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ABSTRACT
Over the past 60 years, the Mycobacterium bovis bacille Calmette–Guérin (BCG) has
been used worldwide to prevent tuberculosis (TB). However, BCG has shown a very
variable efficacy in different trials, offering a wide range of protection in adults against
pulmonary TB. One of the most accepted hypotheses to explain these inconsistencies
points to the existence of a pre-existing immune response to antigens that are common
to environmental sources of mycobacterial antigens and Mycobacterium tuberculo-
sis. Specifically, two different mechanisms have been hypothesized to explain this
phenomenon: the masking and the blocking effects. According to masking hypothesis,
previous sensitization confers some level of protection against TB that masks vaccine’s
effects. In turn, the blocking hypothesis postulates that previous immune response
prevents vaccine taking of a new TB vaccine. In this work we introduce a series of
models to discriminate between masking and blocking mechanisms and address their
relative likelihood. We apply our methodology to the data reported by BCG-REVAC
clinical trials, which were specifically designed for studying BCG efficacy variability.
Our results yield estimates that are consistent with high levels of blocking (41% in
Manaus -95%CI [14–68]- and 96% in Salvador -95%CI [52–100]-).Moreover, we also
show that masking does not play any relevant role in modifying vaccine’s efficacy either
alone or in addition to blocking. The quantification of these effects around a plausible
model constitutes a relevant step towards impact evaluation of novel anti-tuberculosis
vaccines, which are susceptible of being affected by similar effects, especially if applied
on individuals previously exposed to mycobacterial antigens.
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INTRODUCTION
Despite all the efforts in the fight against TB accomplished during the last decades,
the disease still remains a major cause of morbidity and mortality worldwide, being
responsible for a million and a half deaths per year all around the world (World Health
Organization Global Tuberculosis Report, 2014). The increasing emergence of multi drug
and extremely drug-resistant strains (Dye, Williams & Williams, 2000) or the association
between TB and VIH (Boily, Lowndes & Alary, 2002; Korenromp et al., 2003) constitute
serious epidemiological threats that evidence the necessity of further public health
measures and pharmacological resources against the disease.

Among all the possible epidemiological interventions that could contribute to the
desired goal of TB eradication, the introduction of a novel preventive vaccine is currently
thought to be able to offer the highest and most immediate impact on disease burden
reduction. The efficacy of the current TB vaccine BCG is consistent in protecting infants,
especially from the most severe forms of meningeal and miliary TB (Mangtani et al.,
2014) but is limited against pulmonary forms of the disease responsible for transmission
fueling the growing epidemic worldwide. Accordingly, nowadays there exist more than
fifteen different research teams worldwide developing as many novel experimental vaccine
candidates designed as revaccination (boosting) strategies in BCG vaccinated individuals
(adolescents or adults) or as a BCG replacement strategies at birth (Marinova et al., 2013).

BCG fails to provide consistent protection to the pulmonary forms of the disease,
especially in adults (Rodrigues, Diwan &Wheeler, 1993), who are the main contributors of
overall disease spreading. Consequently, an accurate evaluation of the BCG impact under
different conditions—population susceptibility, geography, environmental exposure,
etc.—is essential. Such an evaluation will allow the assessing of the efficiency of BCG as
a reference vaccine and, at the same time, will provide new guidelines and methodological
tools to better evaluate the potential efficacy of the newly developed TB vaccines. The
highly variable and apparently inconsistent results obtained in BCG’s efficacy tests and
meta-analysis have been subject of intense scientific controversy (Mangtani et al., 2014;
Barreto et al., 2014), and the use of BCG during the 20th century has been largely argued
(Fine & Rodrigues, 1990; Bloom & Fine, 1994).

The hypothesized causes underlying the observed variability of BCG efficacy in
different settings include differences between the BCG strains (Oettinger et al., 1999),
genetic, epi-genetic or socio-economical differences between populations, study quality,
parasitic co-infections, etc (Marinova et al., 2013). In addition, multi-variate meta-
analysis of BCG efficacy determination studies consistently determine that latitude is a
variable showing a most prominent correlation with BCG performance (Fine & Rodrigues,
1990; Fine, 1995; Brewer, 2000; Zodpey & Shrikhande, 2007), pointing to the existence of
latitude-driven mechanisms influencing it, rather than other possible explanations related,
for example, to the ethnicity of the tested populations (Fine et al., 1999). Among these
possible mechanisms, the hypothesis that agglutinates a greater consensus points to the
existence of a complex, latitude-dependent immunological process of environmental
sensitization (ES) to mycobacterial antigens which might interfere with the observed
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action of BCG vaccine in different ways. The hypothesis of ES being the source of BCG
efficacy variability has been backed up by different epidemiological observations (Hart &
Sutherland, 1977;Miceli et al., 1988; Al-Kassimi et al., 1995;Mangtani et al., 2014).

ES is thought to have its origin in the exposure of individuals either to non tuberculous
mycobacteriae (NTM)—whose antigenic similarity to MTB (Chaparas, Maloney &
Hedrick, 1970; Harboe et al., 1979) is able to cause cross reactivity in the human immune
system (Black et al., 2001;Weir et al., 2003)—or to the reservoir of latent infection of MTB
itself (and other closely related bacteria within the MTB-complex). Additional sources of
sensitization have been postulated, like certain parasitic infections (Ferreira et al., 2002).
The diversity among the different putative sources of ES is notorious, the relationship
between their prevalence and latitude is not homogeneous, and their levels of cross
reactivity are variable as well. This situation portraits a complex landscape that makes
specially ventured to attribute the geographical patterns of BCG efficacy variation to a
single factor, as it could be a global increase in NTM prevalence levels next to the equator
(Black et al., 2001; Floyd et al., 2002;Weir et al., 2003), which has been demonstrated to
be inaccurate for some species (Hoefsloot et al., 2013). Even though, it seems clear that
overall levels of ES increase both with closeness to equator and subjects’ age at the time
of vaccination.

Two different mechanisms have been theorized on how this exposition to environ-
mental antigens would affect the response of the host to a vaccine like BCG (Andersen &
Doherty, 2005). The masking hypothesis postulates that ES confers a significant protection
against TB in such a way that a vaccine can barely offer an additional level of protection
(Palmer & Long, 1966; Andersen & Doherty, 2005). As an alternative hypothesis, it has
been suggested that ES prior to vaccination may trigger an immune response capable of
blocking the assimilation of the vaccine by the host, either if it’s a live-attenuated vaccine
or if it’s a booster. This is known as the blocking hypothesis (Brandt et al., 2002; Andersen
& Doherty, 2005). These two effects have the potential to explain, to a large extent, the
variability observed in the trials performed, that is, both the dependence of BCG efficacy
on age at the time of vaccination—as an individual gets older its exposition to mycobac-
teriae increases—and its geographical variations. Finally, it is worth highlighting that
masking and blocking do not exclude each other: in a scenario in which both mechanisms
take place, ES would contribute at the same time to reduce disease risk of non-vaccinated
individuals, and to impair vaccine assimilation of immunized ones.

Several studies have tackled the problem of evaluating ES impact on BCG vaccine
efficacy from different angles. Researches in animal models have shown that environ-
mental mycobacteria strains can interfere with BCG vaccination and with susceptibility
to M. tuberculosis infection (Hernandez-Pando et al., 1997; Demangel et al., 2005; Young
et al., 2007). The influence of the effects of Masking and Blocking on measurements of
efficacy has been also studied from a theoretical point of view (Fine & Vynnycky, 1998;
Mantilla-Beniers & Gomes, 2009), even though none of these works allows a quantification
of masking and blocking effects on vaccine’s efficacy levels measured on clinical trials
performed on humans.
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BCG-REVAC trials were designed to discriminate these two effects on BCG perfor-
mance when applied on individuals of dissimilar ages in the Brazilian cities of Salvador
and Manaus (Barreto et al., 2002; Rodrigues et al., 2005; Barreto et al., 2014). In particular,
three types of trials were conducted in the study, measuring the efficacy of as many
vaccination strategies in each city: newborn vaccination, school-age vaccination and
school-age revaccination. The rationale behind the election of such a design is twofold.
On the one hand, replicating the experiment design in two cities of the same country
located at considerably different latitudes, renders reasonable the assumption that the
main source of variability at the efficacies observed is due to different levels of ES, since
virtually any other plausible source of variation (i.e., vaccine preparation, strain or
application protocol, ethnic diversity etc.) are absent or controlled for across the study.
On the other hand, the trials design allows discriminating between blocking and masking
effects, since the differences across cities of the efficacies observed for each type of trial are
expected to vary depending on what of the two effects is dominant.

After the analysis of BCG-REVAC trials, Barreto et al. (2014) observed that the efficacy
of the vaccine, when applied to newborns and measured later in life did not show a strong
geographic variation, which suggests that spontaneous protection related to masking
should play a residual role, if any. On the contrary, when BCG was applied at school age
(Barreto et al., 2014), either the first time, or as a second dose, vaccine efficacy observed
was in both cases lower in Manaus than in Salvador; which in principle would be compat-
ible with the blocking hypothesis if vaccine assimilation were more efficient in Salvador as
a consequence of lower levels of ES bound to its larger distance to the equator. However,
even if the design of BCG-REVAC trials allowed to qualitatively asses the greater relevance
of the blocking mechanism as compared to masking, no actual quantification of these two
effects and their relative role has been provided up to now. In this sense, after the work
by the BCG-REVAC consortium, several questions remain unanswered, as we do not
know (1) what is the relative likelihood of both hypothetical mechanisms when trying
to explain the observed results of the trial, (2) how much predictive power would a full
model containing both effects gain with respect to single effects scenarios (masking or
blocking alone) (3) whether significantly different combinations of masking and blocking
strengths could be similarly compatible with the observations derived from the trials,
and very relevantly, (4) what are the intensities of blocking and masking effects, and their
confidence intervals, yielding a most significant agreement with the data.

In this paper, we introduce a family of mathematical models to interpret the results
from BCG-REVAC trial under the light of masking and blocking effects, in order to
contribute to answering the aforementioned questions within the limitations imposed
by the reduced statistical power derived from the reduced number of trials studied. By
confronting our model against the results of the BCG-REVAC studies, we are able to
measure extent to which these effects are sufficient to explain the efficacies measured
(Barreto et al., 2014). Furthermore, we quantify the specific masking, blocking and
immunity waning effects yielding best-fitted estimates for the efficacies measured. To this
end, we compared the likelihoods of three different modeling scenarios: a first model in
which both effects concurrently take place, a second model only considering blocking
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and a third one containing only masking. Translating the trial results into quantitative
estimations of blocking and masking strengths constitutes a relevant step towards a deeper
knowledge on how BCG efficacy depends on individuals’ age and geographical areas.
Similarly, it would provide a quantitative reference for the plausible ranges of blocking
and masking levels that other TB vaccines might eventually suffer as well, which could
be especially relevant in the context of impact evaluation of novel vaccines. Up to our
knowledge, the BCG-REVAC studies are the only set of trials specifically designed to
discriminate the effects of Masking and Blocking. Even though our work is restricted
to this particular setting, our framework could also be extended to the interpretation of
future trials and impact evaluation of future vaccines.

METHODS
Data analyzed: the Brazilian BCG-REVAC clinical trials
BCG-REVAC consisted of a set of cluster-randomized trials involving more than 200,000
school-aged children in the Brazilian cities of Manaus and Salvador, whose principal aim
was evaluating the effectiveness of BCG under different vaccination protocols.

The enrolled population of the study consisted of non-infected school children
between 7 and 14 years old at the moment of randomization. Within this population,
individuals presenting a positive BCG scar are separated from the rest, distinguishing,
this way, the enrolled individuals who were vaccinated at birth from those who were
not. Each group is then split into an intervention and a control group; individuals in the
intervention group were vaccinated within the context of the trial. Summing up, there
are 4 cohorts in each city: non-vaccinated (1), vaccinated after birth (2), firstly vaccinated
at school age during the trial (3), and revaccinated, after a first dose applied after birth,
in the trial too (4). Upon such classification of enrolled individuals in cohorts, the
effectiveness of BCG vaccination strategies was measured by comparing the TB incidence
rate within an end-point associated to active disease in the four cohorts, according to
three different types of trials: Trial I: BCG at birth vs. no intervention (cohort 2 vs.
1). Trial II: BCG first dose at school age vs. no intervention (cohort 3 vs. 1). Trial III:
revaccination at school age vs. first dose at birth only (cohort 4 vs. 2).

A model to describe BCG efficacy variation: masking, blocking and
immunity waning
The six clinical trials conducted within the framework of BCG-REVAC study-three
types of trials per two cities- output efficacies that span from 1% to 40% protection (see
Fig. 1, red continuous lines). In order to explain this variability, we propose a model
according to which the different protection levels found in each of the four cohorts in
the study, schematically shown in Fig. 2, result from the interplay between the intrinsic
vaccine efficacy, its temporal waning patterns, masking and blocking effects. These
three mechanisms of vaccine protection shifts are ultimately responsible for vaccine’s
performance variation, either in space or in time.

First of all, in absence of masking or blocking, a naive vaccinated individual will receive
a protection level, right after vaccination, that we call e(0). As time after vaccination goes
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Figure 1 Best fit estimates for each trial by models 1, 2 and 3 (yellow, blue and green dots, respec-
tively) for the trials conducted in the BCG-REVAC study. The colormap represents the probability of
obtaining a less extreme value of the efficacy, according to the distributions considered. The probability
of zero marks the central estimate (red, continuous line) while the dashed red lines mark the 95% CI re-
ported by Barreto et al. (2014).

by, this protection level will wane up to e(t ) < e(0), generally speaking. This implies
that, if we deal with a population in which the incidence rate of new TB cases per unit
time is equal to x ; t years after vaccination, this rate is modified to (1− e(t ))x , provided
that no additional effects take place. Taking that into account, a protective vaccine will
have positive efficacy values e(t ) ∈ (0,1], being also possible for a (failed) vaccine to
have a negative efficacy if it augments the disease risk among vaccinated individuals
instead of reducing it. In our model, the time waning patterns of the intrinsic vaccine
efficacy do not depend on the geographical area, but just on time since vaccination, which
approximately is, in average, 4.5 years for school age vaccination (cohort 3) and 16 years
for newborn vaccination (cohort 2), which implies the consideration of two intrinsic
efficacy parameters: e(4.5) and e(16).

Besides vaccination, ES can also support protection against disease through the
masking mechanism. The masking level, denoted bym, is a protection parameter formally
equivalent to the intrinsic vaccine efficacy (thus verifyingm∈ (0,1] for a protective effect,
and negative otherwise), whose effects are suffered by initially naive, non-vaccinated
individuals subject to ES. Thus, in principle, the longer the time an individual has been

Arregui et al. (2016), PeerJ, DOI 10.7717/peerj.1513 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1513


Figure 2 Scheme of the different contributions to the disease risk for each cohort.

exposed to ES—i.e., the older the individual is at the moment of observation—the higher
is the masking-related protection she might show. Masking is also a geography-dependent
effect, since it depends on ES, which forces us to consider two masking parameters:mM

for Manaus andmS for Salvador. The dependence of these parameters on age cannot be
resolved, since all the cohorts analyzed in the study have approximately the same age.

Additionally, if e(t ) describes the protection provided by the vaccine to a naive
individual in absence of masking or blocking t years after vaccination, we also need to
describe how this protection is modified if the vaccine is applied to non-naive subjects.
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If an individual’s immune system has been stimulated prior to vaccination (either by
masking like in cohort 3, or by a previous vaccine, like in cohort 4 before the second
dose), and consequently she is partially protected against the disease, it is unrealistic
to assume that the full effect of the new dose is additive (Andersen & Doherty, 2005).
Instead of that, our model considers that a vaccine dose applied on a previously protected
individual will contribute, at most, up to resetting the initial protection levels e(0),
provided that no blocking of the vaccine takes place. In cohort 3, this implies that, right
after the school age vaccination, if the vaccine is not blocked (b= 0, see below), it will
have a protective effect e ′ that will be concurrent with the masking protectionm so as to
reduce the disease risk from [1−m]x to [1−e ′][1−m]x . Our estimation of e ′ comes from
assuming that such disease risk must equate what we would observe if a vaccine of full
efficacy were applied on naive individuals, and observed 4.5 years later:

[1−e′][1−m]x = [1−e(4.5)]x→ e′ =
e(4.5)−m
1−m

. (1)

Similarly, the school-age dose at cohort 4, will add to the protection provided by the
newborn dose e(16), diminishing the disease risk from [1−e(16)]x to [1−e ′′][1−e(16)]x .
To estimate e ′′, we assume that, if the second vaccine is not blocked, the disease risk
achieved by both vaccines together [1− e(16)][1− e ′′]x is equivalent to the disease
risk reached by the same vaccine, if applied on unprotected individuals, 4.5 years after
vaccination:

[1−e(16)]
[
1−e ′′

]
x = [1−e(4.5)]x→ e ′′=

e(4.5)−e(16)
1−e(16)

. (2)

Finally, vaccine intrinsic efficacy can be blocked by prior ES; an effect that we model
through the blocking probability b ∈ [0,1], where b= 0 means that no blocking appears,
while b = 1 stands for a totally blocked vaccine, meaning that vaccinated individuals
would only have the protection level that they already had before vaccination. Blocking
is also a geography-dependent factor, since it is considered a consequence of ES as well,
which forces us to distinguish bM and bS for Manaus and Salvador, respectively. Unlike
masking, blocking does not depend on the age of the individuals at the moment of
observation, but on their age at the moment of vaccination. In this case we study cohorts
vaccinated at two moments in life—at birth and at the beginning of the trials—being the
first of these cases (the newborn vaccination) considered blocking-free, as it is assumed
that when the vaccine is applied immediately after birth, there is no place for prior ES.

Taking all these effects into account, we are left with a set of six independent pa-
rameters EP = {e(4.5),e(16),mM ,bM ,mS,bS} to describe the variability observed in
the trials, either temporal or geographical, under the light of blocking and masking
effects, concurrently. The temporal trends of the level of protection of each cohort are
schematically shown in Fig. 3.

In the following, we will refer to this full model as model 1. In Fig. 2, we represent the
variations on the disease rates provoked by each effect that takes place in each cohort
according to model 1. Summing all the possible contributions to the development of active
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Figure 3 Scheme for the temporal evolution of the level of protection for the cohorts of the three types
of trials considered in the work, according to the different vaccination strategies and ESmechanisms.
Trial I: the control group is cohort one that corresponds to non-vaccinated individuals. In this cohort, a
level of protection above zero can only be due to masking, which is an increasing function with age. In
turn, the intervention group corresponds to cohort 2 that is the newborn vaccination group: individuals
are vaccinated right after birth, which provides a protection that overcomes any possible masking effect,
cannot be blocked by ES and wanes with time. Trial II: The vaccinated cohort is cohort 3, firstly immu-
nized at school age. In this cohort individuals might be protected by masking before the vaccine is applied.
Then, at the moment of vaccination, if not blocked, the vaccine will overcome masking protection up to
the initial value e(0), which then will wane. Finally, if blocking takes place the protection provided by the
vaccine will be reduced. The control cohort in this case is cohort 1 again. Trial III: Intervention group cor-
responds to cohort 4, joined by individuals firstly vaccinated at birth, and revaccinated at school age. At
variance to the first dose, which cannot be blocked, the second dose might be blocked by ES or not, in
which it will reset the initial protection levels provided by the vaccine. The control group for this trial is
cohort 2, that corresponds to individuals only vaccinated at birth. The grey shaded area represents the age
window of the individuals enrolled in the study.

disease for each cohort, we derive the general disease rates characterizing each cohort of
one city as follows:

d l1= (1−ml)x

d l2= [1−e(16)]x

d l3=
(
1−bl

)
[1−e(4.5)]x+bl

(
1−ml)x

d l4=
(
1−bl

)
[1−e(4.5)]x+bl (1−e (16))x

(3)

where the superscript indicates location, and x the incidence rate observed in the
population.
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From (3), it is immediate to derive the expressions for the observed efficacies ē of each
trial according to model 1, which read as:

M1 :



ē lI = 1−d l2/d
l
1=

e(16)−ml

1−ml

ē lII = 1−d l3/d
l
1=

e(4.5)−ml

1−ml (1−bl)

ē lIII = 1−d l4/d
l
2=

e(4.5)−e(16)
1−e(16)

(1−bl)·

(4)

The system of Eq. 4 represents a full model for the vaccine efficacies observed during
BCG-REVAC trials, which is based on the assumption that the sources of geographical
variability for BCG’s performance are both masking and blocking effects. From the full
model, two reduced versions can be conceived: a masking-free model (model 2 in the
following) in whichmM

= mS
= 0, and a blocking free model in which bM = bS = 0

(model 3). The efficacies associated to each trial, for models 2 and 3 straightforwardly
read as follows:

M2 :


ē lI = e(16)

ē lII = e(4.5)(1−bl)

ē lIII =
e(4.5)−e(16)
1−e(16)

(1−bl)

(5)

M3 :



ē lI =
e(16)−ml

1−ml

ē lII =
e(4.5)−ml

1−ml

ē lIII =
e(4.5)−e(16)
1−e(16)

·

(6)

By considering these three models, our approach allows quantifying and comparing the
plausibility of blocking and masking hypotheses to potentially explain the variation in
BCG efficacy trials observed in the controlled setup conceived in the BCG-REVAC trials,
taking into account the non-linearities associated to each mechanism, which play a central
role in the derivation of Eqs. (4)–(6).

Models solution: parameters estimation and confidence intervals
In order to identify the set or sets of parameters yielding a best fit for the efficacies
observed in BCG-REVAC trials, we compare the model prediction associated to any
parameter set EP to a set of empirical probability distributions derived from BCG-
REVAC data. From each of the confidence intervals reported in Barreto et al., (2014) we
build a two-piece normal distribution (Wallis, 2014) for each trial reported, centered
in the reported values [ē li ]BCG−REVAC (for location l ∈ {Manaus,Salvador} and trial
i∈ {I ,II ,III }), and with asymmetric variances

[
σ l
i
]±
BCG−REVAC equal to one half the radius

of the confidence intervals reported in Barreto et al., (2014), so preserving the confidence
levels of the intervals reported (see Fig. 1).
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Once the empirical distributions have been defined, for each possible set of parameters
and for each of the six trials we define the Z -score associated to the model prediction as:

Z l
i (EP)=

∣∣∣∣∣∣∣
[
ē li (EP)

]
mod
−
[
ē li
]
BCG−REVAC[

σ l
i
]±
BCG−REVAC

∣∣∣∣∣∣∣ (7)

where
[
σ l
i
]±
BCG−REVAC will take each of its two possible values depending on the sign

of ([ē li (EP)]mod − [ē li ]BCG−REVAC). From Z l
i (EP), we define the corresponding p-values

pli[Z
l
i (EP)] as the probability of the empirical distributions reproducing BCG-REVAC data

to have a Z -score Z̃ so that |Z̃ |> |Z l
i (EP)|. This allows us to define the following likelihood

function:

L(EP)=
∏
l,i

pli[Z
l
i (EP)] (8)

to maximize so as to identify the model’s parameters EP∗ more likely to yield the BCG-
REVAC results. The global landscape of L(EP) is explored using a hill-climbing algorithm
designed to identify all possible local maxima in the space of parameters. Finally, a
Levemberg-Marquardt algorithm is used to find a more accurate value of the global
maximum, if the latter is unique.

In order to estimate the confidence interval associated to our model estimation, the
following numerical procedure is performed. First, and starting from the maximum
likelihood estimate EP∗, we move on each parameters’ axis until a value of L = 0.05 is
reached in each case. We call this increment Aj (j ∈ [1,6]) (see Fig. 4). These values are not
symmetrical, again, and so we distinguish between A+j and A−j . Using these asymmetric
widths, we construct a two-piece normal distribution for every parameter [30], centered
in EPo and having an asymmetric variance given by σ±j = cA±j , where c is a common
modulation coefficient. Besides, the distribution is truncated at 1. Finally, we numerically
estimate c by generating sets of points in the parameter space whose coordinates in each
axis are obtained from the split normal distributions mentioned for an initial guess of
c . Through an iterative process we search the value c = c∗ for which a 95% of the points
generated in the parameters space, yield efficacy estimations verifying L(EP)> 0.05. Once
we have found the optimal value of the scaling coefficient, the reported uncertainty of the
j-th parameter corresponds to 95% CI given the distributions we have used.

RESULTS
In order to find the sets of parameters yielding best estimates of BCG efficacies according
to our models, we have performed a series of numerical optimization procedures seeking
for likelihood maximization. First, we are interested in addressing whether a unique
likelihood maximum exists across the parameter space of each model or whether, on the
contrary, there exist multiple parameter combinations associated to comparable values
of L(EP) close to the maximum. This is an important point to address, since the existence
of different maxima in a model would indicate the inability of the model to univocally
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Figure 4 Confidence intervals estimation scheme.Degraded shades represent the joint probability den-
sity associated to the estimation of confidence intervals around the model best fit. The modulation coeffi-
cient c is determined so as to make the brown area within the black line of L(EP) = 0.05 to precisely accu-
mulate the 95% of the total joint probability distribution.

quantify the effects causing the efficacy variations observed. To tackle this question, we
performed an iterative hill-climbing algorithm starting from 20,000 random points across
the parameter space for each model. As it can be seen in Fig. 5, while model 2 presents
a unique likelihood maximum (L(EP∗) = 0.53), models 1 and 3, which contemplates
masking, fails at providing a univocal vaccine’s description associated to a unique solution
from likelihood optimization.

Instead of that, as we can see in Figs. 5A, 5C, 5D and 5E models 1 and 3 present a
parameters cliff across which, model’s likelihood is near to its maximum, and largely
comparable (L(EP∗) = 0.79 for model 1, and L(EP∗) = 0.002 for model 2). Further-
more, a relative likelihood test comparing models 2 and 3 (that is, comparing blocking
vs. masking as exclusive mechanisms) yields a relative likelihood L3(EP∗)/L2(EP∗) =
0.002/0.53= 3.8 ·10−3 . This result, considering that both models share the same amount
of parameters, highlights again the inability of masking to provide a picture for vaccine
efficacy variation as accurate as blocking does, as we can also see in Fig. 1, where the best
fit provided by each model is presented as well.

If the analysis of model 3 and its comparison against model 2 allows us to discard
masking as an autonomous mechanism able to explain the vaccine efficacy measured
in the trials, it remains to be elucidated whether its consideration in addition blocking
in model 1 might still be able to significantly improve the fitting of the observed data.
To answer this question, we conduct a simple likelihood ratio test in which the null and
full models are, respectively models 2 and 1. From such test, we obtain that the statistic:
χ2
=−2ln(L2(EP∗)/L1(EP∗))= 0.80, is a chi-square distributed variable with 2 degrees
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Figure 5 Distribution of the parameters which yield a maximum in the likelihood function. (A–C) Hill climbing algorithm distributions for
models 1, 2 and 3, respectively. Starting from a series of randomly distributed points in the parameter space (their coordinates distributions are rep-
resented in red), a random displacement following a uniform distribution in the parameter space within a hyper-cube of size d = 0.001 is attempted
at each time step, and accepted only if it corresponds to an increasing of the likelihood function L(EP). The algorithm stops when no further move is
accepted after N = 107 rejected displacements (i.e., the function L(EP) reaches a maximum). (continued on next page. . . )
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Figure 5 (. . .continued)
In green, we see the peaked distribution of the end points of the algorithm around the solution of the models. (D and E) parameters cliff yielding
quasi-constant values of maximum likelihood L(EP∗)= 0.79 for model 1 and L(EP∗)= 0.002 for model 3. As it can be seen in (A) and (D), the model
versions that contemplate masking are unable to provide a clear univocal vaccine description yielding maximum likelihood. The reason for this be-
havior is the existence of a region in the parameters space, represented in (D) and (E), within which, likelihood is almost constant and close to its
absolute maximum.

Table 1 Optimal parameters of model 2.Models 1 and 3 are unable to provide a unique parameter set
yielding maximum likelihood.

Parameter Model 2 (only blocking)

e(4.5) 57.7% (46.8%–68.6%)
e(16) 37.6% (29.3%–45.8%)
bM 96.4% (51.9%–99.8%)
bS 41.1% (14.2%–68.0%)

of freedom (difference between number of parameters of models 1 and 2) under the
null model. The obtained value does not allow to discard it even with a 50% confidence
(χ2(p= 0.5,df = 2)= 1.39), which indicates that masking is not just unable to provide
an acceptable description of the observed data by itself but also makes no significant
contribution to explain the variations in vaccine efficacies observed in the trials under
study, when considered in addition to blocking. This is also reflected in the close estimates
that are found for blocking parameters in models 1 and 2 (see Table 1 and Fig. 5).

Besides, if we analyze the combination of parameters that formed the cliff of maximum
likelihood in model 1, we see that it consists in very similar levels of masking for the two
different cities, which enters into conflict with the mentioned correlation between ES
effects and closeness to equator.

In summary, our results point at blocking as the only plausible source of vaccine
efficacy variation between the two mechanisms considered, validating the qualitative
interpretation of the BCG-REVAC outcomes by Barreto et al. (2014). The best fit of model
2 yields a likelihood L(EP∗) = 0.53, which corresponds to moderate blocking levels in
Salvador (bS= 0.41 c.i. [0.14, 0.68]) and to almost total blocking in Manaus (bS= 0.96 c.i.
[0.52, 1.00]). These results are consistent with the assumed correlation between ES action
strength and closeness to equator.

DISCUSSION
Understanding the mechanisms driving ES effects on BCG performance is a crucial task
in the agenda towards the development of new tuberculosis vaccines. In this work, we
have proposed a mathematical model that allows the quantitative evaluation of these
two effects based on the BCG-REVAC trials performed in Brazil (Barreto et al., 2014).
We have seen that the divergence in the measured efficacies of the trials is explained with
high values of blocking, which concur with the qualitative discussion made in Barreto
et al. (2014). Furthermore, we have also observed for the first time that no alternative
behavior of BCG is compatible with the observed data within the context of a model in
which BCG’s variability is entirely attributed to ES sensitization.
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Admittedly, the range of applications of the results here exposed must be restricted to
the provision of a plausible explanation for the efficacy variation patterns observed within
a controlled context such as the BCG-REVAC studies, in which the equivalent design
of the trials in both cities makes reasonable to assume that ES is the only mechanism
responsible for the variations observed. In that sense, the quantitative conclusions reached
in this work should be interpreted as a mean to discriminate between the two mechanisms
studied when it is reasonable to neglect any source of vaccine variation foreign to ES.
Nonetheless, it is worth remarking that our approach cannot provide any insight on the
relevance of ES itself when compared to other plausible sources of variability that could
also affect vaccine’s efficacy, such as diversity in production, administration, and type of
BCG vaccine strain used, as well as the TB strain that circulates in a particular population,
among others.

In that sense, the analysis of new, hypothetical trials similarly structured, conducted
in other geographical areas, could certainly yield different results, if additional sources of
variation not considered in this work were playing a relevant role.

The model here proposed could however be generalized so as to address some
additional questions that go beyond a simple comparison between masking and blocking,
which involve a more detailed description of the blocking effect itself.

On one hand, it is pertinent to ask whether prior vaccination with BCG might trigger
a blocking effect comparable in magnitude to that caused by ES; a question that could be
tackled by an extension of the model here proposed in which two blocking parameters-
one associated to each source-are considered instead of one. Remarkably enough,
distinguishing between BCG vaccine and ES as possibly different causes of blocking might
lead to relevant quantitative consequences in what regards impact evaluation of novel
vaccines, mostly because the old vaccine is still used in the vast majority of the countries,
also in geographical areas in which low levels of ES would be expected.

On the other hand, an additional limitation of our study, inherited from the BCG-
REVAC studies design, is due to the restriction of trials’ endpoints to diseased and not
diseased individuals, without measuring infection as a third relevant outcome. This
limitation prevents us to address the important question of whether the vaccine is blocked
in its protective role against infection, or if, instead, blocking interferes more intensely
with the vaccine’s performance at reducing the progression rates from latency to active
disease (Soysal et al., 2005; Roy et al., 2014).

If infection was registered as an additional endpoint in the clinical trials—something,
in general, feasible (Andrews et al., 2015)—our approach could then be extended so
as to estimate two different blocking components associated to the impairment of
vaccine’s protection against infection and active disease independently. Once again,
such hypothetical study could bring important insights for future vaccine development,
and in particular could contribute strongly to the debate of what should be the primary
goal of TB vaccines (Hawn et al., 2014). Generally speaking, more studies are needed to
evaluate how general are the patterns found by BCG-REVAC trials, with the ultimate goal
of assessing a positive explanation to the long lasting problem of BCG efficacy variation
patterns.
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Figure 6 Scheme of the basis for evaluation of anti tuberculosis vaccines in absence of universally re-
liable protection correlates. First stage: design of vaccine efficacy determination clinical trials: the age of
the cohorts must be elected taking into account that prior exposure to mycobacteria—either environmen-
tal,M. tuberculosis after exposure or even prior TST or also BCG—may corrupt the observed vaccine effi-
cacies. Second stage: vaccine impact evaluations: bulk, short-term and long-term impact forecasts should
be equally considered, as well as age-distributed impacts in terms of cases, infections and casualties pre-
vented.

CONCLUSIONS
The crucial implications of discriminating and quantifying masking and blocking effects
for TB vaccine development are twofold. On one hand, understanding the range, and
causes behind variations of BCG efficacy is essential (McShane, 2014), since the efficacy
of any novel vaccine will be measured against BCG. On the other hand, depending on
where a new vaccine is applied and how old are the target populations, masking or—more
likely—blocking effects would affect new vaccines too.

These issues affect different stages of the vaccine development pipeline, as sketched in
Fig. 6. In the first place, during the process of vaccine evaluation in the context of clinical
trials, studies of new tuberculosis vaccines should account for the possibility that prior
sensitization may compromise their effects (Mangtani et al., 2014). In this sense, and even
if a new vaccine targeting TB in adolescents and adults rather than any other age group
is expected to have the quickest impact on disease transmission and control, before we
address the question of impact of novel vaccines, it is essential to know if the vaccine is
more effective than BCG. The most reliable way of knowing whether a new vaccine works
better than BCG is by conducting an efficacy trial in a naive population without previous
ES (e.g., previous BCG vaccination, mycobacterial infection and/or TB contact) in order to
avoid possible effects of masking or blocking (Rodrigues, Diwan &Wheeler, 1993; Andersen
& Doherty, 2005; Barreto et al., 2014).

Furthermore, and once the efficacy estimation is complete, in order to produce any
reliable vaccine impact and cost-effectiveness forecast, modeling scenarios contemplating
ES deleterious effects on TB vaccines aremandatory. The fact that, according to our analysis,
blocking emerges as the driving effect behind BCG variability poses a potential pitfall to any
vaccination strategy focused on individuals older than those analyzed here, including most
strategies conceived so far for booster vaccines. This is especially worth noticing because
blocking, unlike masking, is not supposed to degrade the vaccine-induced protection
obtained further during life by individuals immunized promptly after birth. Again, even if
immunizing adolescents is thought to provide better impacts than vaccination strategies
focused on younger age-segments, if such a novel vaccine is affected by blocking just as
BCG is, then its impact will decrease in a way that, given the high blocking levels here
identified, might even revert the comparison. As suggested by Helen McShane ‘‘we should
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optimize deployment of BCG to administration as close to birth as possible’’ (McShane,
2014). This should be the case for new priming live vaccines candidates based on BCG
replacement strategies as well (Marinova et al., 2013).

Taken all together, our results highlight the need for measuring ES effects on novel
vaccines performance, as well as of diversifying vaccination strategies.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
SA was supported by the FPI program of the Government of Aragón, Spain. JS was
supported by the program of Postdoctoral Scholarships for Excellence of the Sainte-Justine
UHC Foundation and by the Merit scholarship program for foreign students (PBEEE)
of the Fonds de Recherche of Quebec, Nature et Tecnologies (FRQNT). This work has
been partially supported by ‘‘Gobierno de Aragón/Fondo Social Europeo’’ and MINECO
through Grant FIS2011-25167 to YM BIO2014-52580P, TBVAC2020 (643381) funded
by the European Commission Horizon 2020 CM and DM; and the European FP7 grant
NEWTBVAC 241745. Comunidad de Aragón (Spain) through FENOL to YM; and the
EC Proactive project MULTIPLEX (contract no. 317532) to YM. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
FPI program of the Government of Aragón.
Postdoctoral Scholarships for Excellence of the Sainte-Justine UHC Foundation.
Merit scholarship program for foreign students (PBEEE), fonds de recherche Nature et
Technologies Quebec.
Gobierno de Aragón/Fondo Social Europeo.
MINECO: FIS2011-25167, BIO2014-52580P.
European Commission Horizon 2020: TBVAC2020 (643381).
European FP7: NEWTBVAC 241745.
Comunidad de Aragón (Spain): FENOL.
EC Proactive project MULTIPLEX: 317532.

Competing Interests
CM is a co-inventor on a composition ofmatter patent: Title: Tuberculosis Vaccine, Entidad
Titular (Owner entity): Universidad deZaragoza,Nde Solicitud (Request number): PCT/ES
2007/070051.

Author Contributions
• Sergio Arregui and Joaquín Sanz conceived and designed the experiments, performed
the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote
the paper, prepared figures and/or tables, reviewed drafts of the paper.
• Dessislava Marinova, Carlos Martín and Yamir Moreno analyzed the data, wrote the
paper, reviewed drafts of the paper.

Arregui et al. (2016), PeerJ, DOI 10.7717/peerj.1513 17/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1513


Data Availability
The following information was supplied regarding data availability:

The research in this article did not generate any raw data.

REFERENCES
Al-Kassimi FA, Al-Hajjaj MS, Al-Orainey IO, Bamgboye EA. 1995. Does the pro-

tective effect of neonatal BCG correlate with vaccine-induced tuberculin reac-
tion? American Journal of Respiratory and Critical Care Medicine 152:1575–1578
DOI 10.1164/ajrccm.152.5.7582297.

Andersen P, Doherty TM. 2005. The success and failure of BCG—implications
for a novel tuberculosis vaccine. Nature Reviews Microbiology 3(8):656–662
DOI 10.1038/nrmicro1211.

Andrews JR, Hatherill M, Mahomed H, HanekomWA, CampoM, Hawn TR,Wood R,
Scriba TJ. 2015. The dynamics of QuantiFERON-TB gold in-tube conversion and
reversion in a cohort of South African adolescents. American Journal of Respiratory
and Critical Care Medicine 191(5):584–591 DOI 10.1164/rccm.201409-1704OC.

Barreto ML, Pilger D, Pereira SM, Genser B, Cruz AA, Cunha SS, Sant’Anna C,
Hijjar MA, Ichihara MY, Rodrigues LC. 2014. Causes of variation in BCG vaccine
efficacy: examining evidence from the BCG REVAC cluster randomized trial to
explore the masking and the blocking hypotheses. Vaccine 32(30):3759–3764
DOI 10.1016/j.vaccine.2014.05.042.

Barreto ML, Rodrigues LC, Cunha SS, Pereira S, Hijjar MA, Ichihara MY, De Brito SC,
Dourado I. 2002. Design of the Brazilian BCG-REVAC trial against tuberculosis:
a large, simplerandomized community trial to evaluate the impact on tubercu-
losis of BCG revaccination at school age. Controlled Clinical Trials 23:540–553
DOI 10.1016/S0197-2456(02)00216-7.

Black GF, Dockrell HM, Crampin AC, Floyd S, Weir RE, Bliss L, Sichali L, Mwaungulu
L, Kanyongoloka H, Ngwira B,Warndorff DK, Fine PEM. 2001. Patterns and
implications of naturally acquired immune responses to environmental and
tuberculous mycobacterial antigens in northern Malawi. Journal of Infectious Diseases
184:322–329 DOI 10.1086/322042.

Bloom BR, Fine PEM. 1994. The BCG experience: implications for future vaccines
against tuberculosis. In: Bloom BR, ed. Tuberculosis: pathogenesis, protection and
control . Washington D.C.: ASM Press, 531–557.

Boily MC, Lowndes C, Alary M. 2002. The impact of HIV epidemic phases on the
effectiveness of core group interventions: insights from mathematical models.
Sexually Transmitted Infections 78:i78–i90 DOI 10.1136/sti.78.suppl_1.i78.

Brandt L, Cunha JF, Olsen AW, Chilima B, Hirsch P, Appelberg R, Andersen P. 2002.
Failure of theMycobacterium bovis BCG vaccine: some species of environmental my-
cobacteria block multiplication of BCG and induction of protective immunity to tu-
berculosis. Infection and Immunity 70:672–678 DOI 10.1128/IAI.70.2.672-678.2002.

Arregui et al. (2016), PeerJ, DOI 10.7717/peerj.1513 18/21

https://peerj.com
http://dx.doi.org/10.1164/ajrccm.152.5.7582297
http://dx.doi.org/10.1164/ajrccm.152.5.7582297
http://dx.doi.org/10.1038/nrmicro1211
http://dx.doi.org/10.1038/nrmicro1211
http://dx.doi.org/10.1164/rccm.201409-1704OC
http://dx.doi.org/10.1016/j.vaccine.2014.05.042
http://dx.doi.org/10.1016/j.vaccine.2014.05.042
http://dx.doi.org/10.1016/S0197-2456(02)00216-7
http://dx.doi.org/10.1016/S0197-2456(02)00216-7
http://dx.doi.org/10.1086/322042
http://dx.doi.org/10.1136/sti.78.suppl_1.i78
http://dx.doi.org/10.1128/IAI.70.2.672-678.2002
http://dx.doi.org/10.7717/peerj.1513


Brewer TF. 2000. Preventing tuberculosis with Bacillus Calmette-Guérin vaccine: a
meta-analysis of the literature. Clinical Infectious Diseases 31:63–67.

Chaparas SD, Maloney CJ, Hedrick SR. 1970. Specificity of tuberculins and antigens
from various species of mycobacteria. American Review of Respiratory Diseases
101:74–83.

Demangel C, Garnier T, Rosenkrands I, Cole ST. 2005. Differential effects of prior
exposure to environmental mycobacteria on vaccination withMycobacterium bovis
BCG or a recombinant BCG strain expressing RD1 antigens. Infection and Immunity
73(4):2190–2196 DOI 10.1128/IAI.73.4.2190-2196.2005.

Dye C,Williams BG,Williams S. 2000. Criteria for the control of drug-resistant
tuberculosis. Proceedings of the National Academy of Sciences of the United States of
America 97(14):8180–8185 DOI 10.1073/pnas.140102797.

Ferreira AP, Aguiar AS, FavaMWB, Corrêa JOA, Teixeira FM, Teixeira HC. 2002.
Can the efficacy of Bacille Calmette-Guérin Tuberculosis vaccine be affected
by intestinal parasitic infections? Journal of Infectious Diseases 186(3):441–442
DOI 10.1086/341656.

Fine PEM. 1995. Variation in protection by BCG: implications of and for heterologous
immunity. Lancet 346:1339–1345 DOI 10.1016/S0140-6736(95)92348-9.

Fine P, Carneiro A, Milstien J, Clements C. 1999. Issues relating to the use of BCG in
immunization programmes. Technical Document. Geneva: WHO.

Fine PEM, Rodrigues LC. 1990.Modern vaccines: mycobacterial diseases. Lancet
335:1016–1020 DOI 10.1016/0140-6736(90)91074-K.

Fine PEM, Vynnycky E. 1998. The effect of heterologous immunity upon the apparent
efficacy of (e.g., BCG) vaccines. Vaccine 16(20):1923–1928
DOI 10.1016/S0264-410X(98)00124-8.

Floyd S, Pönnighaus JM, Bliss L, Nkhosa P, Sichali L, Msiska G, Fine PEM. 2002.
Kinetics of delayed-type hypersensitivity to tuberculin induced by bacille Calmette–
Guérin vaccination in northern Malawi. Journal of Infectious Diseases 186:807–814
DOI 10.1086/342416.

HarboeM,Mshana RN, Closs O, Kronvall G, Axelsen NH. 1979. Cross-reactions
between mycobacteria. II. Crossed immunoelectrophoretic analysis of soluble
antigens of BCG and comparison with other mycobacteria. Scandinavian Journal of
Immunology 9:115–124 DOI 10.1111/j.1365-3083.1979.tb02713.x.

Hart PD, Sutherland I. 1977. BCG and vole bacillus vaccines in the prevention of
tuberculosis in adolescence and early adult life. Brittish Medical Journal 2:293–295
DOI 10.1136/bmj.2.6082.293.

Hawn TR, Day TA, Scriba TJ, Hatherill M, HanekomWA, Evans TG, Churchyard
GJ, Kublin JG, Bekker LG, Self SG. 2014. Tuberculosis vaccines and preven-
tion of infection.Microbiology and Molecular Biology Reviews 78(4):650–671
DOI 10.1128/MMBR.00021-14.

Hernandez-Pando R, Pavön L, Arriaga K, Orozco H, Madrid-Marina V, Rook G.
1997. Pathogenesis of tuberculosis in mice exposed to low and high doses of an

Arregui et al. (2016), PeerJ, DOI 10.7717/peerj.1513 19/21

https://peerj.com
http://dx.doi.org/10.1128/IAI.73.4.2190-2196.2005
http://dx.doi.org/10.1073/pnas.140102797
http://dx.doi.org/10.1086/341656
http://dx.doi.org/10.1086/341656
http://dx.doi.org/10.1016/S0140-6736(95)92348-9
http://dx.doi.org/10.1016/0140-6736(90)91074-K
http://dx.doi.org/10.1016/S0264-410X(98)00124-8
http://dx.doi.org/10.1086/342416
http://dx.doi.org/10.1086/342416
http://dx.doi.org/10.1111/j.1365-3083.1979.tb02713.x
http://dx.doi.org/10.1136/bmj.2.6082.293
http://dx.doi.org/10.1136/bmj.2.6082.293
http://dx.doi.org/10.1128/MMBR.00021-14
http://dx.doi.org/10.1128/MMBR.00021-14
http://dx.doi.org/10.7717/peerj.1513


environmental mycobacterial saprophyte before infection. Infection and Immunity
65(8):3317–3327.

HoefslootW, Van Ingen J, Andrejak C, Ängeby K, Bauriaud R, Bemer P, Beylis N,
Boeree MJ, Cacho J, Chihota V, Chimara E, Churchyard G, Cias R, Daza R, Daley
CL, Dekhuijzen PR, Domingo D, Drobniewski F, Esteban J, Fauville-DufauxM,
Folkvardsen DB, Gibbons N, Gómez-Mampaso E, Gonzalez R, Hoffmann H,
Hsueh P-R, Indra A, Jagielski T, Jamieson F, Jankovic M, Jong E, Keane J, Koh
W-J, Lange B, Leao S, Macedo R, Mannsåker T, Marras TK, Maugein J, Milburn
HJ, Mlinkó T, Morcillo N, Morimoto K, Papaventsis D, Palenque E, Paez-Pen̄a
M, Piersimoni C, PolanováM, Rastogi N, Richter E, Ruiz-SerranoMJ, Silva A, Da
Silva MP, Simsek H, Van Soolingen D, Szabó N, Thomson R, Tórtola Fernandez T,
Tortoli E, Totten SE, Tyrrell G, Vasankari T, Villar M,Walkiewicz R,Winthrop
KL,Wagner D. 2013. The geographic diversity of nontuberculous mycobacteria
isolated from pulmonary samples: a NTM-NET collaborative study. European
Respiratory Journal 42(6):1604–1613 DOI 10.1183/09031936.00149212.

Korenromp EL, Scano F,Williams BG, Dye C, Nunn P. 2003. Effects of human
immunodeficiency virus infection on recurrence of tuberculosis after rifampin-
based treatment: an analytical review. Clinical Infectious Diseases 37(1):101–112
DOI 10.1086/375220.

Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PEM, Rodrigues LC, Smith
PG, LipmanM,Whiting PF, Sterne JA. 2014. Protection by BCG vaccine against
tuberculosis: a systematic review of randomized controled trials. Clinical Infectious
Diseases 58(4):470–480 DOI 10.1093/cid/cit790.

Mantilla-Beniers NB, GomesMGM. 2009.Mycobacterial ecology as a modulator of
tuberculosis vaccine succes. Theoretical Population Biology 75(2009):142–152
DOI 10.1016/j.tpb.2009.01.006.

Marinova D, Gonzalo-Asensio J, Aguilo N, Martín C. 2013. Recent development
in tuberculosis vaccines. Expert Review Vaccines 12(12):1431–1448
DOI 10.1586/14760584.2013.856765.

McShane H. 2014. Editorial Commentary: understanding BCG is the key to improve it.
Clinical Infectious Diseases 58(4):481–482 DOI 10.1093/cid/cit793.

Miceli I, De Kantor IN, Colaiácovo D, Peluffo G, Cutillo I, Gorra R, Botta R, Hom
S, Ten DamHG. 1988. Evaluation of the effectiveness of BCG vaccination using
the case control method in Buenos Aires, Argentina. International Journal of
Epidemiology 17:629–634 DOI 10.1093/ije/17.3.629.

Oettinger T, JorgensenM, Ladefoged A, Haslov K, Andersen P. 1999. Development
of theMycobacterium bovis BCG vaccine: review of the historical and biochem-
ical evidence for a genealogical tree. Tubercle and Lung Disease 79(4):243–250
DOI 10.1054/tuld.1999.0206.

Palmer CE, LongMW. 1966. Effects of infection with atypical mycobacteria on BCG
vaccination and tuberculosis. American Review of Respiratory Diseases 94:553–568.

Arregui et al. (2016), PeerJ, DOI 10.7717/peerj.1513 20/21

https://peerj.com
http://dx.doi.org/10.1183/09031936.00149212
http://dx.doi.org/10.1086/375220
http://dx.doi.org/10.1086/375220
http://dx.doi.org/10.1093/cid/cit790
http://dx.doi.org/10.1016/j.tpb.2009.01.006
http://dx.doi.org/10.1016/j.tpb.2009.01.006
http://dx.doi.org/10.1586/14760584.2013.856765
http://dx.doi.org/10.1093/cid/cit793
http://dx.doi.org/10.1093/ije/17.3.629
http://dx.doi.org/10.1054/tuld.1999.0206
http://dx.doi.org/10.1054/tuld.1999.0206
http://dx.doi.org/10.7717/peerj.1513


Rodrigues LC, Diwan VK,Wheeler JG. 1993. Protective effect of BCG against tubercu-
lous meningitis and miliary tuberculosis: a meta-analysis. International Journal of
Epidemiology 22:1154–1158 DOI 10.1093/ije/22.6.1154.

Rodrigues LC, Pereira SM, Cunha SS, Genser B, Ichihara MY, De Brito SC, Hijjar
MA, Cruz AA, Sant’Anna C, Bierrenbach AL, Barreto ML, Dourado I. 2005.
Effect of BCG revaccination on incidence of tuberculosis in school-aged children
in Brazil: the BCG-REVAC cluster-randomised trial. Lancet 366:1290–1295
DOI 10.1016/S0140-6736(05)67145-0.

Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Sridhar S, Habermann S, Snell L,
Mangtani p, Adetifa I, Lalvani A, Abubakar I. 2014. Effect of BCG vaccination
againstMycobacterium tuberculosis infection in children: systematic review and meta-
analysis. BMJ 349:g4643 DOI 10.1136/bmj.g4643.

Soysal A, Millington KA, Bakir M, Dosanjh D, Aslan Y, Deeks JJ, Efe S, Staveley I, Ewer
K, Lalvani A. 2005. Effect of BCG vaccination on risk ofMycobacterium tuberculosis
infection in children with househld tuberculosis contact: a prospective community-
based study. Lancet 366:1443–1451 DOI 10.1016/S0140-6736(05)67534-4.

Wallis KF. 2014. The two-piece normal, binormal, or double Gaussian distribution: its
origin and rediscoveries. Statistical Science 29(1):106–112 DOI 10.1214/13-STS417.

Weir RE, Fine PEM, Nazareth B, Floyd S, Black GF, King E, Stanley C, Bliss L, Branson
K, Dockrell HM. 2003. Interferon-gamma and skin test responses of schoolchildren
in southeast England to purified protein derivatives fromMycobacterium tuber-
culosis and other species of mycobacteria. Clinical & Experimental Immunology
134:285–294 DOI 10.1046/j.1365-2249.2003.02272.

World Health Organization. Global Tuberculosis Report. 2014. Available at http:
//www.who.int/ tb/publications/ global_report/ en/ (accessed February 2015).

Young SL, Slobbe L,Wilson R, Buddle BM, De Lisle GW, Buchan GS. 2007. Envi-
ronmental strains of mycobacterium avium interfere with immune responses
associated withMycobacterium bovis BCG vaccination. Infection and Immunity
75(6):2833–2840 DOI 10.1128/IAI.01826-06.

Zodpey SP, Shrikhande SN. 2007. The geographic location (latitude of studies evaluating
protective effect of BCG vaccine and its efficacy/effectiveness against tuberculosis).
Indian Journal of Public Health 51(4):205–210.

Arregui et al. (2016), PeerJ, DOI 10.7717/peerj.1513 21/21

https://peerj.com
http://dx.doi.org/10.1093/ije/22.6.1154
http://dx.doi.org/10.1016/S0140-6736(05)67145-0
http://dx.doi.org/10.1016/S0140-6736(05)67145-0
http://dx.doi.org/10.1136/bmj.g4643
http://dx.doi.org/10.1016/S0140-6736(05)67534-4
http://dx.doi.org/10.1214/13-STS417
http://dx.doi.org/10.1046/j.1365-2249.2003.02272
http://www.who.int/tb/publications/global_report/en/
http://www.who.int/tb/publications/global_report/en/
http://dx.doi.org/10.1128/IAI.01826-06
http://dx.doi.org/10.7717/peerj.1513

