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ABSTRACT
The clinical utility of microbiome biomarkers depends on the reliable and

reproducible nature of comparative results. Underappreciation of the variation

associated with common demographic, health, and behavioral factors may confound

associations of interest and generate false positives. Here, we present the Midwestern

Reference Panel (MWRP), a resource for comparative gut microbiome studies

conducted in the Midwestern United States. We analyzed the relationships between

demographic and health behavior-related factors and the microbiota in this cohort,

and estimated their effect sizes. Most variables investigated were associated with the

gut microbiota. Specifically, body mass index (BMI), race, sex, and alcohol use were

significantly associated with microbial b-diversity (P < 0.05, unweighted UniFrac).

BMI, race and alcohol use were also significantly associated with microbial

a-diversity (P < 0.05, species richness). Tobacco use showed a trend toward

association with the microbiota (P < 0.1, unweighted UniFrac). The effect sizes of

the associations, as quantified by adjusted R2 values based on unweighted UniFrac

distances, were small (< 1% for all variables), indicating that these factors explain

only a small percentage of overall microbiota variability. Nevertheless, the significant

associations between these variables and the gut microbiota suggest that they could

still be potential confounders in comparative studies and that controlling for these

variables in study design, which is the main objective of the MWRP, is important for

increasing reproducibility in comparative microbiome studies.

Subjects Microbiology, Gastroenterology and hepatology, Public health, Statistics
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INTRODUCTION
Humans are populated by a vast number of microbes. It is estimated that bacterial

cells associated with the human body outnumber human cells by a factor of 10

(Cho & Blaser, 2012). These microbes and their genetic content constitute the human
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microbiome (Cho & Blaser, 2012). The gut microbiome alone accounts for more than three

million genes, more than 100 times the number of human genes (Qin et al., 2010). The

microbiomehas bothdigestive andmetabolic functions (Cani&Delzenne, 2009) andplays an

important role in the development of the host immune system (Round&Mazmanian, 2009).

Extensive evidence shows that a core microbiome is responsible for maintaining a healthy

state; any significantdeviationmay affect an individual’s riskofdisease (Sartor, 2004;Ley et al.,

2006; Huse et al., 2012; Human Microbiome Project Consortium, 2012; Zhang et al., 2015).

Recognition of the microbiome’s importance to human health and disease has inspired

a surge of studies evaluating changes in the gut microbiota in various conditions,

including cancer, inflammatory diseases, and obesity (Turnbaugh et al., 2006;

Qin et al., 2012; Scher et al., 2013; David, 2013; Schubert et al., 2014; Abreu & Peek, 2014).

To adequately evaluate the changes associated with these conditions, a truly representative

control group must be used. However, the definition of an ideal control group is

complicated by the complexity of the microbiota and its extensive inter- and

intra-individual variation. Historically, it has been presumed that young adults who have

no identified and/or treated medical conditions are ideally suited for establishing

normative laboratory values. This approach reduces confounding influences and provides

an opportunity to consider what the structure of a “healthy” adult microbial community

might look like. Therefore, attempts have been made to generate and characterize cohorts

of “healthy” individuals, with the intention of developing standard reference microbiomes

for use in future studies. The Human Microbiome Project (HMP) and the MetaHIT

represent two such large-scale endeavors (Qin et al., 2010; Gevers et al., 2012; Foxman &

Rosenthal, 2013). However, “healthy” individuals may not accurately represent an

epidemiologic population with diverse health conditions. Moreover, the distribution of

demographic variables in such a group may be different from that of the epidemiologic

population, creating the potential for confounding in comparative studies.

In epidemiologic studies of US Midwestern populations at our institute, the Mayo

Clinic, normative values are generated, validated, and used to help guide diagnostic and

therapeutic purposes. These normative values typically apply to broad populations of

people with diverse health conditions, such that a lab value outside the normative range

suggests a specific condition or a set of conditions. Here, we apply this approach to the

microbiome, offering a broad Midwestern Reference Panel (MWRP) for use in disease

association studies of Midwestern populations.

The objectives of the current study were twofold. First, we aimed to create a

representative epidemiologic sample from the Midwestern United States, excluding

subjects with conditions that would directly impact the gut microbiota, such as

gastrointestinal (GI) disorders. Second, we aimed to study the effect sizes of demographic

and health behavior–related variables, including sex, age, race, BMI, alcohol use, and

smoking habits, on the gut microbiota. Thus, in addition to introducing a truly

representative cohort for the Midwestern United States population, this study reveals

which demographic and health behavior–related variables have the greatest effect on the

gut microbiome and, therefore, should be given special attention in study design and the

interpretation of results.
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MATERIALS AND METHODS
Biobank/consent
Subjects were selected from the Mayo Clinic Biobank, an institutional resource composed

of biological specimens accompanied by clinical data obtained from patient medical

records and patient-provided risk factor data (Olson et al., 2013). Written informed

consent was provided by all individuals enrolled. The study was approved by the

Institutional Review Board of the Mayo Clinic (#13-003694).

Subject selection/questionnaire
As described below, representative fecal samples were chosen according to sex, age, race,

body mass index (BMI), alcohol use, and tobacco use. A survey accompanied the

invitation to participate in the study and inquired about bowel symptoms, such as

diarrhea, constipation, blood in the stool, and nausea or vomiting; current medication

use; current supplement use; antibiotic use in the past 2 weeks; current smoking status;

current alcohol intake; current weight; and cancer history.

To define a sample truly representative of the Midwestern United States (Minnesota,

Iowa, North Dakota, South Dakota, and Wisconsin), we estimated the distributions of

selected behavioral risk factors among subjects included in the Center for Disease

Control’s 2011 Behavioral Risk Factor Surveillance Survey (BRFSS; http://www.cdc.gov/

brfss/annual_data/annual_2011.htm). Mayo Clinic Biobank participants were then

selected based upon BRFSS distributions of age, sex, race, BMI, smoking status, and alcohol

intake. Two rounds of subject selection were employed for this study. The first round took

place in the summer of 2013. During this round, 380 subjects (ages 20–49 years) were

selected. In the summer of 2014, a second group of 267 patients (ages 50–79 years) was

selected. Stool samples were collected from 25% of the samples who consented in the first

round and 31% of the subjects in the second round.

The final, combined sample was chosen on the basis of age (20–29, 30–39, 40–49,

50–59, 60–69, and 70–79 year groups), sex (10 males and 10 females in each age group),

race (white or non-white), BMI (<30 kg/m2 or ≥30 kg/m2), smoking status (current or

former/never), and alcohol use (yes or no). The proportions of all inclusion criteria were

chosen to reflect the underlying population in the Upper Midwestern states, as estimated

by data from the BRFSS. Exclusion criteria, assessed based on survey information

completed at the time of enrollment into the study, included use of medications, non-GI

cancers, use of any antibiotic within the past 2 weeks, or any known GI disease or

symptoms including, but not limited to, inflammatory bowel disease, irritable bowel

syndrome, esophageal cancer, intestinal cancer, constipation, diarrhea, Clostridium

difficile infection, and celiac disease/sprue.

Collection method
The collection process was reviewed in detail with study participants, and a stool

collection kit was provided to each subject. Stool samples were collected by the subjects

and returned to Mayo Clinic Rochester within 24 hours of passing. Specimens were stored

at −80 �C until DNA extraction.
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Sample preparation and sequencing
Fecal DNA was extracted using the PowerSoil kit (MoBio, Carlsbad, CA, USA) according

to the manufacturer’s instructions. Genomic DNA was used as a template for the

polymerase chain reaction (PCR), with 0.3 mM V3–V5 barcoded primers

(Caporaso et al., 2012) targeting 357F and 926R of the bacterial 16S gene (5′AATGATAC

GGCGACCAC CGAGATCTACACTATGGTAATTGTCCTACGGGAGGCAGCAG3′ and

5′CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNAGTCAGTCAGCCCCGT

CAATTCMTTTR AGT3′, respectively). PCR conditions were as follows: 95 �C/3 min;

35 cycles of 98 �C/30 s, 70 �C/15 s, and 72 �C/15 s; and finally 72 �C/5 min in a Bio-Rad

T100 Thermocycler (Bio-Rad, Hercules, CA, USA) using Kapa Hotstart Hi-Fi DNA

polymerase (Kapa Biosystems, Boston, MA, USA). PCR product sizes were verified using

the Agilent TapeStation with reaction cleanup, and DNAwas purified using an epMotion

automated system (Eppendorf, Hauppauge, NY, USA) with the Agencourt AMPure PCR

Purification System (Beckman Coulter, Brea, CA). Final quantitation was performed

using a QuBit HS dsDNA kit and the QuBit 2.0 fluorimeter (Life Technologies, Carlsbad,

CA, USA). Samples were pooled to equal concentration and sequenced on one lane of a

MiSeq at the Mayo Genomics Facility using the MiSeq Reagent Kit v2 (2 � 250 reads,

500 cycles; Illumina Inc., San Diego, CA, USA). Pre-processed sequence files were

then processed via the IM-TORNADO bioinformatics pipeline with the default

parameter settings to form operational taxonomic units (OTUs) (Jeraldo et al., 2014).

IM-TORNADO uses paired-end reads to form OTUs, and was shown to be more sensitive

than methods using single-end reads based on synthetic mock community studies.

Statistical analyses
Statistical analysis proceeded in two steps. First, overall associations between demographic

and health behavior–related variables and the microbiota were investigated. Next, specific

associations at the level of taxa were investigated.

To perform overall association tests, we summarized microbiota data using both

a-diversity and b-diversity. a-diversity reflects species richness and evenness within

bacterial populations. Two a-diversity metrics, the observed OTU number and the

Shannon index, were investigated. The observed OTU number reflects species richness,

whereas the Shannon index measures both species richness and evenness. Before

calculating the a-diversity metrics, we first replaced the observed singleton OTU

count with a more robust estimate to reduce the influence of sequencing errors

(Chiu & Chao, 2015). We then computed the a-diversity estimates at the minimum

sample coverage among all samples (0.997) to standardize by sample completeness

(“estimateD” in the R package iNEXT) (Chao et al., 2014). b-diversity reflects the shared
diversity between bacterial populations in terms of ecological distance; different distance

metrics provide distinctive views of community structure. Two b-diversity measures,

unweighted and weighted UniFrac distances, were calculated using the OTU table

and a phylogenetic tree (“GUniFrac” function in the R package GUniFrac)

(Lozupone & Knight, 2005; Chen et al., 2012). The unweighted UniFrac reflects

differences in community membership (i.e., the presence or absence of an OTU),
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whereas the weighted UniFrac captures this information and also differences in

abundance. Rarefaction was performed on the OTU table before calculating UniFrac

distances.

To test the overall association based on these diversity measures, we used a regression

model:

Microbiota � Batchþ Xþ X:Batch;

where microbiota is the outcome variable, summarized by the diversity measures

described above, and X is the variable of interest. In the model, age and BMI were

treated as continuous variables while the other variables as categorical. We included a

batch variable to account for potential batch effects, since sequencing was performed in

two batches, and a covariate-Batch (X:Batch) interaction term. The interaction term

allowed different association strengths for the two batches. We assessed the overall effect

(main + interaction effect), which is equivalent to testing the null hypothesis of no

association in either batch. To assess the association with a-diversity measures, we

performed regular linear regression analysis with the likelihood ratio test of regression

coefficients, as the outcome was approximately normal. To assess the association with

b-diversity measures, we used the PERMANOVA procedure (“adonis” function in the

R package vegan), which is a multivariate analysis of variance based on distance matrices

and permutation (McArdle & Anderson, 2001). Significance was assessed by 1,000

permutations. Ordination plots were generated using principal coordinate analysis

(PCoA) on unweighted UniFrac-based distances as implemented in R (“cmdscale”

function in the standard R package).

A distance-based coefficient of determination, R2 (i.e., the percentage of overall

microbiota variability explained by a variable), was used to quantify the effect size of the

overall association (McArdle & Anderson, 2001). Distance-based R2 is defined as

R2 ¼ trðHGHÞ
trðGÞ ;

where tr(.) is the trace of a matrix, H is the projection matrix into the column space

spanned by the corresponding variable, and G is the Gower’s centered matrix, which is

defined as

G ¼ I� 11T

n

� �
A I� 11T

n

� �
;

where I is an identity matrix, 1 is a vector of 1s, and A ¼ ðaijÞnxn ¼ ð�d2ij=2Þnxn is a matrix

constructed using the pairwise distances dij. In the formula, the total variability of the

microbiota was summarized using a distance metric. To quantify the overall effect size

well, a good distance metric should capture the association signals. In this study, we used
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the unweighted UniFrac distance, as most of the associations investigated were significant

only for this metric. To account for potential overestimation due to a small sample size, we

calculated an adjusted R2, which is defined as

R2
adj ¼ 1� ð1� R2Þðn� 1Þ

n� p� 1
;

where n is the sample size and p is the degree of freedom of the covariate.

Next, we assessed associations between demographic and health behavior–related factors

and the relative abundance of taxa. To do so, we square-root transformed relative abundance

data and used a linear model adjusting for batches where appropriate. To address the

non-normality of the taxa data, significance was assessed with 1,000 permutations; the

F-statistic was the test statistic. False discovery rate (FDR) control was performed based on

the Benjamini-Hochberg procedure to correct for multiple testing (“p.adjust” in R). To

reduce the number of tests, we confined the analysis to taxa with prevalences greater than

10% and median nonzero proportions greater than 0.05%. An FDR-adjusted P-value

(or Q-value) of less than 10% was considered significant. All statistical analyses were

performed in R 3.0.2 (R Development Core Team, Vienna, Austria).

RESULTS
Gut microbiota profile of the Midwestern United States
As revealed by a comparison with BRFSS data, the distribution of important demographic

variables within the MWRP cohort, which consists of 118 subjects drawn from the Mayo

Clinic Biobank, generally reflects the demographic characteristics of the Midwestern

United States, although alcohol users are slightly over-represented in subjects older than

50 years of age (Table 1).

Stool samples from this cohort were collected and deep sequenced. 16S rDNA–targeted

sequencing yielded 110,997 reads/sample on average (range: 33,579–385,720). Clustering

of these 16S sequence tags produced 1,745 non-singleton OTUs at a 97% similarity level.

The distribution of OTU abundance and prevalence was typical, dominated by rare and

low-abundance OTUs (Figs. 1A and 1B). An average of 402 OTUs was detected in each

subject (range: 186–810). The median OTU abundance was 163 read counts per OTU

(range: 2–1,456,439), and the median OTU prevalence was 11% (range: 0.8%–100%).

Only 61 OTUs (3.5% of total OTUs) occurred in more than 95% of samples, indicating a

relatively small core set of OTUs. The detected OTUs were classified into 11 phyla,

80 families, and 171 genera using the Ribosomal Database Project (RDP) classifier. At the

phylum level, Firmicutes accounted for 48.3% of total reads and Bacteroides for 48.1% of

total reads. At the family level, the most abundant families were Bacteroidaceae (33.76%),

Ruminococcaceae (22.94%), and Lachnospiraceae (15.13%). At the genus level, the

dominant genera were Bacteroides (33.76%), Ruminococcus (9.83%), and

Faecalibacterium (9.13%). Consistent with previous studies, we observed large

intersubject variability in taxa abundance (Figs. 1C and 1D) (Human Microbiome Project

Consortium, 2012; Flores et al., 2014). Table 2 lists the “core” taxa (prevalence greater than

95%) identified in this study; we identified 4 core phyla, 18 core families, and 22 core
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Table 1 Comparison between subjects in the MWRP (N = 118) and the BRFSS cohort on the major

demographic and health behavior-related factors.

MWRP BRFSS

Number % % P-value

Age <50 years (n = 58) Sex, F 30 51.7 49.3 0.81

Race, W 49 84.5 73.5 0.08

BMI >30 kg/m2 14 24.1 25.6 0.92

Alcohol use (Y) 41 70.7 60.2 0.13

Smoking (Y) 9 15.5 23.3 0.21

Age ≥50 years (n = 60) Sex, F 30 50.0 53.9 0.63

Race, W 54 90.0 83.2 0.22

BMI >30 kg/m2 20 33.3 29.5 0.61

Alcohol use (Y) 39 65.0 48.4 0.02

Smoking (Y) 8 13.3 15.7 0.74

Abbreviations:
BMI, body mass index; BRFSS, Behavioral Risk Factor Surveillance Survey; F, female; MWRP, Midwestern Reference
Panel; W, white; Y, yes.
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Figure 1 Gut microbiota profile of the MWRP. (A) Distribution of OTU abundance. (B) Distribution of OTU prevalence. (C) Relative abundance

of major bacteria at the level of the phylum. (D) Relative abundance of major bacteria at the level of the family.
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genera. The overall pattern in this cohort was similar to that in the HMP, although specific

values were very different (Huse et al., 2012; Human Microbiome Project Consortium,

2012). This was probably due to biological variability, including differences in genetics,

demographics, and health behavior, as well as technical variability, including differences in

sample collection, preparation, sequencing, and bioinformatics processing.

Demographic and health behavior–related variables shaping
the gut microbiota
Because of the wide demographic and health behavior–related variation it captures, the

MWRP data set provides a good opportunity to identify associations between these

variables and the microbiota. We first performed overall association tests based on a- and

b-diversity measures. a- and b-diversity measures provide a holistic view of the

microbiota; distinctive yet interrelated, these measures focus on different aspects of

microbiota structure. In this study, we chose the following a-diversity measures: the

number of observed OTUs (after rarefaction) as a species richness measure, and the

Shannon index as an overall diversity measure incorporating both species richness and

abundance. In terms of b-diversity, which describes overall microbiota structure, we chose

the phylogeny-based unweighted and weighted UniFrac distance metrics; the unweighted

UniFrac focuses on community membership, whereas the weighted UniFrac reflects both

membership and abundance (Chen et al., 2012).

The overall association results are summarized in Tables 3 and 4. Increased BMI was

associated with decreased species richness (P = 0.017, Fig. 2A). BMI was also significantly

associated with overall microbiota structure, as revealed by both unweighted and weighted

UniFrac analysis (P = 0.006 and 0.030, Table 4). Race was associated with both species

Table 2 Most prevalent taxa (≥95%) at the phylum, family, and genus level identified in the MWRP.

Phylum

Actinobacteria Bacteroidetes Firmicutes Proteobacteria

Family

Coriobacteriaceae Bacteroidaceae Barnesiellaceae Porphyromonadaceae

Prevotellaceae Ruminococcaceae Peptostreptococcaceae Paraprevotellaceae

Rikenellaceae Clostridiaceae Erysipelotrichaceae Lachnospiraceae

Streptococcaceae Veillonellaceae Christensenellaceae Mogibacteriaceae

Enterobacteriaceae Odoribacteraceae

Genus

Bacteroides Parabacteroides Prevotella Blautia

Faecalibacterium Butyrivibrio Streptococcus Erwinia

Clostridium Coprobacillus Coprococcus Dorea

Oscillospira Roseburia Ruminococcus Shuttleworthia

Moryella Lachnospira Adlercreutzia Holdemania

Eubacterium Christensenella
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Table 3 Associations (P-values) between demographic and health behavior-related factors and

a-diversity measures in the MWRP.

Age Sex BMI Race Tobacco Alcohol

Observed OTUs 0.463 0.062 0.017 0.013 0.381 0.040

Shannon index 0.115 0.381 0.684 0.425 0.350 0.138

Abbreviations:
BMI, body mass index; OTU, operational taxonomic unit.

Table 4 Associations (P-values) between demographic and health behavior-related factors and

b-diversity measures in the MWRP.

Age Sex BMI Race Tobacco Alcohol

Unweighted UniFrac 0.351 0.049 0.006 0.003 0.091 0.041

Weighted UniFrac 0.776 0.073 0.030 0.227 0.143 0.466

Abbreviation:
BMI, body mass index.
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Figure 2 Associations between demographic and health behavior-related factors and the overall gut

microbiota structure. (A) Increased BMI is associated with decreased species richness (i.e., the

observed number of OTUs). (B) Increased species richness was observed in white subjects. The three

horizontal lines of the box represent the first, second (median), and third quartiles, respectively, with the

whisk extending to the 1.5 interquartile range (IQR). (C) Principal coordinate analysis (PCoA) plot

showing a sex effect. (D) PCoA plot showing an alcohol effect. Samples are colored according to group

membership, and plotted on axes corresponding the first two principal coordinates (PCs). The

percentage of variability explained by each PC is indicated in the parentheses.
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richness (P = 0.013, Fig. 2B) and overall microbiota structure (P = 0.003, unweighted

UniFrac), with white subjects exhibiting greater species richness. Sex and alcohol use were

both associated with overall structure (P = 0.049 and 0.041 respectively, unweighted

UniFrac, Figs. 2C and 2D). In addition, alcohol use was associated with increased species

richness (P = 0.040, Table 3). Some evidence of association of tobacco use with overall

microbiota structure was observed (P = 0.091, unweighted UniFrac). Age, by contrast, was

not significantly associated with measures of a- or b-diversity. Statistical significance
was primarily observed for unweighted measures, such as species richness and the

unweighted UniFrac distance, indicating that these demographic and health

behavior–related factors chiefly affect community membership or the rare biosphere of

the microbiota (Chen et al., 2012).

Next, we quantified the effect sizes of these variables with adjusted, distance-based

R2 values (see Methods). Using the unweighted UniFrac distance to summarize overall

microbiota variability, the adjusted R2 values were 0.95% for race, 0.88% for BMI, 0.53%

for alcohol use, 0.46% for sex, 0.33% for tobacco use, and 0.0% for age (Fig. 3), indicating

huge intersubject variability relative to the variability associated with these factors.

Microbial signature of demographic and health behavior–related
factors
We next set out to identify the microbial signature of the demographic and behavioral

factors that were most significantly associated with overall microbiota structure (BMI, sex,

race, tobacco use, and alcohol use). We used permutation-based univariate association
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Figure 3 Percentage of variability explained by the demographic and health behavior-related

factors. The unweighted UniFrac distance was used to summarize the microbiota variability.

The distance-based R2 was adjusted to reduce inflation due to a small sample size.

Chen et al. (2016), PeerJ, DOI 10.7717/peerj.1514 10/20

http://dx.doi.org/10.7717/peerj.1514
https://peerj.com/


tests to identify associated bacterial taxa at the phylum, family, and genus level. FDR

control was used to correct for multiple testing.

Consistent with overall association tests, a number of bacterial taxa were associated

with BMI at an FDR of 10% (Fig. 4, Table 5). In particular, we observed an increase in

Firmicutes and a decrease in Bacteroidetes in obese subjects, consistent with findings

from some previous studies (Turnbaugh et al., 2009; Walters, Xu & Knight, 2014).

In addition, we detected an increase in the genus Eubacterium, consistent with two

previous studies that reported associations between Eubacterium rectale and obesity

(Walters, Xu & Knight, 2014). Interestingly, we also found an increase in Fusobacteria,

which have been shown to be associated with colon cancer (Rubinstein et al., 2014).

Race, sex, and alcohol use were also associated with changes in the abundance of

specific taxa (Fig. 4, Table 5); here, we focus only on the most statistically significant

associations (Q-value < 0.05). Relative to non-whites, whites had higher levels of

Holdemania and lower levels ofMegamonas (Table 5). Interestingly, althoughHoldemania

is one of the 30 most abundant genera in the gut microbiome of individuals from high-

income countries (Arumugam et al., 2011), it was absent in a recent study of children from

Bangladesh. It is not clear why race might be associated with the abundance of this

common but not universal bacterial genus. Megamonas species are associated with colon

cancer (Weir et al., 2013), but they are also associated with normal glucose tolerance
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Figure 4 Microbial signatures of demographic and health behavior-related factors: BMI, race, sex, and alcohol use. Barplots show the mean

relative abundance and standard error of bacterial taxa in each subject subgroup. Taxa were selected based on univariate association tests with an

FDR of 10%. Here, we have discretized BMI into normal and obese groups based on the cutoff of 30 kg/m2 for visualization purposes. However, we

treated BMI as a continuous outcome in our association tests.
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(vs type 2 diabetes) (Zhang et al., 2013). Again, the connection between Megamonas and

race is unclear. Finally, current alcohol users had lower levels of the family Rikenellaceae,

which is also depleted in end-stage liver disease (Bajaj et al., 2014), and higher levels of

Christensenellaceae (Table 5), a bacterial family enriched in individuals with low BMI

Table 5 Bacterial taxa associated with BMI, race, sex, and alcohol use based on univariate associations at an FDR of 10%.

BMI

Mean proportion
Log2 Fold

Change Q valueObese Normal

Phylum

Bacteroidetes 4.339E-01 5.004E-01 −0.206 0.080

Firmicutes 5.226E-01 4.660E-01 0.165 0.080

Chrysiogenetes 1.927E-05 1.680E-04 −3.124 0.080

Fusobacteria 1.433E-02 1.446E-03 3.309 0.080

Family

Bacteroidetes; Barnesiellaceae 9.637E-03 2.734E-02 −1.505 0.098

Firmicutes; Erysipelotrichaceae 2.898E-02 1.942E-02 0.578 0.078

Firmicutes; Lachnospiraceae 1.796E-01 1.401E-01 0.358 0.098

Proteobacteria; Alcaligenaceae 1.909E-03 6.867E-04 1.475 0.098

Genus

Bacteroidetes; unclassified 3.534E-02 6.134E-02 −0.795 0.049

Firmicutes; Acidaminococcus 3.915E-04 3.081E-04 0.346 0.098

Firmicutes; Blautia 6.326E-02 3.883E-02 0.704 0.049

Firmicutes; Dorea 2.743E-02 1.757E-02 0.643 0.049

Firmicutes; Eubacterium 8.339E-03 4.210E-03 0.986 0.049

Proteobacteria; Sutterella 1.909E-03 6.867E-04 1.475 0.098

Race

Mean proportion
Log2 Fold

Change Q valueNon-white White

Genus

Firmicutes; Faecalibacterium 1.351E-01 8.466E-02 0.674 0.098

Firmicutes; Holdemania 1.092E-04 3.542E-04 −1.698 0.049

Firmicutes; Megamonas 7.288E-03 2.226E-05 8.355 0.049

Sex

Mean proportion
Log2 Fold

Change Q valueYes No

Genus

Bacteroidetes; Odoribacter 1.344E-02 4.606E-03 1.545 0.067

Alcohol intake

Mean proportion
Log2 Fold

Change Q valueYes No

Family

Bacteroidetes; Rikenellaceae 2.702E-02 4.803E-03 2.492 0.002

Firmicutes; Christensenellaceae 3.260E-02 1.393E-02 1.227 0.030

Genus

Actinobacteria; unclassified 2.362E-03 4.288E-04 2.462 0.062
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(Goodrich et al., 2014). As is true for race, the mechanisms linking sex and alcohol use with

changes in these taxa are not yet clear. We were unable to identify specific taxa associated

with tobacco use after FDR control.

DISCUSSION
In this study, we present the MWRP, a reference cohort available for researchers seeking to

identify gut microbiome biomarkers related to health or disease. This cohort encompasses

a wider range in age and BMI than traditional “healthy” cohorts and contains data on

important demographic and health behavior–related variables, such as sex, race, tobacco

use, and alcohol use. Consistent with previous studies, we observed large intersubject

variability in taxonomic abundance and a small number of core taxa in this cohort

(Huse et al., 2012; Human Microbiome Project Consortium, 2012). Moreover, our finding

that most of the demographic and health behavior–related variables we investigated were

associated with changes in the gut microbiota underscores the importance of having such

a diverse cohort available for study. The MWRP can be used to reduce confounding and

increase reproducibility in future studies of the gut microbiome that take place in the

Midwestern United States.

Within the “normal” cohort of the MWRP, potentially important associations between

demographic, health, and behavioral variables and the microbiome emerged. We found an

increase in Firmicutes and a decrease in Bacteroidetes in obese subjects; moreover,

BMI was associated with decreased species richness as well as overall microbiota

structure, confirming the results of previous studies on this subject (Ley et al., 2006;

Turnbaugh et al., 2006; 2009; Verdam et al., 2013; Sepp et al., 2014). Health-related

behaviors, such as alcohol and tobacco use, are difficult to measure, so they are

infrequently studied. Although less attention has been paid to these factors, they

nonetheless have been linked to profound changes in the fecal microbiota at the genus

level (Biedermann et al., 2013;Mutlu et al., 2014). In our study, alcohol use was associated

with overall microbiota structure, and a trend between alcohol use and increased species

richness was also detected. Interestingly, alcohol use was associated with an increase in

bacteria of the Rikenellaceae family, which are depleted in end-stage liver disease

(Bajaj et al., 2014), a potential consequence of alcoholism. Some evidence of association

between tobacco use and overall microbiome structure was also observed; given a larger

sample size or more detailed data on smoking habits, a significant association between the

two may emerge. Many previous studies have found a significant effect of age on the gut

microbiota (Hopkins, Sharp & Macfarlane, 2001; Hébuterne, 2003; Mäkivuokko et al.,

2010). However, we did not find an association between age and a- or b-diversity
measures in this study.

The differences in associations between demographic and health behavior–related

variables and weighted and unweighted UniFrac distances are potentially meaningful. The

unweighted UniFrac distance measures the presence or absence of particular bacterial taxa

and is a more qualitative measure of b-diversity than the weighted UniFrac. The

unweighted UniFrac is more sensitive to rare species within a microbial community, as a

species will appear absent when its abundance falls below the detection limit of the
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sequencing machine (Chen et al., 2012). As such, a more significant association with

unweightedUniFrac distance (aswas found for BMI, sex, alcohol use, race, and tobacco use)

may indicate that changes in rare bacteria are altering the community structure.

This assertion is supported by our a-diversity analysis; demographic and health

behavior–related variables were more significantly associated with community richness,

which is based on presence/absence data for OTUs, than overall diversity based on

abundance data (i.e., the Shannon index). Finally, in this study, the majority of taxa

associated with these variables were rare. Taken together, the results of these separate, yet

interrelated, diversity analyses indicate that demographic and health behavior–related

factors may affect primarily rare bacterial species within the gut. However, BMI and sex

show significant or marginally significant associations with the weighted UniFrac,

which is more sensitive to abundant lineages, indicating that some abundant bacterial

lineages may also be affected by these factors. Regardless of the analytic tool used, our

data suggest that microbial communities are altered by demographic and health

behavior–related factors.

The implications of the extensive associations identified in this study are threefold.

First, demographic and health behavior–related factors may confound comparative

analyses if their distribution differs between groups of interest. These variables must either

be matched across groups or adjusted for in statistical models. Importantly, statistical

adjustment becomes insufficient when the range of variables differs between groups, as

statistical models are less good at extrapolation than interpolation. Nonlinear effects can

also impede statistical adjustment. In these cases, sample matching is more appropriate

for reducing potential confounding. The MWRP thus provides a good reference panel

with which to perform sample matching based on demographic and health

behavior–related factors, as it encompasses a wide range for each variable. Second, even if

demographic factors do not confound an analysis (i.e., the distribution of these factors is

similar between groups), adjustment for these independent predictors in a model will

improve statistical power by reducing random error. In some scenarios, significant

associations may only be revealed when demographic factors are accounted for. Lastly,

other factors important in the Midwest that are difficult to measure in a study like this

one, such as dietary habits, may exist. If not well controlled, a case-control–based

microbiome biomarker study may capture associations due to these unappreciated

confounders, reducing reproducibility. By providing a representative reference sample

drawn from the same geographic region that cases are drawn from, the MWRP will be

instrumental in minimizing interference by these potential hidden confounders in studies

of the microbiome that take place in the Midwest.

Although it is reassuring that emerging and consistent trends exist in findings reported

by diverse labs for various conditions, such as BMI, our research has identified frailties

that need further attention if we are to achieve clinical-grade results in microbiome

studies. Despite standardized protocols, the implementation of robotic equipment, and

uniform technical support, we found evidence of batch effects in this study. We adjusted

batch effects in the statistical model to improve statistical power as well as to reduce

potential confounding effects (Leek et al., 2010). When batch effects confound a variable
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of interest, much power will be lost due to batch adjustment. In this case, we suspect that

batch effects, which were entangled with age, may have prevented us from detecting some

of the associations between age and the microbiome that have been reported in other

studies. The clinical utility of microbiome sequencing data may be constrained unless this

effect can be overcome. To minimize the impact of batch effects, we advise sample

randomization, rigorous and standardized collection methods, and the coordination of

sample processing and sequencing for research and biomarker development. For clinical

sample management, we propose standardized collection and processing protocols,

robotics where applicable, and internal controls.

The MWRP also allows us to estimate effect sizes for demographic and health

behavior–related factors, which is fundamental to moving forward with human

microbiome studies that use the stool to study the gut microbiome. It is important to

consider factors with larger effect sizes in the study design phase, whereas factors with

smaller effect sizes are of less concern. Effect sizes can help prioritize factors when

matching subjects from a disease group with samples from a control group. Although

b-diversity association P-values may reflect effect sizes, the coefficient of determination,

R2 (i.e., the percent of variation in an outcome variable explained by a factor of interest), is

a more suitable measure (McArdle & Anderson, 2001). Using unweighted UniFrac

distances to summarize overall microbiota variability, adjusted R2 values were 0.95% for

race, 0.88% for BMI, 0.53% for alcohol use, 0.46% for sex, 0.33% for tobacco use, and

0.0% for age. The small values of R2 may be partially due to noise from sample collection,

preparation, and sequencing, but they also indicate that these factors explain only a small

fraction of the large intersubject variability of the gut microbiota. Although small in effect

size, these factors may still be important confounders, as many of the associations we find

in public health also have very small effect sizes. Race and BMI, which have the largest

R2 values, warrant special attention in study design.

The diverse associations between demographic and health behavior–related factors and

the gut microbiota, and their small effect sizes, have motivated us to expand the list of

demographic and behavioral variables investigated in the future, with the goal of

identifying more factors that shape the gut microbiota; indeed, our next step is to expand

the MWRP sample to explore factors such as diet, exercise, depression, and anxiety.

A larger sample, coupled with more detailed documentation of variables, will be

instrumental for addressing potential confounding due to factors that are rarely

represented in the normal population but are enriched in groups with diseases, as well as

for identifying the microbiota features that best distinguish between diseased and

healthy states. In addition, we will extend our current taxonomic profiling to functional

profiling, to characterize a possible functional core in the MWRP. Longitudinal

studies of the microbiome, which are conducive to establishing a mechanistic link

between the microbiota and a phenotype, will also be pursued. Finally, similar studies of

the impact of demographics on microbiomes from other body sites will be

conducted to facilitate microbiome biomarker discovery for a broader range

of diseases.
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CONCLUSIONS
In conclusion, the MWRP will be instrumental in elucidating demographic and health

behavior–related factors impacting the human gut microbiota, as well as increasing

reproducibility in microbiome biomarker discovery. It represents a key step in translating

microbiome discoveries into clinical applications and, ultimately, in improving

patient care.
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