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ABSTRACT
Gastrointestinal (GI) morphology plays an important role in nutrition, health, and
epidemiology; yet limited data on GI variation have been collected since 1885. Here
we demonstrate that students can collect reliable data sets on gut morphology; when
they do, they reveal greater morphological variation for some structures in the GI
tract than has been documented in the published literature. We discuss trait variability
both within and among species, and the implications of that variability for evolution
and epidemiology. Our results show that morphological variation in the GI tract is
associated with each organ’s role in food processing. For example, the length of many
structures was found to vary significantly with feeding strategy. Within species, the
variability illustrated by the coefficients of variation suggests that selective constraints
may vary with function. Within humans, we detected significant Pearson correlations
between the volume of the liver and the length of the appendix (t -value= 2.5278, df=
28, p= 0.0174, corr = 0.4311) and colon (t -value = 2.0991, df = 19, p= 0.0494, corr
= 0.4339), as well as between the lengths of the small intestine and colon (t -value =
2.1699, df = 17, p= 0.0445, corr = 0.4657), which are arguably the most vital organs
in the gut for nutrient absorption. Notably, intraspecific variation in the small intestine
can be associated with life history traits. In humans, females demonstrated consistently
and significantly longer small intestines than males (t -value15 = 2.245, p= 0.0403).
This finding supports the female canalization hypothesis, specifically, increased female
investment in the digestion and absorption of lipids.

Subjects Anthropology, Evolutionary Studies, Anatomy and Physiology, Gastroenterology and
Hepatology, Science and Medical Education
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INTRODUCTION
Scientific importance of variation
Morphology varies among individuals within species, and this variation is key to adaptation
and evolution (Darwin, 1859). When variation among individuals results from genetic
differences, that variation is key to natural selection. But even when variation is not genetic,
or results from amix of genes and plasticity, it can have important ecological consequences.
For example, phenotypic variation allows species to collectively take advantage of more
resources and conditions than can any individual within the species (Bolnick et al., 2007).
In humans and domesticated animals, such variation has the added importance of playing
a role in medical treatment and intervention (Raikos & Smith, 2015). Yet, while variation in
many traits, including the shape of finch beaks (Abzhanov, 2004) and the shape of human
noses (Maddux et al., 2017; Zaidi et al., 2017), has been described in great detail, some traits
remain poorly studied, particularly the subset of internal soft tissue traits that are neither
outwardly visible nor preserved in fossils. The gastrointestinal (GI) tract represents an
organ system that directly impacts a species’ ability to occupy a given niche space and also
to adapt to changing conditions through targeted digestion of different nutrients (Table 1).
The morphology of the GI tract is particularly important given recent revelations about
the contributions of gut microbial communities to host health. But the extent to which
different components of the GI tract vary among individuals is still poorly documented,
impeding our understanding of why this variation exists and how it impacts microbial
activity.

The lack of GI data is particularly apparent in humans. Early research on humans
emphasized comparative morphology, including research focused on organs (Treves,
1885); but with time the study of morphology waned in popularity (for many reasons,
including the advancement of molecular techniques), with the handful of subsequent
studies of gastrointestinal morphology focusing almost exclusively on intestinal length
(Dreike, 1894; Bloch, 1904; Bryant, 1924; Blankenhorn, Hirsch & Ahrens, 1955; Underhill,
1955). Indeed, the latter studies calculated the average length of the small intestine and
colon but did not record inter-individual variation.

Dissection is the primary vehicle for students to form an intimate familiarity with the
internal anatomy of humans and other animals (Gunderman &Wilson, 2005), but it can
also present an opportunity to appreciate and quantify morphological variation. Here we
hypothesize that the measurements taken by students, particularly medical students, can
play a key role in increasing our understanding of variation in human GI tracts. We argue
that such measurements have at least three potential values. (1) They provide a context
in which medical students can pay attention to variation and its importance for medical
treatment. (2) They can inform our understanding of human evolution and variation.
Finally, (3) they can allow tests of general theory regarding the evolutionary and ecological
tradeoffs among organ systems. We consider each framework below and in Table 2. If we
are right, many thousands of thoughtfully donated human bodies could be put to even
more use each year in the United States (and more globally) than is currently the case.
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Table 1 Digestive processes and feeding strategies associated with different sites along the gastrointestinal tract.

Digestive site Functional role Macronutrient(s)
digested

Nutrient(s) absorbed Associated feeding strategy

Mouth Mastication Starches – Frugivore, omnivore, herbivore
Stomach Acid catabolism Proteins – Carnivore
Liver Enzyme production, metabolism

and detoxification, glycogen
and triglyceride storage

Carbohydrates, lipids – Frugivore, omnivore, herbivore

Small intestine Bile salt catabolism, absorption Protein, lipids,
carbohydrates

Carbohydrates, proteins, lipids Carnivore, omnivore

Cecum, appendix Microbial storage and fermentation Fiber Vitamins, short chain fatty acids, water Folivore, omnivore
Colon Microbial fermentation, water absorption Fiber Vitamins, short chain fatty acids, water Folivore, omnivore
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Table 2 Different frameworks and predictions for anatomical variation in the current study.

Framework Assumption / hypothesis Prediction

Medical training A lack of variational knowledge among medical students
can lead to radiological misdiagnoses of variants as
pathologies (Raikos & Smith, 2015).

Having students take measurements during dissections can
reveal underappreciated variation in human bodies and the
bodies of other frequently dissected animals.

Human evolution and variation We hypothesize that the relative lack of data on modern
human GI tracts hides heretofore unrecognized
complexities regarding the evolution and ecology of
human GI tracts.

We expect the present study to reveal greater human
variation than previously reported in the literature, by
virtue of adding more samples compared to previous
studies, with consequent effects on our understanding of
the evolution of human gut size and morphology.

General theory and organ size Deviations from the mean are more likely to be costly in
traits that are vital to survival and thus under stronger
selective pressure.

We predict that the small intestine and colon exhibit less
interindividual variation than other parts of the GI tract
because they perform the most vital functions (i.e., nutrient
absorption; see Table 1).

Female canalization Females might leverage developmental stability to reduce
morphological variation and protect reproductive
investment (Ross, Baker & Falsetti, 2003;Willmore, Young &
Richtsmeier, 2007;Moore, 2013).

We predict that female humans will exhibit consistent
differences in GI measurements and/or variation compared
to males.

Concerted evolution hypothesis Any single change or acquisition will affect all regions of the
gut due to the developmental and physiological connections
between them, resulting in coordinated variation among
sites (Finlay & Darlington, 1995).

Within species, we would expect to detect strong
correlations between different organs to coordinate the
metabolism and absorption of nutrients.

Mosaic evolution hypothesis Selection can drive the separate evolution of specific [gut]
sites without resulting in system-wide changes (Barton &
Harvey, 2000).

Because each site along the GI tract is specialized to target
the digestion of specific macronutrients (see Table 1),
we might predict that GI morphology would vary by
organ among species, reflecting niche (Violle et al., 2012),
defined here as feeding strategy. We might also expect
to observe sex-specific differences in variation of specific
gut sites related to differences in dietary requirements for
reproductive purposes (e.g., canalization in females related
to the dietary investments for gestation and lactation).
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Medical training and variation
One of us (Dunn) has argued that the focus on the ‘‘normal’’ or typical representative
case and the mean is problematic in general in education (Dunn et al., 2016); but this
approach is especially problematic formedical students. Lacking information on or even the
awareness of normal human variability may lead to misdiagnosis and malpractice (Willan
& Humpherson, 1999; Granger, 2004; Nzenwa, Iqbal & Bazira, 2023). We hypothesize
that having students take measurements during dissections can reveal underappreciated
variation in humans and other frequently dissected animals. We further hypothesize, but
do not test here, that by paying attention to variation, medical students are more likely to
be aware of such variation in the bodies of their own patients and the implications of such
natural variation as it relates to treatment.

Human evolution and variation
Roughly 1.9 million years ago (Domínguez-Rodrigo, 2002), humans have been variously
hypothesized to have begun to use tools to eat shellfish (Broadhurst, Cunnane & Crawford,
1998) and honey (Crittenden et al., 2011); hot springs to cook foods (Sistiaga et al., 2019);
and fermentation (Amato et al., 2021) and cooking (Wrangham, 2009) to transform foods.
The expensive tissue hypothesis (Aiello & Wheeler, 1995) posits that this food transition
fueled the evolution of a bigger brain in ancient humans via more available calories and
more easily digested foods. Less chewing and less robust jaws freed space for a bigger
brain; and long, large intestines were less necessary because more processed foods required
less microbe-mediated digestion in the large intestine (Aiello & Wheeler, 1995; Zink &
Lieberman, 2016). Yet, while our understanding of dental and jaw bone changes across
human evolution is robust (Organ et al., 2011), our understanding of GI changes is not.
This is in part because GI tissue is not preserved in ancient human fossils, and also because
existing studies of the expensive tissue hypothesis focus on the shape and size of the rib cage
(Aiello & Wheeler, 1995). We expect the present study to reveal greater human variation
than previously reported in the literature, by virtue of adding more samples compared to
previous studies, with consequent effects on our understanding of the evolution of human
gut size and morphology.

Some GI structures may vary more than others, and this variation is potentially
predictable. Variation might also differ predictably among species based on body size,
evolutionary relatedness, feeding strategy, population size, or other species-level attributes.
That is to say, variationmight be a trait that is, itself, conserved in certain lineages as a result
of multiple non-exclusive causes including genetic differences, developmental differences,
or phenotypic plasticity. Some organisms respond plasticly to environmental changes,
in ways that buffer the change (Willmore, Young & Richtsmeier, 2007). This phenotypic
response, known as canalization, increases short-term fitness benefits and maximizes
reproduction (Careau, Buttemer & Buchanan, 2014). Canalization can also differ among
sexes: it has been hypothesized that female humans are better able to buffer environmental
challenges (Bogin, 1999; Stinson, 2012). We might then expect to observe consistent
differences in the size or variation of specific GI measurements in females compared to
males.
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Here we propose a novel approach to simultaneously expand our understanding of
variation among individuals within species and engage students in a better understanding
of variation. First, we developed a citizen science-based approach wherein undergraduate
students enrolled in biological courses at North Carolina State University measured key
features of GI morphology as a part of a comparative dissection lab. The goal of this
first component is to understand differences among species, and whether students can
effectively record data on morphological variation as a part of traditional laboratory
university coursework. Second, two experts (Hale and McKenney) measured variation in
human cadavers used in gross anatomy courses at Duke University School of Medicine. As
part of in-class activities, graduate and medical students also measured the same cadavers.
If variation exists in human cadavers and other species, and if students can be a part of
the process of recording such data, then our understanding of morphological variation
could expand rapidly with as many as 10–12 million animal specimens dissected each
year in classrooms (Oakley, 2012; Dunn et al., 2016). Here we (a) measured among species
differences to determine whether they exist after body size is accounted for; (b) measured
within-species variation to test whether different organs vary differently; and (c) measured
among individual variation to determine if sex is explanatory.

MATERIALS & METHODS
The raw data collected for this study and R code used to analyze the data are
available in the Dryad repository (https://datadryad.org/stash/share/zqWgXsGeOTJ-
zw5E_AaDLmmq1n3hGz9oKFx77QhiDjc).

Data collection
Measurements were collected from formalin-preserved human cadavers and animal
dissections to quantitatively compare GI variation within and across species. The cadaver
data for 45 individuals (21 females and 24 males) were collected by the authors (EAM and
ARH) at the Duke University School of Medicine gross anatomy laboratory. These cadavers
were part of the medical school anatomy laboratory courses and the Duke Anatomical
Gifts Program, for which individual donors consent to educational use, so IRB approval
and consent were not needed. The age, sex, and cause of death for each individual are the
only information provided. The full list of cadaver measurements can be found in Text
S1. Measurements to the nearest 0.01 cm were recorded with the following tools: sliding
calipers, spreading calipers, ruler tape, rulers, and string (see supplementary information
for details).

Animal dissection data from 30 dissection specimens (10 rats [Rattus norvegicus], 10
pigs [Sus scrofa], and 10 bullfrogs [Lithobates catesbeianus]; Carolina Biological Supply
Company) were collected by undergraduate students enrolled in a comparative anatomy
laboratory course at North Carolina State University. The dissection specimens used in this
study were not bred for research and were purchased through a third party for educational
labs; therefore, no IACUC review was required by NC State. This lab was specifically
designed to teach quantitative comparisons of the digestive system across species and to
illustrate the potential effects of natural selection due to feeding strategy. Studentsmeasured
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Figure 1 Representative gut diagrams for the fetal pigs (Sus scrofa), frogs (Lithobates catesbeianus),
and rats (Rattus norvegicus). Illustration by Chris Hedstrom.

Full-size DOI: 10.7717/peerj.15148/fig-1

each specimen’s body length (from bregma to coccyx), esophageal length, stomach length
(from fundus to pylorus), small intestine length, cecum length, and colon length (Fig. 1).
The definitions provided to students for each measurement can be found in Text S2 and
at http://studentsdiscover.org/lesson/a-diversity-of-guts/. Measurements were consolidated
for instructional purposes.

Mean and standard deviations of the organ structures for the species examined in this
study were also collected from published literature where available (see Tables S1 and S2).
The aim was to investigate (1) how data were traditionally presented and (2) whether the
variation observed in the study sample was comparable to published literature. ANOVA
tests were implemented to identify significant differences in observed variation where
information on the standard deviation of the samples was available.

Comparative dissection GI analysis
Total intestinal length was calculated from the small intestine and colon lengths. Mean,
standard deviation, minimum, and maximum values were calculated for each gut site.
Coefficients of variation were calculated to measure the variability per site, within species
and relative to their respective sample population means. Bartlett tests were performed to
assess the homogeneity of variances among species.

Cadaver GI analysis
For brevity, we reduced the cadaver variables to include only those also collected during
animal dissections (see list above and Text S2), as well as those that exhibited the greatest
variation (i.e., liver volume, gallbladder max length, appendix length). We calculated the
mean, standard deviation, minimum, and maximum values to provide ranges for each of
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the measurements selected. Coefficients of variation were calculated to assess investment
and variation in major digestive sites of interest. Sample sizes vary because for some
individuals, the structure was either absent (e.g., gallbladder, appendix) or unavailable for
measurement. None of the human gut measurements collected were found to be correlated
with cadaver height (tall humans did not have predictably longer guts than short humans);
therefore, standardization by cadaver height was not performed for the following tests.
All data were normalized to a mean of zero and a standard deviation of one to compare
measurements across anatomical sites. We chose to employ Pearson product-moment
correlations to test for significant relationships between each pair of variables. Linear
regression was performed to measure the strength of relationships between variables.
Analysis of variance (ANOVA) was performed on a logistic regression model to determine
if significant sex differences were independent of the ranking of variables in the model.
One-way ANOVA was also performed to test for significant variation between sexes for
each variable. For those measurements that showed a significant relationship with sex,
boxplots were used to visualize sex differences.

RESULTS
Student measurements increase our understanding of variation
Undergraduate students and experts recorded different gut lengths and more variation
than has been previously reported in the published literature, across rat (Rattus norvegicus),
frog (Lithobates catesbeianus), and fetal pig (Sus scrofa) specimens (Figs. 2 and 3; Tables S1
and S2). As predicted, we find that the magnitude of variation (i.e., standard deviation)
increased with sample size, in all species except for fetal pigs (Sus scrofa; Fig. 3).

Across 45 humans, we detected similarmean gutmeasures (Fig. 2D), consistent variation
in small intestine length (F4,32 = 0.2629, p= 0.2009) but greater variation in colon length
(F9,22= 0.11664, p= 0.002219) compared to Hirsch (Blankenhorn, Hirsch & Ahrens, 1955)
in his study of 10 individuals. Variation among individuals does not appear to have been
reported or even discussed in detail in any of the other early studies of the morphology of
the human GI tract. It is worth noting here that we found such variation even though we
measured just 45 human cadavers.

The variability of small intestine, colon, and total intestinal length differed significantly
between frogs and all other species (Tables 3 and 4). Bartlett tests demonstrated that the
patterns of variation were different for each species. However, humanmeasurements drove
this heterogeneity: F-tests confirmed that only humans differed significantly from all other
species for small intestine F3,59= 130.3, p< 2e−16), colon (F3,49= 128.8, p < 2e−16), and
total intestinal length (F3,49= 37.56 p= 9.46e−13).

We did not detect significant correlations in size among organs within rats, pigs, or frogs
(Table S3). However, Pearson correlations and paired t-tests show that liver volume was
significantly correlated with the length of appendix (t -value= 2.5278, df = 28, p= 0.0174,
corr= 0.4311) and colon (t -value= 2.0991, df = 19, p= 0.0494, corr= 0.4339) in humans
(Table 5, Table S4). This might be expected if the same factors that favor large microbial
communities also favor large livers. We also detected a significant correlation between

McKenney et al. (2023), PeerJ, DOI 10.7717/peerj.15148 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.15148#supp-3
http://dx.doi.org/10.7717/peerj.15148#supp-4
http://dx.doi.org/10.7717/peerj.15148#supp-5
http://dx.doi.org/10.7717/peerj.15148#supp-6
http://dx.doi.org/10.7717/peerj.15148


 

Figure 2 Mean length (in cm) of small intestine, cecum, and colon in (A) rats (Rattus norvegicus), (B)
frogs (Lithobates catesbeianus), (C) fetal pigs (Sus scrofa), and (D) humans (Homo sapiens). Empty
shapes indicate small intestine measurements; filled shapes indicate colon measurements. Previously
published data reported from Permezel & Webling (1971), Fisher & Parsons (1950), Toloza & Diamond
(1990),Wang et al. (2005),Miller & Ullrey (1987), Treves (1885), Dreike (1894), Bloch (1904), Bryant
(1924), Blankenhorn, Hirsch & Ahrens (1955), Underhill (1955), Standring, Borley & Gray (2008), Netter
(2014), and Tubbs, Shoja & Loukas (2016). Asterisks indicate medical texts.

Full-size DOI: 10.7717/peerj.15148/fig-2
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Figure 3 The amount of variation detected for (A) small intestine and (B) colon length increases with
sample size for all species except fetal pig. Empty shapes denote previously published studies (Permezel &
Webling, 1971; Fisher & Parsons, 1950; Toloza & Diamond, 1990;Wang et al., 2005; Blankenhorn, Hirsch &
Ahrens, 1955). Filled shaped denote the present study.

Full-size DOI: 10.7717/peerj.15148/fig-3

Table 3 ANOVA results comparing variation in small intestine length, colon length, and total intesti-
nal length between carnivorous (i.e., frog) versus omnivorous (i.e., rat, pig, and human) specimens.
Cecum length was excluded because the single carnivore has no cecum. Significant p-values are in bold
(α= 0.05).

Variable df SS F-statistic p-value

Small intestine length 1, 61 5.76e5 15.01 2.6e−4
Colon length 1, 51 4.24e5 10.23 2.4e−3
Total intestinal length 1, 51 3.33e6 8.41 5.5e−3

small intestine and colon length (t-value = 2.1699, df = 17, p= 0.0445, Table 3, Table
S4). Most other structures did not exhibit such correlation: for example, the size of the
cecum could not be predicted based on the size of the small intestine.

Our results suggest that organs behave independently of one another, both within and
across species. Bartlett tests confirmed that stomach length exhibited more homogenous
variance among species compared to other organs (Bartlett’s k-squared = 3.4495, df = 2,
p= 0.1782, Table 6). In rats (Rattus norvegicus), which are generally considered to be
omnivorous, the length of the cecum is more variable than that of the colon (Table 4).
Liver volume exhibited the greatest variability in humans, varying by as much as 54%
among individuals (Table 7). The next most variable structures were those that house
microbial communities (e.g., cecum and appendix).
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Table 4 Variation across three commonly dissected species in select GI measurements in centimeters.

Frog (Lithobates catesbeianus)
Measurement n Mean (cm) Min Max Std Dev Cv

Body Length 10 9.875 8.7 11.5 0.882 8.93%
Length of Esophagus 10 2.545 1.75 3.7 0.078 27.67%
Length of Stomach 10 4.50 3.3 6.8 0.129 21.57%
Length of Small Intestine 10 19.080 16.2 22.7 0.133 9.40%
Length of Cecum – – – – – –
Length of Colon 10 3.49 2.5 6.9 0.133 36.56%

Pig (Sus scrofa)
Body Length 10 32.58 25 36 3.46 11.18%
Length of Esophagus 10 9.889 3 15.5 0.115 35.73%
Length of Stomach 10 8.167 5 15.25 0.096 40.47%
Length of Small Intestine 10 283.8 220 385.5 1.9 16.31%
Length of Cecum 10 4.033 2.8 6 0.025 25.07%
Length of Colon 10 50.19 29.5 69.5 0.383 23.56%

Rat (Rattus norvegicus)
Body Length 10 16.180 13.1 19 1.905 11.78%
Length of Esophagus 10 6.685 3 10.7 0.192 35.38%
Length of Stomach 10 7.12 3.5 11.5 0.182 35.51%
Length of Small Intestine 10 91.260 81 102.9 0.942 8.33%
Length of Cecum 10 9.215 5 13 0.202 29.11%
Length of Colon 10 14.41 12.5 16.9 0.14 9.60%

Table 5 Pearson product-moment correlation for cadaver dataset for each of the measurements examined. Correlations are in lower diagonal
and p-values are reported in upper diagonal. Significant p-values are in bold (α = 0.05). Test statistics and degrees of freedom are reported in Table
S5.

Liver
volume

Length of
Gallbladder
(maximum)

Length
of Cecum

Length
of Small
Intestine

Length of
Appendix

Length of
Colon

Liver volume 0 0.7242 0.0767 0.2978 0.0174 0.0494
Length of Gallbladder (maximum) −0.0685 0 0.4234 0.4826 0.3400 0.7613
Length of Cecum 0.2796 −0.2527 0 0.1646 0.3502 0.2804
Length of Small Intestine 0.1899 −0.1505 0.2477 0 0.0755 0.0445
Length of Appendix 0.4311 0.1991 0.1679 0.3696 0 0.4399
Length of Colon 0.4339 −0.0796 0.2350 0.4657 0.1830 0

Evidence for female buffering
Overall, logistic regression suggests that the variation among individuals was not strongly
correlated with the sex of the individuals (Table S5; F3,17 = 1.228; p= 0.3303). However,
the logistic regression model for small intestine length with sex as a covariate showed
a significant difference between males and females (F3,15 = 88.31, p= 9.291e−10).
Specifically, we found that females have consistently and significantly longer small intestines
compared to males (Fig. 4; t -value 15= 2.245, p= 0.0403).
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Table 6 Bartlett tests for homogeneity of variances among frog (Lithobates catesbeianus), pig (Sus
scrofa), and rat (Rattus norvegicus) specimens. Significant p-values are in bold (α= 0.05).

Variable Bartlett’s
k-squared

df p-value

Body Length 13.504 2 0.001169
Length of Esophagus 6.7381 2 0.03442
Length of Stomach 3.4495 2 0.1782
Length of Small Intestine 35.11 2 2.376e−8
Length of Cecum 24.15 2 8.911e−7
Length of Colon 12.921 2 0.001564

Table 7 Summary statistics for the GI organs across the human cadaver sample. All measurements are
provided in cm or cm3.

Measurements n Mean Min Max Std Dev C v

Length of Body 45 168.2 149.0 184.0 10.4 6.20%
Liver volume* (cm3) 41 1174.83 377.38 2872.53 641.39 54.59%
Length of Gallbladder (maximum) 30 8.85 5.50 12.50 1.65 18.62%
Length of Small intestine 33 419.05 193.5 592 84.33 20.12%
Length of Duodenum 33 27.20 17.1 46.3 7.37 27.11%
Length of Jejuno-ileum 43 391.56 193.50 592.00 78.71 20.10%
Length of Cecum 44 12.68 6.5 25.80 4.22 33.26%
Length of Appendix 33 6.91 1.40 12.7 2.48 35.95%
Length of Colon 23 134.73 80.9 199 30.75 22.83%
Total intestinal length 23 486.04 80.9 758.5 193.06 39.72%

Ratios
Liver volume: small intestine 33 3.10 0.95 6.07 – –
Duodenum: jejuno-ileum 33 0.07 0.03 0.11 – –
Duodenum length:total small intestine 33 0.06 0.03 0.10 – –
Total small intestine: total colon 19 3.20 2.18 4.98 – –
Appendix length: total colon 20 0.06 0.01 0.10 – –
Cecum length: total colon 23 0.10 0.06 0.21 – –
Total small intestine: cadaver length 32 2.50 1.25 3.86 – –
Appendix length: cadaver length 32 0.04 0.01 0.08 – –
Cecum length: cadaver length 43 0.07 0.04 0.13 – –
Total colon length: cadaver length 22 0.80 0.44 1.12 – –
Total intestinal length:cadaver length 20 3.08 0.44 4.80 – –

Notes.
*Calculated as V = pi∗ r2(h/3) where r = ( 12 )maximum length of liver and h = height of liver at the hilum.

DISCUSSION
We measured the digestive systems in humans, rats, pigs, and bullfrogs to investigate
morphological variation within and across species. Because variation is the raw material
upon which natural selection acts, quantifying variation across traits and species lends
insight to evolutionary processes and adaptive flexibility (i.e., through phenotypic
plasticity). For lab animals (such asNorway rats) such variationmay influence experimental
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Figure 4 Boxplots by sex for small intestine length, in centimeters.Model significance is based on α
=0.05.

Full-size DOI: 10.7717/peerj.15148/fig-4

responses. For domestic animals (such as pigs), it may influence growth rate and health.
For humans, variation may further drive or contribute to individual responses to diets,
microbiome compositions, or medical conditions, ultimately influencing diagnosis. Given
the great genetic and ancient dietary diversity of humans, as well as the potential for
variation due to plasticity in some human traits, and the medical consequences that
variation is known to have, it is important to learn about variation, especially in humans.
For example, knowledge of variation in the insertion of the male gonadal vein can assist in
distinguishing conditions such as pelvic congestive syndrome and infertility from normal
variation (Gupta, 2015). Yet discussions of variability have been dropped from many
medical texts over the years, and anatomy classes generally do not emphasize variation,
much less its importance in contributing to health or disease states (Nzenwa, Iqbal &
Bazira, 2023). (For example, an individual with a large appendix might be expected to host
a larger reservoir of beneficial microbes, and to recover more quickly and completely from
a diarrheal illness.)

We are beginning to understand the evolution of some genetic differences that
influence digestion in humans. For example, early hominids evolved versions of alcohol
dehydrogenase that increased their ability to metabolize alcohol some forty-fold (Carrigan
et al., 2015). Similarly, early hominids also evolved novel lactic acid receptors, potentially
in association with increased ingestion of lactic-fermented foods (Amato et al., 2021;
Davenport et al., 2017). We also know that some later human populations evolved lactase
persistence. Yet, we still know very little about larger structural changes in the guts of
humans–and the inferences that have been made are based on the size of the rib cage of
different human species (Ben-Dor, Gopher & Barkai, 2016; Schmid et al., 2013; Williams et
al., 2017). In addition to assuming that rib cage size predicts gut morphology, such studies
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assume a mean size of the rib cage for particular species of Homo without regard to native
and climatic variation.

Here we present a novel approach that engages students in expanding our understanding
of variation among individuals. We demonstrate that students can measure previously
unreported variation, and that those data can inform medical diagnosis and treatment as
well as our broader understanding of evolution.

Medical training and variation
We first assessed the scientific value of student measurements collected during educational
labs. As we predicted, the students with whom we worked uncovered previously unknown
variation based on the study of a relatively small number of dissections. The Association of
American Medical Colleges estimates that first-year medical school enrollment will reach
21,304 in 2019–2020. If we conservatively assume that 6 students share a single human
cadaver, then more than 3,500 human cadavers are dissected each year in the US alone, and
tens (if not hundreds) of thousands since cadaver dissection became a common feature of
medical training (not to mention cadavers dissected by dentists, undergraduates, etc.). The
actual variation among human bodies seen (but not documented) by students each year
is therefore undoubtedly much greater than what we have documented here; and notably,
via the approach we used here, that variation is documentable.

Human evolution and variation
We next compared our results to previous studies. Even based on a small sample of modern
humans, we are able to show much more variation in gut morphology than heretofore
noticed. Where previous studies have compared the relative size of large intestines to small
intestines in humans and extant ape species (as a measure of the degree of specialization
on gut-fermented foods), those studies have included data from just six humans, described
as ‘‘urban males’’, all from a single population (Ragir, Rosenberg & Tierno, 2000). Those
six human males from a single, urban population were then compared to data from a
single chimpanzee (Chivers & Hladik, 1980). Given the extraordinary diversity of modern
humans, we suspect that the diversity we have documented is just a small portion of what
exists globally. Some of this variation is likely to be due to plasticity, but genetic differences
also likely play a role.

General theory and organ size
We next compared variation across species to test whether different organs vary in different
ways. Different animal species have evolved a variety of gastrointestinal morphologies
to facilitate different feeding strategies (Stevens & Hume, 1998) through differential
investment in tissues tailored to digest and absorb specific nutrients (see Table 1).As
predicted, omnivorous pigs (Sus scrofa) and rats (Rattus norvegicus) exhibit greater
variation in the length of the small intestine and colon compared to carnivorous frogs
(Lithobates catesbeianus), which are nutritional specialists by comparison (Table 4). The
generality of conclusions we can draw from this comparison is limited: we considered
just three omnivores and one carnivore, the latter of which also happened to be the only
non-mammal in the study. Yet, our results demonstrate that further study is warranted.
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Humans exhibit increased variation in intestinal length compared to other species, perhaps
because humans do not consume a standardized captive diet. This explanation is supported
by a previous study, in which Saric and colleagues (Saric et al., 2008) characterized fecal
metabolites in humans, rats, and mice, and found that humans exhibit the greatest
intraspecific variation. These results, combined with differences in captive diet, suggest
that dietary variation may beget GI variation. Future studies could incorporate stable
isotope analysis to correlate gut length variation with diet (Kaehler & Pakhomov, 2001;
Kiszka, Lesage & Ridoux, 2014; Kishe-Machumu et al., 2017). Differences across species
may also be driven by life stage: Treves (Treves, 1885) and Zabielski (Zabielski, Godlewski
& Guilloteau, 2008) both previously demonstrated differential and site-specific intestinal
development in neonates compared to adults.

Interestingly, within humans, the total intestinal length exhibits less standardized
variation (−0.5 to 1.5) than did either the small intestine or the colon, suggesting that there
may be a tradeoff in investment between the two tissues (i.e., when the colon is longer,
the small intestine is shorter, and vice versa). Pearson’s coefficient (Table 5) confirms
a correlation between small intestinal and colon length (p= 0.0445) and may indicate
concerted physiological adaptations (Finlay & Darlington, 1995) for greater investment
either in protein absorption in the small intestine or in the microbial fermentation of
dietary fiber in the colon (Stevens & Hume, 1998). Certainly, the correlations between liver
volume and length of the appendix and colon warrant further study to test for a relationship
between human and microbial metabolism, specifically if the variation observed in the
cecum and appendix is mediated by microbial colonization during development.

While the stomach was the most variable organ in pigs (Sus scrofa) and rats (Rattus
norvegicus), it exhibited similar variability across all species. This finding is of interest
because the vertebrate stomach can take many forms (Wilson & Castro, 2010). Our results
suggest that, while the stomach varies within the species presented here, that variability does
not differ significantly among species. Notably, the variation within humans compared
between this study and Hirsch (Blankenhorn, Hirsch & Ahrens, 1955) was consistent for the
small intestine, but not the colon; these results are consistent not only with the different
functions of these two intestinal tract sites, but also with their developmental control.

Most catarrhine primate digestive systems are characterized by a simple stomach, a
C-shaped duodenum, and a more globular and reduced cecum with increased emphasis
on microbial fermentation in the colon (Stevens & Hume, 1998; Lambert, 2002). This
is due, in large part, to a primarily herbivorous diet, which is quickly passed through
the stomach and duodenum before slowing in the ileum and cecum (Ragir, Rosenberg
& Tierno, 2000). By comparison, humans consume a greater diversity of food items
comprising less fiber and more protein and fat; yet the only substantive morphological
difference is a longer small intestine in humans (Carmody & Wrangham, 2009; Watkins
et al., 2010). Chimpanzees do occasionally consume animal protein, but exhibit little
significant difference in food retention and processing times compared to other catarrhine
primates (Milton & Demment, 1989; Lambert, 2002; Carmody & Wrangham, 2009). In this
study, we found that the duodenum—the proximal segment of the small intestine, which
is involved in digestion—varies less than the jejuno-ileum—the distal segment, involved in
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absorption. When combined with what is known about other primates, this could suggest
that the duodenum is under greater developmental control because it functions more
in protein digestion, which has greater importance for humans. Humans also consume
higher-quality diets with cooking substituted for some chemical digestion (Carmody &
Wrangham, 2009). Further, the increased variability of the human colon, similar to other
primates (Lambert, 2002), may indicate increased plasticity in response to differential
consumption of high-fiber foods.

Individuals’ proclivity for lipid metabolism may remain constant, or it may be regulated
by the liver and gallbladder, which exhibit greater variation, while jejunoileal length may
be determined by the nutritional composition (i.e., fat content) of the diet. The greater
variance documented in human liver volume may result from age differences and body
proportions (Wynne et al., 1989), or it may be an artifact of the multiple measurements
that contributed to the geometric proxy for volume.

Evidence for female buffering in humans
Finally, we investigated patterns in human morphological variation. We expected to find
sex-specific differences in investment of digestive tissues, which would increase absorption
and assist the immune system in females as predicted by proponents of female canalization
(Stinson, 2012; Careau, Buttemer & Buchanan, 2014). We found that females consistently
exhibited greater small intestinal length than did males, suggestive of increased investment
in fat absorption in females. Additionally, the low variation we detected in small intestinal
length suggests that these sex-specific differences are highly constrained. As a means of
long-term energy storage and amajor component of breastmilk, fat is crucial for supporting
both reproduction and lactation in females. By contrast, males exhibited greater colon and
cecum lengths compared to females, indicating both that total intestinal length is driven by
small intestinal length, and also that males may compensate for decreased fat absorption
with increased dependence onmicrobial fermentation. Microbial fermentation is especially
important to process ‘‘low quality’’ diets that contain more fiber and less fat or other easily
digestible nutrients (Stevens & Hume, 1998). Males also tend to have larger livers than
females, possibly to metabolize microbial fermentation products, though the difference
in size could also be explained by general differences in body and abdominal cavity size
canalization. Regardless, to our knowledge, these results comprise the first evidence of
female buffering achieved through gastrointestinal morphology.

CONCLUSIONS
Together, our results support both the mosaic and concerted hypotheses of evolution: we
find that animal species differentially invest in specific digestive tissues; and, within species,
we detected significant correlation between sites. Notably, humans exhibit increased
variation in intestinal length compared to other species. One explanation for this increased
variation may be that humans do not consume a standardized captive diet, as is the case
for the other species dissected in this study. However, differences across species may also
be driven by life stage. Future studies and additional data are needed to further investigate
the factors that contribute to both inter- and intraspecific variation.
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Comparative analyses can also inform our understanding of evolutionary history and the
role of particular traits. Historically, morphological differences have played an important
role in the classification and inference of phylogenetic relationships. However, this paper
clearly demonstrates the need for additional morphological data to better interpret the
developmental and functional aspects of variation.
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