) in 

179 leaves and roots were determined according to the methods reported previously (Marasek-

180 Ciolakowska et al.,2021). 2.5 g of frozen leaves or roots was ground to powder in liquid nitrogen, 

181 then the powder was quickly transferred into a 50mL centrifuge tube and extracted with 20 mL 

182 of 80% methanol at 4# overnight. The extract was centrifuged at 12000 ×g at 4# for 15 min. 

183 Supernatant was transferred into a clean 50mL centrifuge tube. The residue was ultrasonically 

184 extracted with 15 mL 80% methanol at room temperature for 30 min and centrifuged at 12000 ×g 

185 at 4# for 15 min. Two supernatants were pooled, and concentrated to 20 mL in a rotary 

186 concentrator at 40#. Then, decolorization of the concentrate was performed by adding and 

187 discarding 15 mL petroleum ether twice. The volume of the solution was further concentrated to 

188 near dry, and 2 mL of 80% methanol was added and mixed. The concentrations of the 

189 endogenous hormones were determined in a HPLC-MS/MS system (Agilent Infnity 1260, 

190 Agilent, Germany).

191

192 Statistical Analysis 

193 All data for each sampling year (i.e., 2018 and 2019) were subjected to one-way analyses of 

194 variance (ANOVA) of SPSS 20.0 statistical software package for Windows. Plant age was the 

195 fixed factor and the plot was a random factor. LSD multiple comparisons were performed to 
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196 distinguish the differences between the means. Data are present as the least square means and 

197 standard error of means (SEM). Statistical significance was declared with P values < 0.05. 

198

199 RESULTS

200 Plant phenotypes, the aboveground biomass and seed yield 

201 Plant phenotypes were observed and photographed in 3- and 4-year old plants (Fig. 2).

202 In 3-year old plants, the central "rotten" phenomenon started appearing in plant clusters, and it 

203 became obvious in 4-year old plants. The rotten part expanded gradually from the center to the 

204 peripheral parts of plant clusters year after year, and in 7- and 8-year old plants, plant vegetation 

205 was very scarce on the ground (photos lost). The aboveground biomass and seed yield for 3-, 4-, 

206 and 5- year old plants in 2019 are shown in Table 3. The aboveground fresh and dry weights and 

207 seed yield declined substantially and continuously with plant ages: the fresh biomass of 4- and 5-

208 year old plants declined by 34.22% and 52.45% respectively compared with 3-year old plants, 

209 and the seed yield declined by 12.72% and 34.17%, respectively.

210       

211 O2
- generation rate in leaves and roots

212 The superoxide radical generation rate in leaves and roost are shown in Fig. 3. In year 2018, 

213 leaves of 7-year old E. sibiricus had lower O2
- generation rate than leaves of 3- and leaves 4-year 

214 old plants at the jointing stage (P < 0.05), and also lower than leaves of 3-year old plants at the 

215 heading stage (P < 0.05). In year 2019, the O2
- generation rate was lower in leaves of 4-year old 
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216 plants than in leaves of 5-year and 8-year old plants at the jointing stage (P < 0.05), but did not 

217 differ between 5-year and 8-year old plants (P > 0.05). The concentration for 5-year old plants 

218 was lower than that for 4- and 8-year old plants at the heading stage (P < 0.05) (Fig.3A).

219 In roots (Fig.3B) in 2018, the O2
- generation declined continuously in plants aged 3-, 4-, 

220 and 7-years at the jointing state (P < 0.05), and at the heading stage, the O2
- generation was lower 

221 for 4-year plant than those for 3-year and 7-year old plants (P < 0.05). In year 2019, the O2
- 

222 generation declined continuously in plants aged 4-, 5-, and 8-years at the jointing state (P < 0.05), 

223 but did not differ at the heading stage between 5-year and 8-year old plants. 

224

225 MDA concentration in leaves and roots

226 The MDA concentrations in leaves and roots are shown in Fig. 4. In year 2018 (Fig. 4A), the 

227 concentration in leaves was low for 4-year old plants at the jointing stage, and higher for 3-year 

228 old plants (P < 0.05) and further higher for 7-year old plants (P < 0.05). At the heading stage, the 

229 concentration for 3- and 7-year old plants was higher than that for 4-year old plants (P < 0.05). In 

230 year 2019, the MDA concentration showed an increasing trend with the ages of plants at both the 

231 jointing and heading stages. 

232 For roots in year 2018 (Fig. 4B), the MDA concentration for 3-year old plants was lower than 

233 those for 4- and 7-year old plants at the jointing stage (P < 0.05), and at the heading stage, the 

234 concentration was higher for 7-year old plants than those for 3- and 4-year old plants (P < 0.05). 

235 In year 2019, the MDA concentration increased continuously with the increases of plant ages at 

PeerJ reviewing PDF | (2022:10:78363:0:1:REVIEW 15 Oct 2022)

Manuscript to be reviewed



236 the jointing stages, and the MDA concentration was higher for 5-year old plants than those for 4- 

237 and 8-year old plants at heading stage (P< 0.05), but no difference was found between 4- and 8-

238 year old plants ( P > 0.05).

239  

240 SOD, CAT, and POD activities in leaves and roots

241 SOD activity

242 As shown in Fig. 5, in year 2018, the SOD activity in leaves (Fig. 5A) was higher for 7-year old 

243 plants than those for 3- and 4-year old plants at the jointing stage (P < 0.05)ÿand was lower for 

244 3- and 4-year old plants at the heading state. In year 2019, the SOD activity was lower for 3-year 

245 old plants than those for 5- and 8-year old plants at the jointing stage (P < 0.05), and at the 

246 heading stage, the activity increased with the age of plants.

247 For roots in year 2018 (Fig. 5B), the SOD activity declined continuously with the increases 

248 of plant ages at the jointing stage (P < 0.05), and at the heading stage, the SOD activity was 

249 higher for 4-year old plants than those for 3- and 7-year old plants (P < 0.05).

250 In year 2019, the SOD activity was lower for 4-year old plants than those for 5- and 8-year old 

251 plants at the jointing stage (P< 0.05), and also lower for 5- and 8-year old plants than those for 4- 

252 year old plants (P< 0.05).

253  

254 POD activity

255 In year 2018, the POD activity in leaves of 4- and 7-year old plants at the jointing stage was 
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256 lower than that for 3-year old plants (P < 0.05); at the heading stage, the activity was lower for 

257 4-year old plants than that for 3- and 7-year old plants (P < 0.05). In 2019, the POD activity 

258 declined continuously with the ages of plants at the jointing stage, but at the heading stage, it 

259 increased for 8-year old plants compared with 4- and 5-year old plants (Fig. 6A). 

260 For roots (Fig. 6B) in year 2018, the POD activity was lower for 4- and 7-year old plants 

261 than that for 3-year old plants at the jointing stage (P< 0.05), and at the heading stage, the POD 

262 activity declined continuously with the increase of plant age. In year 2019, the POD activity 

263 declined continuously with the increases of plant ages at both the jointing and heading stages.

264  

265 CAT activity

266 The CAT activity in leaves and roots are shown in Fig.7. In year 2018, the activity in leaves was 

267 lower for 7-year old plants at the jointing stage than those for 3- and 4-year old plants (P < 0.05), 

268 and at the heading stage, the activity declined with the increase of plant age. In year 2019, 

269 however, no difference was found in the CAT activity for plant aged of 4, 5, and 8 years at both 

270 the jointing and heading stages (P > 0.05), except for the lower CAT activity for 8-year old 

271 plants at the heading stage (Fig. 7A).

272 For roots in year 2018 (Fig. 7B), the CAT activity was lower for 4- and 7-year old plants at 

273 the jointing stage than that for 3-year old plants (P < 0.05), and at the heading stage, the activity 

274 was lower for 4-year old plants than those for 3-year and 7-year old plants. In year 2019, no 

275 difference was found in the CAT activity for plants aged of 4, 5, and 8 years at both the jointing 

276 and heading stages (P > 0.05). 
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277

278 Endogenous hormones in leaves and roots 

279 IAA concentration

280 The IAA concentrations in leaves and roots are shown in Fig.8. In year 2018, the IAA 

281 concentration in leaves increased continuously with the increase of the plant age at both the 

282 jointing and heading stages (Fig. 7A). In year 2019, this increasing trend of the concentration 

283 with plant age was also present in leaves of 4-, 5-, and 8-yer old plants at the jointing stage, as 

284 well as for 4- and 5-year old plants at the heading stage. The IAA concentration dropped 

285 substantially for 8-year old plants (Fig. 8A). 

286 For roots in year 2018, the IAA concentration was much higher for 3-year old plants at the 

287 jointing stage compared with those for 4- and 7-year old plants (P < 0.05), and the concentration 

288 showed no difference between plant ages at the heading stage (P> 0.05). In year 2019, the IAA 

289 concentration was much lower for 4-year old plants than those for 5- and 8-year old plants at the 

290 jointing stage (P < 0.05), and the concentration was higher for 8-year old plants than those for 4- 

291 and 5-year old plants at the heading stage (P < 0.05) (Fig.8B). 

292

293 ZT concentration

294 The zeatin (ZT) concentrations in leaves and roots are shown in Fig.9. In year 2018, the ZT 

295 concentrations in leaves of 3-year old plants at the jointing stage was higher than those for 4- and 

296 7-year old plants (P < 0.05), and at the heading stage, the concentration declined continuously 

297 with the increase of plant age. In year 2019, the concentration was lower for 4-year old plants 
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298 than those for 5- and 8-year old plants at the jointing stage, and the concentration showed no 

299 difference between plant ages at the heading stage (P > 0.05) (Fig.9A).

300 For roots in year 2018 (Fig. 9B), the ZT concentration declined continuously with the 

301 increase of plant age at the jointing stage, and at the heading stage, the concentration was higher 

302 for 3-year old plants than those for 4- and 7-year old plants, but no difference between 4- and 7-

303 year old plants. In year 2019, the concentration showed a decline trend with plant age at both the 

304 jointing and heading stages.

305  

306 GA concentration

307 The GA concentration in leaves and roots are shown in Fig. 10. For leaves in year 2018 (Fig. 

308 10A), the GA concentration showed an increasing trend with the increase of plant age at the 

309 jointing stage, and also at the heading stage, but no difference in the concentration between 4- 

310 and 7- year old plants. In year 2019, the GA concentration was lower for 4-year old plants at the 

311 jointing stage than those for 5- and 8-year old plants, and at the heading stage (P < 0.05), the 

312 concentration was lower for 8-year old plants than those for 4- and 5-year old plants.

313 For roots in year 2018, the GA concentration was higher for 4-year old plants at the jointing 

314 stage than those for 3- and 7-year old plants ( P < 0.05), and no difference between 3- and 7-year 

315 old plants (P > 0.05). No difference was found in the GA concentration for plants aged of 3, 4, 

316 and 7 years at the heading stages (P > 0.05). In year 2019, the GA concentration was lower for 4-

317 year old plants than those for 5- and 8-year old plants at the jointing stage (P < 0.05), and at the 
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318 heading stage, the concentration was lower for 8-year old plants than those for 4- and 5-year old 

319 plants (P < 0.05)( Fig.10B).

320

321 ABA concentration 

322 The ABA concentration in leaves and roots are shown in Fig.11. In leaves in 2018 (Fig. 

323 11A), the ABA concentration was the lowest for 4-year old plants at the jointing stage, followed 

324 with that for 7-year old plants, and 3-year old plant had the highest concentration. At the heading 

325 stage, the ABA concentration was higher for 7-year old plants than those for 3- and 4-year old 

326 plants (P< 0.05). In year 2019, the concentration showed an increasing trend with plant age at 

327 both the jointing and heading stages.

328 The ABA concentrations in roots (Fig. 11B) were much lower compared with those for 

329 leaves. For roots in 2018, the ABA concentration showed an increasing trend with plant age at 

330 the jointing stage, and at the heading stage, the concentration was almost negligible. In year 2019, 

331 the ABA concentration was much higher for 5-year old plants, followed with that for 8-year old 

332 plants, and 4-year old plants had the lowest ABA concentration at the jointing stage. At the 

333 heading stage, the ABA concentration was higher for 4-year old plants compared with 5- and 7-

334 year old plants, the concentration of which was much low.

335

336 The effects of physiological stages on all measures
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337 The significance (P values) of the effects of physiological stages of plants on the antioxidant 

338 indicators and plant hormones are shown in Table 4. The physiological stage did not affect the 

339 MDA concentration in leaves, CAT activity in roots in 2019, ZT concentration in roots in 2018, 

340 and GA concentration in 2019 (P > 0.05), whereas the effects on the other measures were 

341 significant (P < 0.05).  

342  

343 DISCUSSION

344 Rapid deterioration of vegetation status and declines of aboveground biomass with the age of 

345 Elymus sibiricus plants were observed in this study, indicating that Elymus sibiricus aged at a 

346 high rate, which has been commonly found in other reports (Jin et al., 2021; Yang et al., 2021). 

347 Plant production capacity, seed reproduction capacity decreased with the increase of plant age, 

348 which affect the maintenance and regeneration of the plant population (Kuai, 2014). Likely, 

349 increase of plant senescence contributes to these declines. Senescence occurs at different stages 

350 and at different levels (plants, organs, tissues, cells) of plant (Leopold, 1961). In the process of 

351 senescence, a series of changes occur in the external morphological characteristics of each part 

352 of the plant (Van Doorn & Woltering, 2004).These changes mainly include plant height, leaf 

353 number and biomass, and the changes of these morphological features on the surface ultimately 

354 reflect the changes of physiological and biochemical processes and material transport inside the 

355 plant will eventually affect the yield and quality of the seed (Kuai, 2014; Song, 1998). 

356 Plant aging is one of the most crucial and complex physiological phenomena in the 
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357 lifecycle of a plant, which often falls prey to environmental and biological stresses that leads to 

358 erratic growth. An increase of oxidative stress is one of biological stresses that is linked to plant 

359 aging (Munné-Bosch & Alegre, 2002). Oxidative stress can occur when the rate of scavenging 

360 free radicals is over-ride by the rate of free radical production in an organism. In the present 

361 study, we measured the superoxide radical generation rate in leaves and roots at the jointing and 

362 heading stages, and did not find any apparent pattern between the superoxide radical generation 

363 rate and plant age. The radical generation rates in both leaves and roots in the heading stage were 

364 higher than those in the jointing stage. There was also a large year-to-year variation in the 

365 superoxide radical generation rate. It should be noted that the year-to-year variation consists of 

366 the effect of plant age confounded by environmental changes (climate in particular) between 

367 years. Therefore, the results suggest that the superoxide radical generation rate was influenced 

368 strongly by environmental factors and physiological stage of plants.

369  The concentration of MDA is a good indicator to oxidative damage of lipids in plants 

370 (Ozlem, 2022). The results in the present study showed an increasing trend of the MDA 

371 concentration with plant age, particularly in leaves and roots at the heading stage in 2019, 

372 indicating an increase of lipid peroxidation with plant age. An increase of MDA concentration is 

373 resulted from damage to the membranes and accelerated aging, which leads to the metabolic 

374 dysfunction of plant cells and even leads to cell death directly ( Rysz et al., 2022). Interestingly, 

375 it was noted that the physiological state had significant influence on the MAD concentration in 

376 roots but not in leaves (Table 4); also the year-to-year variation in the MDA concentration 
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377 appeared small. It seems that the MDA concentration was associated with the age of roots, as 

378 well as the late physiological stage. 

379 The antioxidative defense system comprise of several antioxidant enzymes such as SOD, 

380 catalase, and POD that scavenge superoxide radicals, peroxides, and other free radicals in plants( 

381 Noctor & Foyer,1998 ). The results in this study showed that the SOD activity appeared 

382 declining with plant ages in roots, but not in leaves; the POD activity declined with plant age in 

383 both leaves and roots; whereas the CAT activity declined with plant age in leaves at the heading 

384 stage in 2018, but remained almost unchanged with plant age in both leaves and roots at the other 

385 stages and years. Overall, the antioxidant capacity appeared becoming weak with plant aging, 

386 particularly in roots. Aforementioned, the superoxide generation rate did not change much with 

387 plant aging, so the weak of the antioxidant capacity could result in a risk of oxidative stress, 

388 which agrees with the increase of the MDA concentration with plant aging in this study. These 

389 results indicate that the overall oxidative capacity was affected by plant aging, which is in 

390 agreement with previous studies (Munné-Bosch & Lalueza, 2007 ). It is also possible that 

391 oxidative stress accelerated leaf senescence with plant aging, therefore, is regarded as an 

392 adaptive strategy for plants to copy with environmental stresses (Munné-Bosch, Jubany-MaUi & 

393 Alegre, 2001).

394 It has been reported that plant endogenous hormones are one of the important factors that 

395 regulate plant senescence (Jan et al., 2019) . However, little is known about their roles in plant 

396 aging process. In this study, we determined the concentrations of IAA, GAÿZT, and ABA in 
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397 both leaves and roots at the jointing and heading stages. Overall, the concentrations of these 

398 hormones were many-fold lower in roots than in leaves, particularly IAA, GA, and ABA. IAA is 

399 involved in the regulation of leaf expansion and newly emerged leaves to produce auxins (Aldés, 

400 Centeno & Fernández, 2004). ZT is a type of cytokinin participating in many physio-

401 biochemical processes, including different cellular divisions and the senescence of leaves, thus 

402 regulates the ratio of shoot/root systems (Azzam et al., 2022). A reduction of such cytokinins is 

403 associated with plant aging in conifers (Valdés, Fernández & Centeno, 2003). GA is necessary 

404 for shoot and root elongation and generally associated with plants senescence (Pto�ková et al., 

405 2022). ABA regulates various developmental processes and serves as an inducer to trigger plants 

406 senescence (Lim, Kim & Nam,2007; Asad et al., 2019). In the present study, the IAA 

407 concentration presented different patterns with plants age between leaves and roots. In leaves, 

408 the concentration increased with plant age, except for the very low concentration in 8-year old 

409 plants, the most of which was dead vegetable; whereas in roots, there was no clear pattern 

410 between the IAA concentration with plant age. The ZT concentration in roots at both the jointing 

411 and heading stages declined with plant age. The changes of the GA concentration with plant age 

412 varied between the physiological stages and between years: increasing with plant age in leaves 

413 and roots at the jointing stage in 2018, otherwise, no clear pattern was seen. The GA 

414 concentration is usually low in roots, however, such a low concentration can maintain the root 

415 growth (Pto�ková et al., 2022). A reduction of GA could decrease the capacity for growth as 

416 plants age (Colebrook et al., 2014). Previous studies showed that the ABA concentration in plant 

417 was regulated not only by ABA biosynthesis but also by its catabolism (Zhang et al., 2018). It is 
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418 known that root is an important site of ABA synthesis, and then ABA is transported from roots to 

419 leaves through xylem vessel (Wilkinson & Davies, 2002; Dodd, 2005). The increase of 

420 endogenous ABA can reduce transpiration of the plant by inducing stomatal closure, but also by 

421 decreasing leaf area. The ABA concentrations in leaves and roots appeared increasing with plant 

422 age particularly in leaves, albeit there were some scatted data such as ABA in roots of 2019 (the 

423 reason is unknown).

424 Aging occurs usually throughout the lifetime of perennials at the tissue and organ levels 

425 (Jing, Hille & Dijkwel, 2003)and in aboveground and underground parts. The stems and leaves 

426 are the annual parts, while roots are perennial parts of the perennial plant. Elymus sibiricus, as a 

427 typical perennial species, the differences in physiological character reflect not only the changes 

428 within the growing season, but also the response to the growing years, especially roots whose 

429 living conditions affect the growth of plants in the next season(Wang,2014). Leaf senescence has 

430 been studied intensively. The information about the mechanisms of roots in plant aging has not 

431 been well understood yet. It was proposed that root senescence is closely related to leaves 

432 senescence, and the main possibly reasons are the root tip is the site to synthesize cytokinins and 

433 gibberellins, which are transported upward through the stem and leaf to regulate the senescence 

434 of stems and leave. As the vitality of roots decreases, so does the ability to synthesize hormones, 

435 resulting in a decline in the anti-aging ability of the aboveground part, leading to aging (Chen & 

436 Brassard, 2013). Based on these literatures, we believe physiological and biochemical changes 

437 in roots may play primary roles in plant aging process. Aforementioned, the age-associated 
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438 reduction of antioxidant capacity, particularly the SOD and POD activities, in roots could be one 

439 of the contributors; the decline of the ZT concentration and a tendency of increasing ABA 

440 concentration in roots could not be ruled out.

441

442 CONCLUSION

443 Elymus sibiricus grasses showed a rapid aging process with substantial reductions of 

444 aboveground biomass and seed yield with plant ages. The aging process appeared to be 

445 associated with the reduced nativities of SOD and POD in roots and the increase of oxidative 

446 stress as indicated by increased MAD concentration in roots and leaves. The plant hormone 

447 concentrations were many-fold lower in roots than these in leaves. Among hormones in roots, the 

448 ZT concentration appeared increasing while the ABA concentration tended to decline with plant 

449 age. However, these plant age-related trends were influenced significantly by plant physiological 

450 stages and year-to-year variations, likely due to climate differences between years. In future 

451 studies, these influences shall be carefully controlled and minimized.   
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Figure 1
Monthly mean temperature and cumulative rainfall in 2018 and 2019 at Haiyan County,
Qinghai
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Figure 2
Plant phenotypes of 3- (A) and 4-year old plant (B) and roots of 4-year old plants (C)
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Figure 3
Superoxide radical generation rate in leaves (A) and rootsÿBÿof Elymus sibiricus at the
jointing and heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 4
MDA concentration in leaves (A) and in rootsÿBÿat the jointing and heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 5
SOD activity in leaves (A) and roots (B) of Elymus sibiricus at the jointing and heading
stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 6
The POD activity in leaves (A) and roots (B) of Elymus sibiricus at the jointing and
heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 7
The CAT activity in leaves (A) and in roots (B) of Elymus sibiricus at the jointing and
heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 8
IAA concentration in leaves (A) and in roots (B) of Elymus sibiricus at the jointing and
heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 9
Zeatin (ZT) concentration in leaves (A) and in roots (B) of Elymus sibiricus at the jointing
and heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 10
Gibberellic acid (GA) concentration in leaves (A) and in roots (B) of Elymus sibiricus at
the jointing and heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Figure 11
ABA concentration in leaves (A) and roots (B) of Elymus sibiricus at the jointing and
heading stages.

Diûerent letters on the top of columns indicate signiûcant diûerences between plants ages
within the physiological state (P < 0.05).
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Table 1(on next page)

Chemical properties of soil at Haiyan Research Station, Haiyan County, Qinghai Province
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1 Table 1 Chemical properties of soil at Haiyan Research Station, Haiyan County, Qinghai Province

pH
OM

%

Total N

g/kg

Total K

g/kg

Total P

g/kg

Available nitrogen

mg/kg

Available potassium

mg/kg

Available phosphorus

mg/kg

8 2.93 1.22 7.73 0.41 68.19 213.87 10.53

2
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Table 2(on next page)

Plant age of E. sibiricus samples
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1 Table 2 Plant age of E. sibiricus samples 

Plant age
Year of sowing

2018 2019

2016 3 4

2015 4 5

2012 7 8

2
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Table 3(on next page)

Aboveground fresh and dry biomass and seed yield of Elymus sibiricus
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1 Table 3 AboA���oo�� fresh an� ��d biob��� an� see� dy��� of Elymus sibiricus

P���� age F���	 biob��� (kg/ha) Hay biomass (kg/ha) Seed yield (kg/ha)

3 15632a ± 162.80 7550a ± 163.28 809a ± 24.46 

4 10283b ± 171.03 5823b ± 155.17 706b ± 40.54

5 7434c ± 133.18 4780c ± 162.88 532c ± 38.69

2 Different superscripts within the column indicate significant different between plant ages (P < 0.05).

3
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Table 4(on next page)

P values for the eûects of plant physiological stages
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Table 4. P values for the effects of plant physiological stages

2018 2019
Indicators

Leaves Roots Leaves Roots

O2
- generation rate 0.000 0.000 0.000 0.000

MDA 0.391 0.007 0.234 0.000

SOD 0.000 0.001 0.000 0.042

POD 0.000 0.000 0.000 0.000

CAT 0.000 0.000 0.006 0.483

IAA 0.000 0.000 0.000 0.000

ABA 0.000 0.000 0.002 0.000

ZT 0.000 0.698 0.000 0.002

GA 0.000 0.009 0.000 0.080

1

2

3
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