
High expression of six-transmembrane
epithelial antigen of prostate 3 promotes
the migration and invasion and predicts
unfavorable prognosis in glioma
Langmei Deng1, Shuangshuang Zeng2, Qiaoli Yi2 and Liying Song3

1 Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha,
Hunan, China

2Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
3 Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha,
Hunan, China

ABSTRACT
Recent studies have suggested that ferroptosis, a form of iron-dependent regulated
cell death, might play essential roles in tumor initiation and progression.
Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is a ferrireductase
involved in the regulation of intracellular iron homeostasis. However, the clinical
significance and biological function of STEAP3 in human cancers remain poorly
understood. Through a comprehensive bioinformatics analysis, we found that
STEAP3 mRNA and protein expression were up-regulated in GBM, LUAD, and
UCEC, and down-regulated in LIHC. Survival analysis indicated that STEAP3 had
prognostic significance only in glioma. Multivariate Cox regression analysis revealed
that high STEPA3 expression was correlated with poor prognosis. STEAP3
expression was significantly negatively correlated with promoter methylation level,
and patients with lower STEAP3 methylation level had worse prognosis than those
with higher STEAP3 methylation level. Single-cell functional state atlas showed that
STEAP3 regulated epithelial-to-mesenchymal transition (EMT) in GBM.
Furthermore, the results of wound healing and transwell invasion assays
demonstrated that knocking down STEAP3 inhibited the migration and invasion of
T98G and U251 cells. Functional enrichment analysis suggested that genes
co-expressed with STEAP3mainly participated in inflammation and immune-related
pathways. Immunological analysis revealed that STEAP3 expression was significantly
correlated with immune infiltration cells, including macrophages and neutrophils,
especially the M2 macrophages. Individuals with low STEAP3 expression were more
likely to respond to immunotherapy than those with high STEAP3 expression. These
results suggest that STEAP3 promotes glioma progression and highlight its pivotal
role in regulating immune microenvironment.
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INTRODUCTION
Glioma is the most common and fatal primary central nervous system tumor,
characterized by a poor prognosis, with a 5-year overall survival rate of only 6.8% for
high-grade glioma due to limited effectiveness of surgical resection and
chemoradiotherapy (Magalhaes et al., 2021; Thorbinson & Kilday, 2021; Zhang et al.,
2021b). Isocitrate dehydrogenase (IDH) mutations and chromosome arms 1p and 19q
co-deletion have been identified as molecular pathological markers in glioma, indicating a
significant survival benefit (Ceccarelli et al., 2016; Louis et al., 2021). However, due to the
highly invasive and infiltrative nature of glioma cells, current therapeutic regimes and
disease monitoring means have achieved limited clinical success (Magalhaes et al., 2021;
Xu et al., 2021). There is an urgent need to identify novel biomarkers for early diagnosis
and prognosis prediction in glioma patients.

Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is located on
chromosome 2q14.2 and encodes a multi-pass transmembrane protein that acts as an iron
transporter. STEAP3 can reduce iron from Fe3+ to Fe2+ state, and plays an essential role in
mediating intracellular iron homeostasis (Ohgami et al., 2005; Ohgami et al., 2006).
The dysregulation of iron metabolism is tightly linked with ferroptosis, a form of regulated
cell death modality induced by iron-dependent phospholipids peroxidation on cellular
membranes (Lei, Zhuang & Gan, 2022). Liu et al. (2021) identified that STEAP3
knockdown blocked erastin or RSL3-induced ferroptosis. Accumulating evidence has
implicated that ferroptosis participates in the development of diverse cancer types and
affects the response to therapies (Chen et al., 2021b; Qu, Peng & Liu, 2022). Mesenchymal
and dedifferentiated tumor cells, associated with resistance to common therapeutics, are
susceptible to ferroptosis inducers (Tsoi et al., 2018; Viswanathan et al., 2017). Ferroptosis
induction might be a promising strategy for cancer treatment.

In order to explore the role of STEAP3 in glioma, we first comprehensively analyzed
STEAP3 expression profiles, methylation, and its clinical implications with datasets
acquired from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas
(CGGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were used to explore the potential molecular mechanisms of STEAP3
and its co-expressed genes. In addition, we analyzed the correlation between STEAP3
expression and immune infiltration. In general, our study indicated that STEAP3 might
function as a potential prognostic biomarker in gliomas through immune regulation.

MATERIALS AND METHODS
Gene expression and survival analysis
The integrative bioinformatics analysis of STEAP3 in multiple cancer types was achieved
with several bioinformatics databases (Table 1). Tumor Immune Estimation Resource
(TIMER2.0) is a web portal for systematical analysis of immune infiltration across various
cancer types (Li et al., 2020). We used the Gene_DE module of TIMER2.0 to explore the
differential expression of STEAP3 gene between tumor samples and normal tissues. Gene
expression levels were normalized by log2 (transcripts per million, TPM) prior to analysis.
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For certain tumor types without adjacent normal tissues, the Xiantao tool (https://www.
xiantao.love/products) was further applied to explore the differences in STEAP3
expression between TCGA cancer samples and matched TCGA normal tissues and data
from the Genotype-Tissue Expression (GTEx) database. Gene expression levels were
normalized by log2 (TPM + 1). Through the Xiantao tool, comprehensive bioinformatics
analysis can be performed across diverse cancer types, including differential expression
analysis, interaction network, functional enrichment analysis, etc. Univariate and
multivariate Cox regression analysis were carried out to assess the effects of the
independent variables on survival using the Xiantao tool. In addition, we also employed
the Xiantao tool to assess the prognostic value of STEAP3 in different cancer types.
The main outcomes included overall survival (OS), disease-specific survival (DSS), and
progression-free survival (PFS). Median STEAP3 expression served as a cutoff to
discriminate high- and low-expression groups.

The University of Alabama at Birmingham cancer data analysis portal (UALCAN) is an
open-access online database for analyzing cancer omics data (Chandrashekar et al., 2017).
The protein expression of STEAP3 was explored using data from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) dataset (Chen et al., 2019). Immunohistochemistry
(IHC) staining was performed to assess the differential expression of STEAP3 at the
protein level. The Human Protein Atlas (HPA) (Uhlen et al., 2017) was applied to evaluate
STEAP3 protein expression in tumor samples and the corresponding normal tissues.

DNA methylation analysis
Aberrant DNA methylation is associated with gene expression, and impacts outcomes for
patients with cancer (Pogribna & Hammons, 2021). CGGA is a web application that
provides correlation and survival analysis in Chinese glioma cohorts based on mRNA
expression and DNA methylation data (Zhao et al., 2021b). The demographic distribution
of STEAP3 methylation and its prognostic value in glioma were analyzed by CGGA.
The Xiantao tool was applied to explore the correlation between the expression level of
STEAP3 and its promoter DNA methylation degree. Promoter was defined as the 2.1 kb
surrounding the transcription start site (TSS) (−2,000 bp/+100 bp) of RefSeq genes.

Table 1 Integrative bioinformatics analyzed in the study.

Database URL References

TIMER2.0 http://timer.cistrome.org/ Li et al. (2020)

UALCAN http://ualcan.path.uab.edu/ Chandrashekar et al. (2017)

HPA https://www.proteinatlas.org/ Uhlen et al. (2017)

CGGA http://www.cgga.org.cn/ Zhao et al. (2021b)

CancerSEA http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp Yuan et al. (2019)

LinkedOmics http://linkedomics.org/login.php Vasaikar et al. (2018)

TISIDB http://cis.hku.hk/TISIDB Ru et al. (2019)

TIDE http://tide.dfci.harvard.edu/ Fu et al. (2020)
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Single cell sequencing data analysis and gene set enrichment analysis
(GSEA)
The Cancer Single-cell State Atlas database (CancerSEA) (Yuan et al., 2019) was applied to
explore the relevance of STEAP3 across 14 functional states in various cancer types.
We downloaded the correlation data and then generated the heatmap. The LinkedOmics
database is an open-access portal containing multi-omics data across different cancer types
and features three analysis modules: LinkFinder, LinkInterpreter, and LinkCompare
(Vasaikar et al., 2018). Heatmaps of the top 50 genes positively or negatively correlated
with STEAP3 were generated with the LinkFinder module. Furthermore, the
LinkInterpreter module was used to perform the GO-biological process (GO-BP) and
KEGG pathway analysis.

Tumor immune infiltrate analysis and prediction of immunotherapy
responses
The interaction between glioma and immune system were performed using the Xiantao
tool and the TISIDB database (Ru et al., 2019). First, we used the Xiantao tool to generate
the Lollipop diagrams of 24 immune cell types in the TCGA-GBMLGG dataset. Then, the
relations between STEAP3 expression and abundance of tumor-infiltrating immune cells
were cross-validated using the TISIDB database. In addition, the immune score of each
glioma sample was estimated using the “ESTIMATE” R package based on expression data
(Yoshihara et al., 2013). The relationship between STEAP3 expression and immune score
was visualized with scatterplot. We divided glioma patients into high and low immune
score groups based on the median values of immune score, and then assessed the
prognostic value of immune score in glioma.

Immune checkpoint proteins, such as programmed cell death protein 1 (PD-1),
programmed cell death 1 ligand 1 (PD-L1) and cytotoxic T-lymphocyte associated protein
4 (CTLA4), play a critical role in tumor immune escape. Immune checkpoint inhibitors
(ICI)-based immunotherapy could produce potent and durable antitumor response
(Kraehenbuehl et al., 2022). The tumor immune dysfunction and exclusion (TIDE)
algorithm was applied to predict the immunotherapy response of glioma patients based on
pre-treatment expression profiles (Fu et al., 2020).

Cell cultures, reagents, and small interfering RNAs (siRNAs)
transfections
Human GBM cell lines T98G and U251 were gifted from the Cancer Research Institute of
the Central South University (Changsha, China), as described in our previous study
(Yi et al., 2022). Two GBM cell lines were incubated in DMEM (C11995500; HyClone,
Logan, UT, USA) supplemented with 10% fetal bovine serum (11570506; Gibco, Billings,
MT, USA) and 1% penicillin and streptomycin (10378016; Gibco, Billings, MT, USA) at
37 �C with 5% CO2. For transient transfection, cells were plated in complete
serum-containing medium the day before transfection, then transfected with siRNAs of
STEAP3 using LipofectamineTM 3000 Reagent (L3000075, Invitrogen, Waltham, MA,
USA) in DMEM. Two STEAP3 siRNAs were purchased form Genechem company (Si1,
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GTCTGCTTCTATGCCTACA; Si2, CCCTCTACAGCTTCTGCTT). A total of 8 h after
transfection, the serum-free medium was replaced with complete serum-containing
medium, and cells were collected 24 h after transfection for subsequent experimental
studies.

Western blot
The glioma cells transfected with siNC or STEAP3 siRNAs were lysed with RIPA buffer
supplemented with protease inhibitor cocktails (B14012; Bimake, Houston, TX, USA).
The BCA protein assay kit (23229; Thermo Fisher Scientific, Waltham, MA, USA) was
applied to determine protein concentrations. Protein was transferred into 0.45 µm PVDF
membranes (IPVH00010; Millipore, Burlington, MA, USA) after SDS-polyacrylamide gel
electrophoresis. Then, the membranes were blocked with 5% nonfat dry milk for 1 h at
room temperature. Primary antibodies against STEAP3 (PA5-20406; Thermo Fisher
Scientific, Waltham, MA, USA) and β-actin (sc-58673; Santa, Dallas, TX, USA) was
incubated overnight at 4 �C. The protein bands were visualized with Immobilon Western
chemiluminescent HRP reagents (WBKLS0500; Millipore, Burlington, MA, USA).

Wound healing and transwell invasion assay
Changes in migration and invasion abilities were examined by wound healing and
invasion assays, respectively. T98G and U251 cells were cultured to complete confluence
in medium containing 10% FBS. The linear wound was created using a plastic scraper.
After washed twice with PBS, the medium was replaced with serum-free medium and
cultured at 37 �C for 24 h. Then, the wound was observed under a microscope at 0, 12 and
24 h (Olympus, Tokyo, Japan). In invasion assay, Matrigel was purchased from BD
Biosciences and thawed overnight at 4 �C. Take 30 µl of Matrigel diluted in serum-free
DMEM and inoculate evenly into the upper chamber at 37 �C. Assays were performed
using Transwell chambers (8 µm pore-size; Corning, Corning, NY, USA). The lower
chambers were loaded with 600 µl of DMEM with 20% FBS. After 24 h of incubation,
invaded cells were fixed with 4% paraformaldehyde and stained with 5% crystal violet.
Cells on the lower surface of the membrane were counted under a microscope (Olympus,
Tokyo, Japan).

Statistical analysis
All experiments and assays were conducted and repeated at least three times, and results
were presented as mean ± standard deviation (SD). Statistically significant differences were
performed using the T-test or Wilcoxon test for pairwise comparisons or ANOVA for
multivariate analysis. Kaplan–Meier survival curves were performed by the log-rank test.
Correlation was analyzed using Spearman test. Based on the expression data, the immune
score for each glioma sample was estimated using the “ESTIMATE” R package. GraphPad
Prism 8 software was used for statistical analysis and P < 0.05 was considered as
significance.
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RESULTS
Expression level of STEAP3 in pan-cancer
We used the TIMER2.0 database to explore the differential expression of STEAP3 between
tumor samples and adjacent normal tissues. The flowchart was provided in Fig. S1.
As shown in Fig. 1A, significantly differential expression of STEAP3 was found in 16
cancer types, with 11 tumor types up-regulated (BLCA, CESC, GBM, HNSC, LUAD,
LUSC, PCPG, READ, STAD, THCA, and UCEC), and five tumor types down-regulated
(BRCA, CHOL, KICH, LIHC, and PRAD). For certain cancer types without matched
normal tissues in the TMIER2.0 database, we further explored the expression profile of
STEAP3 using the Xiantao tool. Compared with the TCGA normal tissues and GTEx data,
STEAP3 expression was down-regulated in ACC, CHOL, KICH, LIHC, PRAD, and
SKCM, up-regulated in BLCA, CESC, COAD, DLBC, ESCA, GBM, HNSC, KIRC, KIRP,
LAML, LGG, LUAD, LUSC, OV, PAAD, PCPG, READ, STAD, TGCT, THCA, THYM,
UCEC, and UCS (Fig. 1B). In general, the expression of STEAP3 was elevated in the
majority of 32 TCGA tumor types.

Besides transcript levels, using the CPTAC dataset, we further verified that the levels of
STEAP3 protein were significantly higher in HNSC, GBM, LUAD, and UCEC samples
than in normal tissues, while the levels in LIHC were lower than in normal tissues
(Fig. 1C). Then we evaluated immunohistochemical (IHC) staining of STEAP3 proteins in
tumor samples and normal tissues using the HPA database. Consistent with protein
expression levels in the UALCAN data portal, IHC results revealed that liver tissues had
strong STEAP3 IHC staining, while LIHC samples had weak staining. Normal brain, lung,
and uterine tissues showed weak or moderate STEAP3 IHC staining, while GBM, LUAD,
and UCEC samples exhibited moderate or strong staining (Fig. 1D). However, there was
no clear difference in staining intensity between normal tonsil tissue and HNSC (Fig. S2).

The prognostic value of STEAP3 and its correlation with
clinicopathological characteristics in glioma
To assess the clinical significance of STEAP3 expression in GBM, LUAD, UCEC, and
LIHC, we performed Kaplan-Meier survival analysis for overall survival (OS),
disease-specific survival (DSS), and progression-free survival (PFS) with the Xiantao tool.
The results showed that high expression of STEAP3 was associated with poor OS
(HR = 1.44; 95% CI [1.03–2.03]; P = 0.035) and poor PFS (HR = 1.66; 95% CI [1.18–2.33];
P = 0.004) in GBM (Fig. S3A). Given the lack of normal control tissues in the TCGA-LGG
cohort, we added GTEx data to identify the high expression of STEAP3 in LGG. Then we
explored the prognostic value of STEAP3 in LGG. As shown in Fig.S3B, patients with
higher STEAP3 expression levels had significantly poorer OS (HR = 2.52; 95% CI
[1.74–3.63]; P < 0.001), DSS (HR = 2.90; 95% CI [1.95–4.30]; P < 0.001), and PFS
(HR = 2.30; 95% CI [1.73–3.06]; P < 0.001). Considering the consistent prognostic
significance of STEAP3 in GBM and LGG, we further evaluated the prognostic value of
STEAP3 in glioma. As presented in Fig. 2A, high expression levels of STEAP3 also
correlated with poorer OS (HR = 5.44; 95% CI [4.09–7.24]; P < 0.001), DSS (HR = 5.87;
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Figure 1 Expression level of STEAP3 in pan-cancer. (A) The mRNA expression levels of STEAP3 in TCGA cancer types from the TIMER2.0
database. Red and blue bar charts represent tumor samples and normal tissues, respectively. (B) Pan-cancer expression landscape of STEAP3 across
TCGA and GTEx data from the Xiantao database. (C) The protein expression levels of STEAP3 in HNSC, GBM, LUAD, UCEC, and LIHC, analyzed
by CPTAC. (D) The immunohistochemical analysis performed on GBM, LUAD, UCEC, and LIHC and corresponding normal tissues using the HPA
database. P values: � represents P < 0.05, �� represents P < 0.01, and ��� represents P < 0.001. Full-size DOI: 10.7717/peerj.15136/fig-1
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95% CI [4.32–7.96]; P < 0.001), and PFS (HR = 3.71; 95% CI [2.95–4.67]; P < 0.001).
Kaplan-Meier survival analysis showed no statistical significance of STEAP3 in LUAD,
UCEC, and LIHC (Figs. 2B–2D). Therefore, we mainly studied the effect of STEAP3 in
glioma.

Univariate Cox regression analysis of seven independent variables in TCGA-GBMLGG
cohort was carried out. Age, WHO grade, IDH status, 1p/19q co-deletion, and STEAP3
expression level, demonstrated a significant prognostic impact on OS. Multivariate Cox
regression analysis exhibited that age (HR = 1.496; 95% CI [1.096–2.042]; P = 0.011),
WHO grade (HR = 2.622; 95% CI [1.828–3.760]; P < 0.001), IDH status (HR = 0.305; 95%
CI [0.198–0.470]; P < 0.001), and STEAP3 expression level (HR = 1.673; 95% CI
[1.110–2.522]; P = 0.014) were independent prognostic factors for glioma patients
(Table 2). Univariate Cox regression analysis also suggested an association between PFS
and age, WHO grade, IDH status, 1p/19q co-deletion, and STEAP3 expression level.
Multivariate Cox regression analysis indicated that WHO grade (HR = 1.974; 95% CI
[1.435–2.716]; P < 0.001), IDH status (HR = 0.290; 95% CI [0.200–0.421]; P < 0.001), and
STEAP3 expression level (HR = 1.450; 95% CI [1.045–2.013]; P = 0.026) were independent
prognostic factors for glioma patients (Table 3). These results suggest that higher STEAP3
expression was associated with worse prognosis.

Furthermore, we employed the RNAseq_693 dataset from CGGA database to
cross-validate the role of STEAP3 in glioma. STEAP3 expression was markedly elevated in
high-grade and recurrent glioma patients (Figs. 3A and 3B). IDH mutation and 1p/19q
co-deletion are two validated biomarkers for glioma patients. We then explored the
association between STEAP3 expression and the status of IDH mutation and 1p/19q
co-deletion. As shown in Figs. 3C–3G, we found significantly increased STEAP3
expression in patients with IDH wild-type and 1p/19q non-codeletion, and correlated with
WHO grade. In addition, patients older than 42 years harbored higher STEAP3 expression
levels (Fig. 3H). Patients with higher STEAP3 expression had worse prognosis than those
with lower STEAP3 expression in primary and recurrent gliomas, respectively (Figs. 3I and
3J). These findings further validated the prognostic value of STEAP3 and its correlation
with clinicopathological parameters in glioma.

DNA methylation of STEAP3 and its prognostic value in glioma
Epigenetic changes, such as aberrant DNA methylation, commonly contribute to the
development of human tumors, including brain glioma (Russo et al., 2021). We explored
the DNA methylation pattern of STEAP3 in the Methyl_159 dataset of CGGA database.
The methylation level of STEAP3 was obviously decreased with WHO grade (Fig. 4A).
STEAP3 methylation levels were significantly reduced in male patients (Fig. 4B).
In primary gliomas, patients with lower STEAP3 methylation level had worse prognosis
than those with higher STEAP3 methylation level (Fig. 4C). These results were consistent
with STEAP3 expression data. Furthermore, we employed the Xiantao tool to explore the
correlation between STEAP3 expression and the degree of DNA methylation at multiple
CpG sites. As shown in Figs. 4D–4I, cg05270572, cg23164999, cg25845374, cg18643762,
cg04749104, and cg25101327, were significantly negatively correlated with STEAP3
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Figure 2 Prognostic value of STEAP3 in glioma, LIHC, LUAD, and UCEC. (A–D) Kaplan-Meier survival curves for overall survival, dis-
ease-specific survival, and progression free survival of STEAP3 in glioma (A), LIHC (B), LUAD (C), and UCEC (D).

Full-size DOI: 10.7717/peerj.15136/fig-2
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expression in glioma. A gene structure plot illustrating the position of the CpG sites was
shown in Fig. S4. These results revealed that STEAP3 promoter methylation was inversely
correlated with its gene expression, and might serve as an effective prognostic biomarker
for glioma.

Single-cell functional state atlas of STEAP3 in glioma
Considering the intra-tumoral heterogeneity, we continued to explore the relevance of
STEAP3 expression across 14 functional states in cancers at single-cell resolution. STEAP3
expression was significantly positively associated with epithelial-to-mesenchymal
transition (EMT) in GBM, but not all glioma types (Figs. 5A and 5B). These results
suggested that STEAP3 might promote the EMT process of GBM, thus facilitating tumor
invasion and metastasis. To further confirm the effects of STEAP3 in glioma, wound
healing and transwell invasion assays were conducted. Transient transfection of STEAP3
was established by siRNAs and validated by Western Blot (Fig. 5C). The results of wound
healing assays revealed that knocking down of STEAP3 could significantly suppress glioma
cells migration (Figs. 5D and 5E). Transwell invasion assays revealed that STEAP3
downregulation remarkably inhibit T98G and U251 cells invasion (Figs. 5F and 5G).

Table 2 Univariate and multivariable Cox regression of STEAP3 expression for overall survival in TCGA-GBMLGG cohorts.

Characteristics Univariate Cox regression Multivariate Cox regression

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

WHO grade: G2 & G3 vs G4 9.496 [7.212–12.503] <0.001 2.622 [1.828–3.760] <0.001

IDH status: WT vs Mut 0.117 [0.090–0.152] <0.001 0.305 [0.198–0.470] <0.001

1p/19q codeletion: codel vs non-codel 4.428 [2.885–6.799] <0.001 1.467 [0.887–2.428] 0.136

Gender: Female vs Male 1.262 [0.988–1.610] 0.062 1.223 [0.934–1.602] 0.144

Race: Asian & Black or African American vs White 0.821 [0.502–1.344] 0.433

Age: <=60 vs >60 4.668 [3.598–6.056] <0.001 1.496 [1.096–2.042] 0.011

STEAP3: Low vs High 5.440 [4.088–7.240] <0.001 1.673 [1.110–2.522] 0.014

Note:
Bold P values are statistically significant (P < 0.05).

Table 3 Univariate and multivariable Cox regression of STEAP3 expression for progression-free survival in TCGA-GBMLGG cohorts.

Characteristics Univariate Cox regression Multivariate Cox regression

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

WHO grade: G2 & G3 vs G4 6.008 [4.726–7.638] <0.001 1.974 [1.435–2.716] <0.001

IDH status: WT vs Mut 0.151 [0.119–0.191] <0.001 0.290 [0.200–0.421] <0.001

1p/19q codeletion: codel vs non-codel 3.373 [2.438–4.666] <0.001 1.446 [0.993–2.106] 0.055

Gender: Female vs Male 1.083 [0.875–1.342] 0.463

Race: Asian & Black or African American vs White 0.787 [0.515–1.202] 0.267

Age: <=60 vs >60 2.873 [2.268–3.640] <0.001 1.044 [0.781–1.395] 0.772

STEAP3: Low vs High 3.708 [2.947–4.666] <0.001 1.450 [1.045–2.013] 0.026

Note:
Bold P values are statistically significant (P < 0.05).
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Figure 3 Correlation between STEAP3 expression and clinicopathological characteristics in glioma. (A–J) Correlation of STEAP3 expression
level with WHO grade (A), progression status (B), IDH mutation status (C), IDH mutation status based on WHO grade (D), 1p/19q co-deletion
status (E), 1p/19q co-deletion status based on WHO grade (F), combination of IDH mutation status and 1p/19q co-deletion status (G), age status
(H), and survivals (I and J) from the RNAseq_693 dataset in CGGA database. Full-size DOI: 10.7717/peerj.15136/fig-3
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Namely, these observations indicate that STEAP3 facilitated migration and invasion in
glioma cells.

STEAP3 co‑expression network and pathway enrichment analysis
To investigate the biological roles of STEAP3 in glioma progression, the STEAP3
co-expression profile in the TCGA-GBMLGG cohort was analyzed using the LinkFinder
module of LinkedOmics. As presented in Fig. 6A, 8,702 genes (red dots) were positively
associated with STEAP3, and 7,816 genes (green dots) were negatively correlated with
STEAP3. Figures 6B and 6C showed the heatmaps of the top 50 genes bearing positive and
negative correlations with STEAP3, respectively (Table S1). Additionally, genes positively

Figure 4 Correlation between STEAP3 methylation and clinicopathological characteristics in glioma. (A–C) Correlation of STEAP3 methy-
lation level with WHO grade (A), gender (B), and survival (C) from the Methyl_159 dataset in CGGA database. (D–I) Correlation between STEAP3
expression and DNA methylation at CpG sites in the STEAP3 gene by the Xiantao database. Full-size DOI: 10.7717/peerj.15136/fig-4
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Figure 5 Functional relevance of STEAP3 in glioma. (A) Relevance of STEAP3 across 14 functional
states in distinct cancers using the CancerSEA database. Red indicates positive correlation whereas blue
represents negative correlation. (B) Functional relevance of STEAP3 in GBM analyzed by the CancerSEA
database. (C) Confirmation of siSTEAP3 or siNC-mediated knockdown efficiency of STEAP3 by western
blot. (D and E) Scratch assay showed significant migration delay in siSTEAP3 cells at 12, 24 h after
transfection compared to siNC cells (T98G and U251). (F and G) Invasion of T98G and U251 cells with
siNC or siSTEAP3 transfection was detected through transwell assay. P values: � represent P < 0.05, ��

represent P < 0.01, and ��� represent P < 0.001. Full-size DOI: 10.7717/peerj.15136/fig-5
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Figure 6 STEAP3 co-expression network and GSEA enrichment analysis. (A) Volcano plot showing the co-expressed profiling of STEAP3 in
glioma by Spearman test. (B and C) Heatmaps of the top 50 genes positively (B) and negatively (C) correlated with STEAP3, respectively. (D and E)
GO (D) and KEGG (E) pathway analysis of the STEAP3 co-expression genes with the LinkInterpreter module of the LinkedOmics database. (F) The
correlation between STEAP3 expression and immune cell infiltration in glioma analyzed by the Xiantao tool. (G and H) Validations of the positive
correlation between STEAP3 expression and macrophages (G) and neutrophils (H) in GBM and LGG by the TISIDB database.

Full-size DOI: 10.7717/peerj.15136/fig-6
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associated with STEAP3 (P < 0.05, gene counts: 8,702) were subjected to functional
enrichment analysis using the LinkInterpreter module. Gene Ontology term annotation
suggested that genes co-expressed with STEAP3 were significantly enriched in
inflammation and immune-associated biological process, such as granulocyte activation,
neutrophil mediated immunity, response to interferon-gamma, interferon-gamma
production, adaptive immune response, and so on (Fig. 6D). KEGG pathway analysis
exhibited that these genes were mainly involved in inflammation and immune-related
pathways, such as Staphylococcus aureus infection, autoimmune thyroid disease, allograft
rejection, leishmaniasis, intestinal immune network for IgA production, etc. (Fig. 6E).
These findings suggested that STEAP3 co‑expression network may play a role in
inflammation and immune regulation in glioma.

Role of STEAP3 in immune microenvironment of glioma
An increasing number of studies have confirmed that ferroptosis plays an important role
in regulating tumor immune microenvironment (Wang et al., 2022; Yan et al., 2021).
Therefore, we explored the role of STEAP3 in glioma immune microenvironment.
As shown in Fig. 6F, STEAP3 expression was positively correlated with the abundance of
various immune infiltration cells, such as macrophages, eosinophils, and neutrophils.
The association between STEAP3 expression and macrophages was cross-validated in the
TCGA-GBM and TCGA-LGG cohort using TISIDB database, respectively, but not in
eosinophils (Figs. 6G and 6H). Using the Xiantao tool, we further analyzed the correlations
between STEAP3 with immune checkpoints. As shown in Figs. 7A–7E, immune
checkpoints were found to have significant positive correlations with STEAP3, while
programmed cell death 1 ligand 2 (PDCD1LG2) exhibited the highest correlation
coefficient (r = 0.775, P < 0.001). In addition, we assessed the relation between immune
infiltration score and STEAP3 expression. Figures 7F and 7G showed its positive
association and patients with high immune infiltration score had poorer overall survival
(OS) in glioma. We then used the TIDE algorithm to predict anti-PD1 and anti-CTLA4
immunotherapy response in glioma patients. As shown in Fig. 7H, individuals with low
STEAP3 expression were more likely to respond to immunotherapy than those with
high STEAP3 expression. Consistent with this result, the TIDE score was down-regulated
in STEAP3 low expression group, and the microsatellite instability (MSI) score was
up-regulated in STEAP3 low expression group (Figs. 7I and 7J). These results indicated
that STEAP3 might influence the clinical outcome of glioma patients by regulating the
tumor immune microenvironment.

STEAP3 relating with M2 macrophages in glioma
The correlation analysis revealed that STEAP3 expression was significantly positively
associated with the abundance of macrophage infiltration. We further explored the
associations between STEAP3 expression and classical macrophage phenotype in the
TCGA-GBMLGG cohort with Spearman’s rank correlation test, including gene expression
of M0 (undifferentiated) marker (AIF1), M1 (anti-tumor) markers (IL12A, TNF, NOS2,
PTGS2) and M2 (tumor-promoting) markers (IL10, CD163, TGFB1, CSF1R). As shown in
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Figure 7 The role of STEAP3 in the immune microenvironment of glioma. (A–E) Correlation of STEAP3 expression and several immune
checkpoints, such as PDCD1 (A), CD274 (B), CD276 (C), HAVCR2 (D), PDCD1LG2 (E). (F) Association between STEAP3 expression with
immune score in the TCGA glioma dataset calculated by ESTIMATE algorithm. (G) Kaplan–Meier survival curve of overall survival stratified by
immune score in the TCGA glioma dataset. (H) Predicted anti-PD1 and anti-CTLA4 response rate for STEAP3 high and low groups in the TCGA
glioma dataset. (I and J) TIIDE score (I) and MSI expression (J) between STEAP3 high and low groups. (K) Heatmap of correlation between STEAP3
and classical macrophage phenotype markers. P values: � represent P < 0.05, �� represent P < 0.01, and ��� represent P < 0.001.

Full-size DOI: 10.7717/peerj.15136/fig-7
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Fig. 7K, STEAP3 had stronger positive correlations with M0 (AIF1) and M2 (IL10, CD163,
TGFB1, CSF1R) macrophage markers, but not with M1 (IL12A, TNF, NOS2, PTGS2)
markers. These findings suggested that STEAP3 may regulate tumor immune
microenvironment by promoting the formation of the M2 macrophages in glioma.

DISCUSSION
In this study, we aimed to investigate the clinical significance and biological function of
STEAP3 in the tumorigenesis and progression of glioma. Compared with normal brain
tissue, STEAP3 was highly expressed in glioma and was significantly associated with poor
prognosis. Furthermore, multivariate Cox regression analysis indicated that STEAP3 was
an independent prognostic factor in glioma. STEAP3 promoter hypomethylation may be
the mechanism of upregulation in glioma. Further research revealed that STEAP3 may
affect tumor immune response by increasing the infiltration level of M2 macrophages.

Recently, accumulating evidence has revealed that ferroptosis plays an essential role in
glioma initiation and progression. RND1 (Rho family GTPase 1), a positive regulator of
p53, could induce lipid peroxidation and enhance ferroptosis in GBM (Sun et al., 2022).
Xia et al. (2022) identified that apatinib, a small-molecule tyrosine kinase inhibitor,
induced ferroptosis in glioma through modulation of the NRF2 pathway, in addition to
antiangiogenic and anticancer activities. Additionally, many studies have suggested that
ferroptosis induction could be a promising therapeutic strategy (de Souza et al., 2022b; Hu
et al., 2020). In a recent study by de Souza et al. (2022a), high levels of NRF2 could reverse
temozolomide resistance in glioma via ferroptosis induction. Ferroptosis inducers could
enhance the antitumor effect of radiation and may serve as effective radiosensitizers that
could expand the efficacy and indications of radiation therapy (Ye et al., 2020). However,
the link between ferroptosis-related genes and prognosis in glioma patients has been rarely
reported. In our study, we explored the prognostic value of ferroptosis-associated gene
STEAP3 in glioma, and found that high levels of STEAP3 served as an independent poor
prognostic prediction factor in glioma patients.

DNA methylation, a methyl group added to the fifth carbon of the cytosine residue in
cytosine-guanine (CpG) dinucleotides, is one of the well-characterized epigenetic
mechanisms for regulating gene expression (Xue et al., 2021). Accumulating evidence has
suggested that altered DNA methylation patterns are associated with a wide range of
age-related diseases, including vascular disease (Lu et al., 2021), Alzheimer’s disease
(Altuna et al., 2019), and cancer (Klutstein et al., 2017). DNA methylation patterns could
contribute to tumorigenesis and progression by regulating the expression levels of
oncogenes and tumor-suppressor genes (Costello et al., 2000; Pathania et al., 2015).
According to the analysis of TCGA datasets and IHC staining from HPA database, glioma
exhibited significantly high STEAP3 mRNA and protein expression. The mechanisms of
STEAP3 upregulation in glioma are currently poorly understood. In our study, the DNA
methylation levels of STEAP3 in high-grade glioma were significantly lower than those in
low-grade glioma, and the methylation levels of multiple methylated CpG sites were
significantly negatively correlated with STEAP3 expression, indicating that low levels of
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STEAP3 promoter methylation are responsible for the overexpression of STEAP3 in
glioma.

The immune microenvironment is composed of various immune cells, cytokines,
chemokines, and so on (Huang et al., 2018; Wang et al., 2022). Emerging studies have
suggested that glioma has a suppressive immune microenvironment, which further
inhibits the response to immunotherapy represented by anti-PD-1/PD-L1 and anti-
CTLA4 (Jackson, Choi & Lim, 2019; Lim et al., 2018; Xu et al., 2020). Tumor-associated
macrophages (TAMs), instead of T lymphocytes, are the most abundant immune cell
populations involved in glioma development (Wei et al., 2019). TAMs in glioma exhibit
M2-like macrophage polarization, which largely contributes to the induction of
immunosuppressive microenvironment, and further facilitate tumor proliferation,
migration, and survival (Hambardzumyan, Gutmann & Kettenmann, 2016; Zhang et al.,
2021a). Colony stimulating factor 1 receptor (CSF1R) inhibition could regulate M2
macrophage polarization and attenuate glioma progression (Przystal et al., 2021; Pyonteck
et al., 2013). CD163, a membrane protein considered as the most specific M2 macrophage
phenotypic marker, predicts poor prognosis in patients with glioma (Liu et al., 2019).
In the present study, the findings showed that M2macrophage markers CD163 and CSF1R
were positively correlated with STEAP3 expression in glioma, suggesting that the function
of STEAP3 might be related to the regulation of macrophage M2 polarization.
Furthermore, our studies revealed that co-expression genes of STEAP3 might participate
in inflammation and immune-associated pathways, and STEAP3 expression was positively
associated with immune checkpoints. Additionally, immune infiltration analysis showed
that individuals with high immune score had a tendency towards the upregulation of
STEAP3, which coupled with worse OS. Patients with high STEAP3 expression were
associated with low response rates to immunotherapy. Together these results imply that
the role of STEAP3 might be involved in the induction of immunosuppressive
environment and may be a promising therapeutic target for glioma immunotherapy.

To date, several studies have reported the prognostic prediction potential of STEAP3 in
GBM (Chen et al., 2021a; Han et al., 2018; Zhao et al., 2021a). STEAP3-associated
prognostic signatures for glioma have also been reported (Guo et al., 2021; Weston et al.,
2016). However, existing studies on the biological function and molecular mechanisms of
STEAP3 in glioma are few in number. Han et al. (2018) identified that STEAP3 could
promote the growth and invasion of glioblastoma, which was consistent with our findings.
The possible mechanism by which STEAP3 promotes glioma progression may be through
the activation of TfR and the downstream ferritin-STAT3 pathway. In addition, our study
indicated that the methylation of STEAP3 promoter region was highly negatively
correlated with its expression. Tumor immune infiltrate analysis showed that STEAP3
might influence the clinical outcome of glioma patients by regulating the tumor immune
microenvironment, especially the formation of the M2 macrophages. The CancerSEA
database showed that STEAP3 may contribute to glioma progression by promoting EMT.
However, the mechanism of this effect remains to be further investigated.

In the present study, several limitations still exist. Firstly, gene expression analysis based
on retrospective databases needs further investigations in large-scale prospective clinical
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cohorts to confirm the prognostic value of STEAP3 in glioma. Secondly, it is necessary to
conduct functional experiments to elaborate the biological mechanism of STEAP3 and
tumor-immune interactions in glioma.

CONCLUSION
Taken together, by comprehensively assessing the gene expression profiles, our study
provides new insights into the interaction between ferroptosis and glioma immune
microenvironment. STEAP3 was up-regulated in glioma, and increased with tumor grade.
High STEAP3 expression was recognized as an independent poor prognostic factor.
Further study suggested that STEAP3 may contribute to the induction of glioma
immunosuppressive microenvironment by regulating macrophage M2 polarization.
In summary, STEAP3 has great potential as a prognostic biomarker and therapeutic target
in glioma.

ABBREVIATIONS
ACC adrenocortical carcinoma

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CESC cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

DLBC diffuse large B-cell lymphoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme

HNSC head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LAML acute myeloid leukemia

LGG brain lower grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma
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TGCT testicular germ cell tumors

THCA thyroid carcinoma

THYM thymoma

UCEC uterine corpus endometrial carcinoma

UCS uterine carcinosarcoma

UVM uveal melanoma
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