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ABSTRACT

Biotic stress due to fungal infection is detrimental to the growth and development of
chickpea. In our study, two chickpea genotypes viz Cicer pinnatifidum (resistant) and
PBGS5 (susceptible) were inoculated with (1 x 10* spore mL™") of nectrotrophic
fungus Botrytis cinerea at seedling stage. These seedlings were evaluated for
morphological, ultrastructural, and molecular differences after 3, 5 and 7 days post
inoculation (dpi). Visual symptoms were recorded in terms of water-soaked lesions,
rotten pods and twigs with fungal colonies. Light and scanning electron microscopy
(SEM) revealed the differences in number of stomata, hyphal network and extent of
topographical damage in resistant (C. pinnatifidum) and susceptible (PBG5)
genotypes, which were validated by stomatal index studies done by using
fluorescence microscopy in the infection process of B. cinerea in leaves of both
chickpea genotypes. In case of control (water inoculated) samples, there were
differences in PCR analysis done using five primers for screening the genetic
variations between two genotypes. The presence of a Botrytis responsive gene
(LrWRKY) of size ~300 bp was observed in uninoculated resistant genotype which
might have a role in resistance against Botrytis grey mould. The present investigation
provides information about the variation in the infection process of B. cinerea in two
genotypes which can be further exploited to develop robust and effective strategies to
manage grey mould disease.

Subjects Agricultural Science, Mycology, Plant Science
Keywords Botrytis cinerea, Chickpea, Leison, Inoculation, Resistance

INTRODUCTION

The adverse disease symptoms have a significant impact on the growth and development
of crop plants, resulting in diminished crop yields and harmful crop products (Mukta &
Bart, 2015; Luchi, Renaud ¢ Santini, 2020). Chickpea is a significant source of protein for
the vegetarian population of South Asian nations. The low yield in chickpea is due to its
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susceptibility to diverse fungal pathogens that affect the plant from seedling stage to
maturity. Botrytis grey mould (BGM), caused by B. cinerea is an important biotic
constraint to chickpea production with annual yield loss of 50% or more (Khan, Anwer ¢
Shahid, 2011; Soltis et al., 2019). However, BGM infection can cause up to 100% yield loss
under favorable conditions as reported in Gurdaspur belt of Punjab in Northwest India in
2014-15. The fungus infects all of the plant’s aerial components, including the leaves,
flowers, pods, branches, and stem, with the flowers, pods, and growth tips being
particularly susceptible (Soliman et al., 2015). The pathogen exists as B. cinerea in the
anamorph stage and as Botryotinia fuckeliana in the teleomorph stage. Heavy and
extended winter rains, cloudiness, heavy nighttime dew, excessive irrigation, early
planting, and a dense plant canopy all contribute to the crop’s susceptibility to this disease.
Due to high levels of host tolerance to BGM, this disease causes a potential threat to
chickpea crops worldwide. However, certain accessions of C. pinnatifidum possess a high
level of resistance that can be exploited by interspecific hybridization with chickpea.
The surface of the plant is the first line of protection against pathogens. A thorough
comprehension of plant-pathogen interactions is necessary for mitigating their negative
effects. Observable disease symptoms suggest a physiological connection between plant
infection and its progression in the host plant (Francisco et al., 2019). This enables us to
study the quantitative alterations in plant by pathogen infestation. Visual methods allow
detecting disease symptoms earlier to more thorough detection (Duba et al., 2019). Both
light and scanning electron microscopic (SEM) techniques are used to analyze cell surfaces
inoculated with B. cinerea inoculums. SEM technique was utilised to explore the plant
pathogen interaction in greater detail. It has advantages over light microscopy because it
allows for the imaging of the entire cell surface, taxonomic features, and improved
host-fungus interactions. It is a method that requires minimal material to determine
particle size, shape, and texture (Alves ¢ Pozza, 2009). It has been demonstrated that
molecular markers are an effective tool for understanding pathogenesis and the resistance
or susceptibility of the host plant to various infections. The creation of biological products
such as phenolics, phytoalexins, osmolytes, antioxidant enzymes, degrading enzymes, and
pathogenesis-related proteins by resistance genes activated by plant pathogens confer
genetic resistance (El-Fatah et al., 2019). Molecular studies on plant pathogen interaction
lead to the development of long lasting resistant strategies for crop protection. The present
study describes the variation in morphological, physiological and molecular characteristics
of two different genotypes of chickpea after they were infected with B. cinerea. Visual
symptoms of disease measure the morphological variations. Light microscopy and SEM
approaches demonstrate the anatomical features after infection. Using PCR analysis, we
measure the differences in the expression level after B. cinerea infection in both the
genotypes using WRKY, BIG and BRG primers which have been suggested to play a
positive role to provide resistance against BGM infection in the previous studies (Smith
et al., 2014; Sham et al., 2015).
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MATERIALS AND METHODS

Chickpea seeds of wild Cicer species i.e., C. pinnatifidum accession 188 and PBG5

(C. arietinum) were procured from Department of Plant Breeding and Genetics, Punjab
Agricultural University, Ludhiana. For fungal inoculation, the growth chamber technique
was used to inoculate PBG5 whereas the cut twig method was used in the case of

C. pinnatifidum.

Multiplication of pathogen for inoculations

In the present study, fungal isolate 24, race 510 of B. cinerea isolated by the adapted
method described elsewhere (Singh ¢ Bhan, 1986) was used for BGM inoculation. This
isolate was maintained on potato dextrose agar (PDA) slants and further multiplication
was done on potato dextrose broth at 25 °C. The spores and mycelium were suspended in
sterilized water; passed through a sieve to remove agar lumps and blended for 1 min.

Growth chamber inoculation technique

Polyethylene pots of size 15 cm x 10 cm were filled with sandy-loam soil under glass house
conditions and 10 seeds of PBG5 genotype were sown in each pot. After 1 month, the
plants were transferred to chambers in growth room, watered and inoculated with a spore
suspension of B. cinerea (1 x 10* spore mL™"). These plants were kept in moist chambers
for 1, 3, 5, and 7 days separately with 16 h light and 8 h dark periods provided through a
fluorescent lamp (24" x 1.5”, W 20, 32 m/W).

Cut twig inoculation technique

In this method, the tender shoots of 1-month-old seedlings of C. pinnatifidum accession
were cut under water in a tray and wrapped in a wet cotton plug. These twigs were then
placed into a test tube containing tap water. For inoculation, twigs were sprayed with a
spore suspension of B. cinerea (1 x 10* spore mL™"), covered with moist polythene bags,
and incubated as per the method described above for the growth chamber inoculation.
Water inoculated plants of both the genotypes served as control. Leaf samples were
collected at 1, 3, 5 and 7 dpi and subjected to light microscopy and SEM analysis.

Anatomical studies
Both the genotypes of chickpea affected with BGM along with controls were studied to
monitor the anatomical differences by using light microscopy and SEM.

Light microscopic analysis

Leaf and stem samples of control and inoculated chickpea genotypes i.e., PBG5
(susceptible) and C. pinnatifidum (resistant) were collected after 1, 3, 5, and 7 dpi and
immediately preserved in Formalin-acetic acid-ethyl alcohol solution (50% ethyl alcohol,
glacial acetic acid and 40% formaldehyde in 85:5:10 ratio). Hand sections of leaves and
stem were cut and observed under Leica Bright Field Research Microscope fitted with
digital camera and computing imaging systems using software NIS Elements F 3.0 at 20X.
Also, the stomatal index was calculated using the method of (Salisbury, 1927).

Thakur et al. (2023), PeerdJ, DOI 10.7717/peerj.15134 3/18


http://dx.doi.org/10.7717/peerj.15134
https://peerj.com/

Peer/

Scanning electron microscopy analysis

Control and fungal inoculated chickpea leaves were processed for SEM analysis according
to the method described (Alves ¢ Pozza, 2009). Leaves were cut into small segments with
razor blade in thin layers of less than 0.5 to 1 cm. These segments were fixed overnight in
1.5 ml of modified Karnovisk’s solution (2.5% each of glutaraldehyde and formaldehyde
v/v in 0.05 M cacodilato sodium buffer (pH 7.2), 1 mM CaCl,). Samples were washed in
buffer, post fixed with 1% osmium tetroxide solution in same buffer for 4 h in laminar flow
chamber at room temperature. The specimens were washed thrice in distilled water and
dehydrated using an ethanol gradient (25%, 50%, 75%, 90% and 100%), for 10 min in each
concentration. Subsequently, the samples were completely dehydrated in vacuum
desiccators. The specimens were pasted using adhesive tapes on the surface of stubs
covered with aluminum and submitted to the metallization with gold using ion sputter
coater (Hitachi model E-1010) equipment and photographed by scanning electron
microscope (Model Hitachi S-3400N, Hitachi Co. Ltd, Tokyo, Japan).

Molecular studies

To see the genetic variations between two genotypes of chickpea so as to explore the basis
of resistance against fungal pathogen, PCR assays were conducted. Different primers
enlisted in (Table S1) were used to detect the Botrytis responsive gene in chickpea
genotypes.

DNA extraction, quantification and PCR analysis

The experiment was conducted in Pulse section laboratory, Department of Plant Breeding
and Genetics, PAU, Ludhiana. In the experiment, the genomic DNA from both the
genotypes of chickpea i.e., C. pinnatifidum and PBG5 was isolated using standard cetyl
trimethyl ammonium bromide (CTAB) procedure by Doyle ¢» Doyle (1990).

The composition of CTAB buffer used is given as CTAB-1.5%, Tris HCL-100 mM (pH
8.0), NaCl-1.4 M, EDTA-20mM (pH 8.0), p-Mercaptoethanol 2%, Polyvinylpyrolidone-
2%. The concentration of purity of DNA was checked by 0.8% agarose gel electrophoresis.
The final concentration of DNA (15 ng/pL) in 20 ul reaction mixture for each sample was
used to run PCR with following components: DNA-2 ul, Buffer-4 ul, Mg®*~1.2 ul, DNTPs-
3 pl, Primer (F/R)-1.5 pl, Taq polymerase- 0.2 pl, autoclaved H,0-6.6 ul etc. The reaction
conditions used were: denaturation at 94 °C, 2 min; 98 °C, 10 s, annealing at 58 °C, 30 s,
extention at 68 °C, 1 min for 45 cycles, using Thermo Cycler Applied Biosystems (Veriti).
The PCR product was loaded on a 1.5% agarose gel and run at 150 V for 2 h. The gel was
illuminated under UV light in gel documentation system.

Electrophoretic studies of proteins

Electrophoretic studies were carried out by following the methodology of Laemmli (1970).
Samples of protein (250 pg) were denatured with three fold SDS than the quantity of the
protein in the extract, B-mercaptaethanol and bromophenol blue (0.01%) (tracking dye).
Marker of protein having molecular weight ranged between 14.4-97.4 kDa were also
applied in a separate well along with the test sample. Samples were loaded at room
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temperature to carry out electrophoresis at constant current of 1.5 mA per well until dye
stacked to the end of slab gel.

Staining of gels

Gels were kept in fixing solution for 1 h to fix the resolved protein and then allowed to

stand overnight for staining in the staining solution. In the next day, gels were placed in
destaining solution on shaker. Washing of the gel was done with destaining solution for
2-3 times until the gel became transparent and clear bands appeared.

Densitometry
Molecular weights and relative front values of different protein bands were estimated by
scanning of the gels through the Alpha-Imager software.

RESULTS

In the present studies, the plant-pathogen interactions between fungal pathogen B.cinerea
and two genotypes of chickpea varying in susceptibility to BGM disease have been
observed by SEM technique for the first time. Differentiation of specialized cell types or
infection structures is a prerequisite for successful penetration and colonization of plant
tissues by most fungal pathogens. In this report, microscopic studies of chickpea stem
infected with B. cinerea allowed a detailed description of the sequential development of
infection. A destructive rate of infection was observed on PBGS5 leaves as compared to
C. pinnatifidum, which B. cinerea failed to infect.

Morphological studies

One of the responses that plant employ to cope with diverse biotic and abiotic stresses is
the variation in their morphology. The morphological transitions may enable the better
idea of the progression of the pathogen in the host plant.

Visual symptoms

Under optimum environmental conditions, disease symptoms on the PBG5 leaves started
appearing after about 48 h of inoculation of the crop with maximum disease symptoms
observed on 7™ dpi. The diseased leaves showed the appearance of spore colonies on the
twigs at 3™ dpi followed by water-soaked lesions on the leaf lamina at 5™ dpi and infected
leaves without pods (Figs. IA-1E). Any visible damage to the plant was not found in the
case of B. cinerea inoculated leaves of resistant genotype C. pinnatifidum (Figs. 1K-10).

Anatomical studies

Light microscopic analysis

Different plant parts of chickpea genotypes PBG5 (susceptible) and C. pinnatifidum
(resistant) were studied under a fluorescence microscope to understand the development
of B. cinerea infection. Anatomical studies of the cross sections of infected and uninfected
stem samples revealed that the outer epidermis of non infected samples was intact (Fig. 1F)
while the fungal inoculated samples showed ruptured epidermis in both the genotypes
(Figs. 1G and 1Q). Transverse sections of non infected samples revealed intact mesophyll
while in case of infected samples, mesophyll disintegration was observed. The intact/
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Figure 1 Disease symptoms on leaves and light microscopic analysis of stems of B. cinerea inoculated
chickpea genotypes. (A) Control PBG 5, (B-E): visual symptoms of BGM infection on susceptible
genotype PBG5 at 1, 3, 5 & 7 days post inoculation: (B) greyish colony on the twig, (C) water soaked
lesions on the leaf, (D) infected plants without pods, (E) unhealthy plants. (F to J) anatomy of infected
PBG five samples at various resolutions by fluorescence microscopy, (F) control PBG 5, (G) day 1
showing colonization of B. cinerea conidia in cortex cells, (H) colonization of vascular system, (I) pro-
gression of fungal colonization, (J) hyphal network formation, (K) control C. pinnatifidum, (L-O):
resistant genotype at 1,3, 5 & 7 dpi without any visual disease symptoms, (Q-T): anatomy of inoculated
C. pinnatifidum showing rigid outer epidermis with progressive days after inoculation.

Full-size k&l DOL: 10.7717/peer;j.15134/fig-1

compact spongy mesophyll in C. pinnatifidum could be responsible for hampering
mycelium growth in the host tissue and thus imparting resistance against B. cinerea
infection. This information might play an important role to determine the invasion of the
pathogen on host plant. Structural disintegrations were less in resistant chickpea genotype
as compared to susceptible one post Botrytis inoculation. At 1 dpi, fungal infection affected
the average vascular system area of the susceptible genotype, but there were no variations
in the number of vessels between susceptible and resistant plants (Figs. 1G and 1Q). At one
day post-inoculation, both genotypes exhibited browning of the vascular system. After
establishment of infection, mycelia or conidia further proliferated and colonized
neighboring areas in the tissue. Another striking feature of the resistant interaction was the
observation of thick outer epidermis with the progression of infection. Susceptible
genotype PBG5 showed hyphal growth in the cortex of stem and colonization of vascular
system at 5 and 7 dpi while in resistant genotype C. pinnatifidum, some fungal patches and
thickening of outer epidermis was observed after infection (Figs. 11, 1], 1S and 1T).

The transverse section of leaves of susceptible and resistant genotypes showed difference in
the structure of mesophyll cells in the lamina of both genotypes (Figs. 2A and 2B). Also, the
numbers of stomata per unit area of leaves of PBG5 were more as compared to resistant
genotype (Figs. 3A and 3B, Table S2).
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Figure 2 Anatomy of leaf structure of C. pinnatifidum (resistant) and PBG 5 (susceptible) after B.
cinerea infection. Full-size K&l DOT: 10.7717/peerj.15134/fig-2

Few stomata

C. pinnatifidum

Figure 3 Stomatal frequency of abaxial surface of leaf sample of susceptible (PBG5) and resistant
(C. pinnatifidum) chickpea genotypes. Full-size K&] DOT: 10.7717/peerj.15134/fig-3

SEM analysis

To assess the ultrastructural alterations in control and BGM-infected leaf samples of
susceptible and resistant chickpea genotypes, SEM analysis at various resolutions viz.,
(500 SE, 1.0 k SE, 1.5 k SE, 2.0 k SE and 2.5 k SE; SE stands for secondary electrons detected
by detector to provide cell surface topography) were performed (Fig. 4). In the control
(uninoculated) samples of both genotypes, leaf surface topography and the number of
stomata were seen to vary (Fig. 4, control). The uninoculated leaf samples of the
susceptible genotype (PBG5) exhibited higher numbers of stomata than the resistant one,
which were also validated by the results of stomatal frequency (the numbers of stomata per
unit area) of leaves of both the genotypes. PBG5 leaves have more stomata on the abaxial
surface than C. pinnatifidum leaves (Fig. 3). The susceptible genotype exhibited a more
apparent fungal growth with partial disintegration of cell surface, whereas the resistant
genotype exhibited the presence of tiny fungal granules without cell surface damage (Fig. 4,
day 1). At 3™ dpi, more disintegration of surface was observed due to fungal invasion in
case of susceptible genotype, while minor hyphal formations were seen on the surface of
resistant genotype (Fig. 4, day 3). Moreover, the surface structure of susceptible genotype
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Figure 4 SEM analysis of uninoculated control and B. cinerea inoculated leaf samples of susceptible
(PBG5) and resistant (C. pinnatifidum) genotype at 1, 3, 5, and 7 days post inoculation.
Full-size ] DOTL: 10.7717/peerj.15134/fig-4

leaf samples was found to be rough and irregular, whereas the surface structure of resistant
genotype leaf samples was smooth and homogeneous. At day 5, hyphal growth
development increased in both susceptible and resistant chickpea genotypes as fungal
infection increased (Fig. 4, day 5). At day 7 after BGM infection, the entire leaf surface was
covered with irregular fungal hyphae in susceptible genotypes and uniform hyphae in
resistant genotypes (Fig. 4, day 7).

Molecular studies

Detection of Botrytis-responsive genes in chickpea genotypes

Genomic DNA from the uninoculated leaves of both the genotypes was subjected to
amplify with five different Botrytis responsive genes specific primers. Out of five, one
primer (LrWRKY4) amplified a segment of ~300 bp band in C. pinnatifidum only (Fig. 5).
Amplification of ~300 bp band was observed in C. pinnatifidum but not in PBG5,
indicating a possible role of this gene in resistance against BGM (Fig. 6).

Electrophoretic analysis of chickpea proteins in response to Botrytis
grey mold

SDS-PAGE analysis

Total soluble proteins were extracted from uninoculated control and inoculated leaves of
chickpea genotypes post B. cinerea infection and were subjected to SDS-PAGE analysis.
The gels were subjected to densitometry for molecular weight determination and data on
R¢ values of various protein subunits is presented in Table 1. A total of eight protein bands
were detected in uninoculated leaf samples of both the genotypes with molecular weight in
the range of 8.0-97.4 kDa (Fig. 7A). Major changes in the polypeptide subunit bands of
both the genotypes were observed after inoculation at 3 dpi (Fig. 7B). The inoculated leaves
of PBG5 showed six protein subunits bands on gel with R values (0.09, 0.16, 0.29, 0.39,
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L - marker (1 kb), a - C. pinnatifidum,b - PBG5, Lane (5-7 ) - LrWRKY primer

Figure 5 Amplification of C. pinnatifidum (resistant) and PBG5 (susceptible) genomic DNA with
different Botrytis responsive gene specific primers. Full-size K] DOI: 10.7717/peerj.15134/fig-5

300 bp
200 bp

L - marker (1 kb), a - C. pinnatifidum,b - PBGS

Figure 6 PCR amplification of C. pinnatifidum genomic DNA with LrWRKY4 gene specific
primer. Full-size K&l DOT: 10.7717/peerj.15134/fig-6

0.57,0.84) at 3 dpi, (0.09, 0.16, 0.19, 0.28, 0.36, 0.39) at 5 dpi and (0.06, 0.09, 0.14, 0.18,
0.25, 0.36) at 7 dpi. The polypepetide bands I, IL, III, IV (M. wt 70.8 kDa, 45.7 kDa, 18.6
kDa, 8.6 kDa & R(0.09, 0.16, 0.28, 0.39) were absent in extract from inoculated leaves of
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Table 1 It represents the relative front values and molecular weights of different protein bands estimated by scanning of the gels through the
Alpha-Imager software.

Protein Days post inoculation
fractions
Control 3 5 7
S R S R S R S R
I 0.05 (97.4) 0.05 (97.4) 0.09 (75.2) 0.06 (95.5) 0.09 (75.2) 0.16 (42.8) 0.06 (97.0) 0.15 (43.0)
1I 0.11 (66.0) 0.11 (66.0) 0.16 (42.8) 0.11 (66.0) 0.16 (42.8) 0.27 (29.2) 0.09 (75.2) 0.29 (28.4)
I 0.15 (43.0) 0.16 (42.8.) 0.29 (28.4) 0.16 (42.8) 0.19 (35.6) 0.41 (16.9) 0.14 (42.0) 0.40 (17.9)
v 0.21 (39.0) 0.23 (28.8) 0.39 (18.0) 0.21 (39.0) 0.28 (27.8) 0.51 (11.7) 0.18 (34.0) 0.48 (11.6)
v 0.29 (28.4) 0.31 (28.2) 0.57 (11.9) 0.30 (28.4) 0.36 (16.1) 0.60 (8.0) 0.25 (24.6) 0.57 (7.9)
VI 0.39 (18.0) 0.38 (17.6) 0.84 (7.0) 0.40 (17.6) 0.39 (18.0) 0.75 (6.7) 0.36 (16.1) 0.84 (7.0)
VII 0.49 (12.0) 0.52 (11.5)
VIIL 0.60 (8.0) 0.60 (8.0)
@A) (B) 3 \
1 2 ‘1 ‘_‘2_~ 3 | 4 S g6 8J )
<—1 (97.4kDa : <— 1 (225kDa

< TI(66.0kDa)
~ T (43.0kDa)

IV (39.0 kDa)
V (24.4 kDa)
VI (8.6 kDa)

VII (12.0 kDa)
VIII (8.0 kDa)

1- PBGS (control) 1,2, 3 - PBGS (inoculated; day 3, 5, 7)
2- C. pinnatifidum (control) 4 - Marker
5, 6,7 - C. pinnatifidum (inoculated; day 3, 5, 7)

Figure 7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis of the leaf extracts of chickpea
genotypes PBG5 (susceptible) and C. pinnatifidum (resistant) uninoculated and inoculated with
B. cinerea. Full-size K&l DOT: 10.7717/peerj.15134/fig-7

C. pinnatifidum at 3 dpi. Protein bands with R¢ values (0.5, 0.21, 0.49, 0.64) were not
observed in PBGS5 leaves with progress of infection at 7 dpi. Inoculated leaves of

C. pinnatifidum showed absence of protein subunit bands corresponding to R value of
0.49, 0.60, 0.64 and 0.84. However, at 3 dpi, the bands corresponding to protein subunits
with high molecular weight (97.4 & 66 kDa) were missing in the C. pinnatifidum leaves.

DISCUSSION

A number of biotic stresses exploit metabolic activities of plants due to physiological
damage, leading to reduction in crop yield. Plants deploy a well managed and systematic
defense mechanism in response to these stresses (Gimenez, Salinas & Manzano-Agugliaro,
2018). Thus, a deep understanding of plant defense mechanisms might avoid economic
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losses and prevent important crops. A plants first line of defense is passive and involves the
acceleration of different physical (waxes, thick cuticles and specialized trichomes) and
chemical responses during plant-pathogen interactions (Nejat ¢ Mantri, 2017).

The chickpea plant’s aerial parts are vulnerable to BGM (Grewal, Pal ¢ Rewal, 1992).
The susceptible genotype plants that were injected exhibited symptoms comparable to
those reported by other writers (Knights ¢» Siddique, 2002; Rahman et al., 2012). Firstly, it
appears as water-soaked lesions on one stem and later on infects other stems. The fungus
forms greyish brown to light brown lesions on leaflets, branches, and pods. With the
progressive growth of fungus, shoots shed off at the rotting point leading to the formation
of rotting mass of the affected leaves and flowers (Bakr, Rahman ¢ Ahmed, 2002, Pande
et al., 2002). Water-soaked symptoms were also reported on detached lily leaves inoculated
with B. elliptica after 12 h at high humidity and temperature of 20 °C (Hsieh ¢ Huang,
1998). Another study conducted by Ingram ¢ Meister (2012), showed visual symptoms of
BGM in the leaf, stem, and fruit of tomato. At 4 dpi, two isolates of B. cinerea, specifically
B191 but not B8403, infected the leaves of tomato plants, as reported by Rahman et al.
(2012). In addition, the incidence of disease severity and lesion extension was greater in the
B191 isolate than in B8403. McGrann ¢ Brown (2018) observed initial small brown pepper
spots on the leaves of Ramulariacollo cygni inoculated plants of different barley cultivars
after 8-10 dpi. The disease spread at a faster rate in susceptible cultivars (Braemar) in
comparison to partially resistant cultivar (Power). These spots were converted to large
lesions with disease progression ultimately leading to senescence in the susceptible cultivar.
Furthermore, another investigation, described the variation in necrotic response in faba
bean against B. fabae and B. cinerea (Lee et al., 2020). The cultivar showed aggressive
spreading infected with B. fabae whereas a generalized invasion was reported toward

B. cinerea. Fahrentrapp et al. (2019), also recorded B. cinera infection in tomato leaves at a
pre-visual stage every 80 min using 5-band multispectral sensor. The spectrum observed
the reflectance of green, blue, red, near infrared (NIR, 840 nm), and red edge (RE, 720 nm)
in time-course experiments of detached tomato leaves inoculated with the fungus

B. cinerea.

Scanning electron microscopy (SEM) enables the visualization of the whole surface of
the cell. It has been widely used electron microscopy technique to estimate particle size,
shape, and texture with minimum quantity of sampling material. Botrytis species can
penetrate the host tissues by hyphae or germ tube infection through epidermal cells,
stomata or wounds and this generally involves different mechanical and chemical
processes (Fang Heish, Wen Huang ¢» Hsiang, 2001). During Botrytis infection of the host,
there might be mechanical rupture of cuticle due to the presence of tip of germ tube or
enzymatic dissolution of epidermal cell walls (Cole, Dewey ¢» Hawes, 1998). The presence
of small holes with sharp edges in the cuticle of Vicia faba leaves suggested chemical
degradation by esterase during B. cinerea infection (McKeen, 1974) whereas Heuvel ¢
Waterreus, (1983) observed germ tubes, appressoria and infection of B. cinerea on french
bean leaves. Fang Heish, Wen Huang ¢ Hsiang (2001) used SEM approach to study
B. elliptica infection on oriental lily leaves and reported that the fungal penetration
occurred via short swollen germ tube appressoria near stomata on abaxial surfaces of lily
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leaves. Mondal et al. (2013) recorded a gradual and sequential destruction in the cellular
structure of chickpea (Cicer arietinum L.) seedlings given higher treatments of cadmium
by SEM analysis. Similarly, a unique level of colonization by streptomyces species in roots
of chickpea was observed by Gopalakrishnan et al. (2015), compared to uninoculated
plants, done by SEM. Our results are also in accordance with Babu et al. (2018), who
observed ultrastructural changes in native and chemically treated spores of fungus
Curvularia lunata by SEM analysis. Their observations revealed smooth and uniformly
distributed conidiospores in the native preserved form whereas chemically fixed spores
showed distorted and extensively shrinked structure.

Significantly higher stomatal size in susceptible watermelon genotype than resistant one
in response to Alternaria blight (Mahajan ¢ Dhillon, 2000) and on grape genotypes
against anthracnose disease (Gurjar et al., 2015), have been reported earlier. Lesser and
smaller stomata in the resistant genotype C. pinnatifidum may be implicated in providing
resistance by inhibiting pathogen entry, in contrast to PBG5 with a bigger size and a higher
stomatal index, which permits pathogen access and suggests their function in B. cinerea
susceptibility. Variable susceptibility grape cultivars to anthracnose disease exhibited
substantial variation in leaf shape and leaf sinus structure (Murria et al., 2019). In the
present study, the appearance of dense mycelia growth with no mechanical disintegration
in the resistant genotype, suggest the possible role of hydrolytic enzymes of the pathogen
on chickpea leaves. These observations were also in accordance to the studies in tomato
fruit infected by B. cinerea (Diaz, ten Have ¢» van Kan, 2002) and cut roses infection by
B. cinerea (Ha et al. 2021).

In the present study, the appearance of dense mycelia growth with no mechanical
disintegration in the resistant genotype, suggest the possible role of hydrolytic enzymes of
the pathogen on chickpea leaves. These observations were also in accordance to the studies
in papaya fruit infected by Colletotrichum gloeosporioides (Chau & Alvarez, 1983) and
Barley leaf infection by Erysiphe graminis (Kunoh et al., 1988).

Alves & Pozza (2009) observed the presence of mycelium and oval microconidia on the
surface of cotton seeds inoculated with Fusarium oxysporum. On the surface of common
bean seeds inoculated with Penicillium sp., they also noticed larger conidiophores with an
elliptical form, as well as globose to subglobose conidia with Aspergillus flavus. Rahman
et al. (2010) observed development of infection hyphae directly from the germinating
conidium on the surface of soybean seed within 6 h after inoculation of Fusarium
moniliforme. Hyphal network and roughed conidiophores of Drechslera tetramera were
observed on wheat plants whereas smooth walled and slight curves of conidia of Bipolaris
orghicola were found to be attached to the geniculate conidiophores (Gulhane, Giri &
Khambalkar, 2018) by SEM analysis. These authors suggested SEM to be an effective
technique to observe microconidia and mycelium during fungal infections on different
plants as reported earlier (Rahman et al., 2010; Gulhane, Giri & Khambalkar, 2018).

Multigenic characteristics are accountable for plants’ resistance to diverse diseases
(Dean et al., 2012). To comprehend the relevance of these genes in battling fungal
infections, profiling of gene expression must be performed. Such studies have been carried
out in various plant species such as Arabidopsis and tomato in response to necrotrophic
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pathogens (AbuQamar, Moustafa ¢ Tran, 2016; Sham et al., 2014; Smith et al., 2014;
Sham et al., 2015). The transcription factor named WRKY33 was reported to be
responsible for resistance against necrotrophic fungus B. cinerea. A number of genes
including BIGs and BRGs, involved in plant responses to stress, metabolism, transport,
energy and signal transduction pathways have been induced by B. cinerea (Sham et al.,
2017; Han, Niu & Liang, 2022).

Bezier, Lambert & Baillieul (2002) reported the expression of a Botrytis-responsive gene
possessing similar homology to the tobacco hypersensitivity-related hsr203] from
grapevine leaves infected with B. cinerea. According to the study by Sham et al. (2017),
WRKY33 transcription factor was reported to be involved in non-enzymatic pathways of
plant stress responses and may be responsible for resistance to the necrotrophic fungus
B. cinerea. Likewise, 23 Lr WRKY genes with complete WRKY domains were identified
from the Botrytis-resistant species Lilium regale by Cui et al. (2019). Also, the constitutive
expression of these genes in Arabidopsis resulted in more resistant plants to B. cinerea than
wild type plants. For further confirmation studies, the expression of WRKY4 genes in
C. pinnatifidum needs to be studied after inoculation with B. cinerea.

Proteomics represents a remarkable tool to explore protein expression, splice variants,
and erroneous or incomplete prediction of gene structures in databases in plant-pathogen
interactions. Proteins are considered as the immediate perpetrators of biological actions or
responses and have become an indispensable source of genetic information. However,
multiple factors such as protein abundance, size, hydrophobicity, and other electrophoretic
properties limit the applicability of the proteomic approach at the whole cell level (Pandey
et al., 2006). Comparative or quantitative proteomic analysis of plants subjected to
contrasting stressful treatments is the principally utilized subarea of proteomics to identify
responsive proteins that may be involved in mechanisms of stress susceptibility or
tolerance. It aims at ascertaining the differences in protein profiles between two samples
from different individuals or from distinct treatments (Jorrin-Novo et al., 2018).
Furthermore, the relatively small numbers of proteomic studies on plant-pathogen
interactions have mainly been carried out on bacterial and fungal diseases of foliar tissues
(Quirino et al., 2010). Chang et al. (2012) extracted proteins of ground chickpea seeds by
SDS-PAGE and identified o and P subunits of legumin and vicilin subunits. Likewise,
SDS-PAGE analysis of lupin seedlings infected with Fusarium wilt revealed induction of
different PR proteins in susceptible genotype as compared to healthy control (Mohamed,
Abd El-Rahman & Mazen, 2012). Jaiswal et al. (2014) identified the membrane-associated
dehydration-responsive membrane proteins involved in signaling such as putative serine/
threonine kinase, calcineurin-like phosphoesterase family protein, guanine
nucleotide-binding protein subunit, beta-like protein, membrane protein CH1-like and
histone acetyltransferase GCN5. Among these, the serine/threonine kinases may act as
receptors, which interact with other proteins to affect a wide array of processes, especially
in stress adaptation and developmental regulation. In the majority of eukaryotic cells,
glycosylation is among the common post-translational modifications. Substantial progress
has been made in the previous decade in the context of glycosylation in pathogenic fungi
(Liu, Talbot ¢» Chen, 2021). The fungal infection in plants was corroborated by the process
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of N-glycosylation, O-glycosylation and glycosylphosphatidylinositol (GPI). The functions
of these processes in key regulatory mechanisms were linked with appressorium
formation, host penetration, biotrophic growth and immune evasion. The diversity of seed
proteins using SDS-PAGE technique was studied by Chittora et al. (2017), in three
different chickpea genotypes having different seed coat color. The study reported a total of
24 polypeptide bands, out of which 20 were common in all the genotypes and four were
polymorphic. Protein profile study of chickpea-wilt interaction by a group of Kheni et al.
(2020) observed a significant difference in expression in resistance and susceptible
genotypes.

CONCLUSIONS

A number of plant diseases that result in substantial crop losses have been documented on
a global scale. For the effective and proper management of any plant disease, an early and
accurate diagnosis is required. Thus, the first step in investigating any disease is its prompt
detection, which is mostly based on its symptoms. Consequently, monitoring visual
symptoms in Botrytis-infected chickpea genotypes improved morphological differentiation
between two genotypes. Similarly, scanning electron microscopy was a superior method
for examining the surface topography of B. cinerea-inoculated leaf surfaces of susceptible
and resistant chickpea genotypes. SEM enabled to monitor the fungal growth in the form
of mycelium at earlier stages and then to a network of hyphae that covered the entire cell
surface of leaves inoculated by B. cinerea. In addition, the detection of a Botrytis-responsive
gene in an uninoculated C. pinnatifidum genotype provides an additional piece of
information that can be used to expedite the development of new resistant varieties against
a variety of fungal infections through the use of multidisciplinary approaches. Future
molecular studies of these two distinct genotypes following inoculation with fungi could
reveal other elements of plant pathogen interactions. This information could be assessed to
detect the molecular markers associated with resistance against B. cinerea.
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