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ABSTRACT
Objective . We aim to test whether leukocyte telomere length (LTL) is causally
associated with the risk of bipolar disorder (BD) using the Mendelian randomization
(MR) method.
Methods. Results of a genome-wide association study (GWAS) conducted with
472,174 individuals of European descent were used to screen for single-nucleotide
polymorphisms (SNPs) related with LTL traits. Summary-level data for BD (7,647 cases
and 27,303 controls) were obtained from UK Biobank. An inverse-variance-weighted
(IVW) method was employed as the primary MR analysis. Sensitivity analyses were
conducted via MR-Egger, maximum likelihood, MR-pleiotropy residual sum outlier
(MR-PRESSO), and MR-robust adjusted profile score (MR-RAPS) methods. Finally,
the MR Steiger test was utilized to validate the hypothesized relationship between
exposure and outcome.
Results. Two-sample MR analysis revealed inverse relationships between genetically
predicted LTL and BD risk (IVW OR [odds ratio] = 0.800, 95% CI [0.647–0.989] P =
0.039). Genetically predicted LTL exhibits a consistent connection with BD across five
MR methods. Sensitivity analyses showed that the genetically determined effect of LTL
on BDwas stable and reliable. Furthermore, theMR Steiger test demonstrated that LTL
was causal for BD rather than the opposite (P < 0.001).
Conclusion . Our findings show that genetically determined LTL reduces the risk of BD.
More research is required to clarify the mechanisms underlying this apparent causal
connection. In addition, these findings may be useful for developing strategies for the
prevention and treatment of BD.

Subjects Cell Biology, Cognitive Disorders, Epidemiology, Immunology, Psychiatry and
Psychology
Keywords Leukocyte telomere length, Bipolar disorder, Mendelian randomization, Genome-wide
association study, Single-nucleotide polymorphisms, Spinal stenosis

INTRODUCTION
Bipolar disorder (BD) is a severe neuropsychiatric condition characterized by recurrent
periods of mania and depression that impair cognition, perception, emotion, and social
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interaction. The cause of BD is unknown, although genetic, neurochemical, and structural
abnormalities, as well as stress, may contribute (McIntyre et al., 2020). BD is more prevalent
in persons with a family history of BD and those suffering from depression, anxiety
problems, or substance use issues (Bauer, 2022). BD is a significant public health issue and
a large contributor to the global burden of illness due to its lifetime frequency of 1–2%,
increased morbidity and mortality, beginning in young adulthood, and typically chronic
course (Stahl et al., 2019). According to Fries et al. (2020), BD is a disease that accelerates
aging in both clinical and molecular features. The causes of the illness and any associated
effective therapy approaches are still unknown despite the considerable effort being put
into examining the mechanisms underlying BD. Because of this, it is becoming more
important to find people who are likely to get BD and could benefit from early preventive
methods.

There is evidence that certain mental illnesses are linked to a faster rate of biological
aging, either at the organismal or even the cellular level (Lindqvist et al., 2015). The telomere
length (TL) is an emerging indicator of cellular aging that is frequently tested in leukocytes
(as LTL). Telomeres are areas of repeating nucleotide sequences at the end of eukaryotic
chromosomes that play a crucial function in chromosomal integrity. LTL is known as
the ’’molecular clock’’ related to the senescence of cells and organisms (Vaiserman &
Krasnienkov, 2020). Epidemiological studies have shown evidence that shortened LTL
is linked to several psychiatric disorders, including major depressive disorder (Monroy-
Jaramillo, Dyukova & Walss-Bass, 2018; Pisanu et al., 2020a; Pisanu et al., 2020b; Wang et
al., 2017), anxiety (Monroy-Jaramillo, Dyukova & Walss-Bass, 2018; Wang et al., 2017),
schizophrenia (Ayora et al., 2022; Wolkowitz et al., 2017). The occurrence of BD may be
closely related to these diseases, which may all be affected by shortened LTL. As a result,
we speculate that the change of LTL may be closely related to the occurrence of BD.
Observational study results indicate connections between LTL and BD (Ferensztajn-
Rochowiak et al., 2021; Huang et al., 2018; Joo et al., 2021). Despite being helpful, these
observational studies are vulnerable to confounding factors, which can lead to inaccurate
causal conclusions (Grimes & Schulz, 2002). Hence, randomized controlled trials are
required to demonstrate the validity of the relationships found in observational studies.

Randomized studies on LTL are challenging to conduct because of the need for large
sample sizes and extensive follow-up periods. Because of this, establishing a causal link
between LTL and diseases might be difficult. To establish whether the alleged connection
between LTL and diseases is a causal one, an effectivemethodmust be identified.Mendelian
randomization (MR) provides the opportunity to solve this issue explicitly (Do et al., 2013;
Emdin, Khera & Kathiresan, 2017; Frikke-Schmidt et al., 2008; Voight et al., 2012). Since
genetic mutations are intrinsic and unaffected by environmental circumstances, the MR
research approach employing SNP as an instrumental variable can effectively control the
interference of confounding variables, similar to a randomized controlled trial. In addition,
genetic variation can have an effect on outcomes, but outcomes cannot have an impact
on genes; hence, there is no possibility of inferring reverse causality. MR relies on the
following assumptions: the genetic instrument should be highly related to the exposure
but not confounders. The genetic variant should solely influence the outcome via the risk
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factor (Emdin, Khera & Kathiresan, 2017). Hence, establishing causality is possible with a
genetic instrument that meets all MR assumptions.

Therefore, this study used a two-sample MR analysis and a variety of sensitivity analyses
to investigate the causal link between LTL and BD risk. The discovered causal links between
LTL and BD risk will help progress research into early preventive or diagnosis measures.

METHODS
Overall study design
In this study, we utilized the two-sample MR method to evaluate the causal relationship of
LTL with the risk of BD. The two-sample MR analyses used summary-level data from IEU
Open GWAS (https://gwas.mrcieu.ac.uk/), namely LTL (472,174 individuals, ieu-b-4879)
and BD (34,950 individuals, ebi-a-GCST003724). The relevant ethics board authorized the
initial GWAS, and all participants provided informed consent.

Assumptions of the Mendelian randomization study
The current MR study must acknowledge and accept these three key assumptions: (1)
Genetic instrument variables (GIVs) should be strongly associated with LTL. (2) The GIVs
must not be associated with confounders that may affect the relationship between LTL and
BD. (3) The GIVs should only influence the BD via LTL (horizontal pleiotropy does not
exist) (Davey Smith & Hemani, 2014; Smith & Ebrahim, 2003). Figure 1 illustrates the MR
study’s assumptions and its overall design.

Two-sample MR
SNP selection
After obtaining the GWAS summary-level data for LTL, we performed several quality
control measures to decide which instrumental SNPs could be included in subsequent MR
analyses. First, genome-wide significant SNPs associated with LTL (P < 5 × 10−8) were
obtained. Second, it was critical to establish that none of the LTL-related instrumental SNPs
were in linkage disequilibrium (LD). In this study, the LD between SNPs was determined
by employing the clumping method (r2 < 0.001, window size = 10,000 kb) on European
samples obtained from the 1000 Genomes Project. Among the pairs of SNPs where the
level of LD r2 exceeds the stated threshold (r2 = 0.001), only the SNP with the lowest P
value is retained. Moreover, the F statistic was calculated according to previous studies
(Pierce, Ahsan & Vanderweele, 2011; Wu et al., 2020) to estimate the instrument strength.
When the F statistic for the instrument-exposure correlation was significantly higher than
10, it indicated a low probability of weak instrumental variable bias (Davies, Holmes &
Davey Smith , 2018).

Primary analyses
The effect of LTL on BD risk was estimated using the inverse-variance-weighted (IVW)
model, with LTL serving as the exposure and BD as the outcome. The IVW method
combines Wald estimates for each SNP using a meta-analysis approach to determine
the overall estimates of the impact of the exposure on the result (Burgess, Butterworth &
Thompson, 2013).
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Sensitivity analyses
To test the robustness of primary analysis, four methods were used, including MR-Egger
(Bowden, Davey Smith & Burgess, 2015), Maximum likelihood (Xue, Shen & Pan, 2021),
MR-pleiotropy residual sum outlier (MR-PRESSO) (Verbanck et al, 2018), and robust
adjusted profile score (MR-RAPS) methods (Cui & Tian, 2021) to test the reliability and
stability of the results. In short, MR-Egger recalculates the IVW causal estimates while
taking the intercept out of the equation. The maximum likelihood approach assumes
that each SNP’s effect on the outcome is the same; therefore, it may provide more robust
results when the measurement error exists. MR-PRESSO is an approach for detecting and
correcting outliers in linear IVW data. MR-RAPS accounts for the measurement error in
SNP-exposure effects and is impartial in the presence of numerous weak instruments and
robust to systematic and idiosyncratic pleiotropy. However, each of the above methods has
some advantages and disadvantages. For example, the IVW method is the most powerful
resilient approach when all variants are valid instrumental variables (IVs), as it is at its most
effective when using only valid IVs. The efficiency of MR-Egger procedures is drastically
lower (Burgess et al., 2020). In addition, to estimate consistently, the MR-Egger method
requires the InSIDE (Instrument Strength Independent of Direct Effect) assumption. MR-
RAPS works best when pleiotropic effects are actually normally distributed about zero.
The MR-PRESSO is useful when there are few genetic variants with heterogeneous ratio
estimates, but it is less valuable when there aremanymildly pleiotropic variants or when the
average pleiotropic effect of non-outliers is not zero. Due to variances in analysis platforms,
experimental circumstances, inclusion populations, and SNPs, the assessment of causal
effects may be impacted by heterogeneity in two-sampleMR analyses. This study, therefore,
examined the IVW andMR-Egger estimations for heterogeneity (Hemani et al., 2018). The
heterogeneities were measured using the Cochran Q statistic; a P value (P-het) > 0.05
indicated no heterogeneity in the included instrumental variables. Hence the influence
of heterogeneity on the assessment of causal effects could be disregarded. If there was
heterogeneity, the random-effects model was employed to determine the effect size (Julian
et al., 2021; Li et al., 2022). In addition, it is essential to determine if pleiotropy occurs in the
MR causal inference. It is possible to evaluate pleiotropy using the Egger model’s intercept
statistically; departures from 0 suggest the presence of directional pleiotropy (Burgess &
Thompson, 2017). MR-PRESSO method was also employed to determine if the pleiotropy
existed (Verbanck et al, 2018). Pleiotropy is unlikely in the causal analysis if P > 0.05. The
MR Steiger test was performed to confirm the directionality of the exposure’s effect on
the outcome, and P < 0.05 was considered statistically significant. Finally, according to a
prior investigation (Brion, Shakhbazov & Visscher, 2013), the statistical power of our MR
findings was assessed.

All MR studies were carried out in R (version 4.1.2; R Core Team, 2021) using the
TwoSampleMR package (version 0.5.6) (Hemani et al., 2018).

RESULTS
All 133 distinct genetic variations connected to LTLwere accessible in the summary statistics
for BD. The F statistic for these SNPs exceeded 10 (range, 29.86–1628.82; mean, 119.94)
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Figure 1 Directed acyclic graph of the MR framework investigating the causal relationship between
LTL and BD. Instrumental variable assumptions: (1) Genetic instrument variables (GIVs) should be
strongly associated with LTL. (2) The GIVs must not be associated with confounders that may play
a role in the relationship between LTL and BD. (3) The GIVs should only influence the BD via LTL.
SNPs, single-nucleotide polymorphisms; LTL, leukocyte telomere length; BD, bipolar disorder; IVW,
inverse-variance-weighted; MR, Mendelian randomization.

Full-size DOI: 10.7717/peerj.15129/fig-1

for LTL, showing that there is little chance of weak-instrument bias (Fig. S1) (Baumeister
et al., 2021). File S1 contains information on these SNPs in great detail.

This study demonstrated that genetically determined LTL has a negative association with
BD risk; the OR was 0.800 (95% CI [0.647–0.989]; P = 0.039) in the IVW analysis (Table 1)
(Fig. 2). Subsequent heterogeneity study results demonstrated substantial heterogeneity
among the GIVs (P-het = 0.001), so we utilized the random-effects model to directly
estimate the aforementioned MR effect size. Genetically predicted LTL showed a broadly
consistent association with BD across the different MR methods (Table 1). The scatter
plots also revealed that the slopes of the results among LTL and BD assessed by various
methodologies are all negative, and the steady correlation pattern demonstrates that our
study results are pretty dependable (Fig. 3). Additionally, density plots also show that
the predicted effect values of most SNPs fall within a rather narrow range, indicating the
absence of significant heterogeneity in our research (Fig. 4). The intercept term estimated
fromMR-Egger was centered at the origin (P-intercept= 0.173), indicating that the results
were unaffected by the directional pleiotropy. No outlier SNP was identified that resulted
in enhanced pleiotropy in the overall MR estimate by MR-PRESSO analysis and MR-Egger
test (Fig. 5). Moreover, even though the SNPs explained 3.26% of the variance of LTL, there
was 83.6% power to detect the causal association between LTL and BD. The MR Steiger
test was used to validate the causal assumption of LTL and BD, and the results proved that
LTL’s influence on BD was the proper causal direction (P < 0.001).
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Table 1 MR results of LTL on risk of BD.

Exposure Method No. of
SNPs

OR (95% CI) P P-het P-intercept

MR Egger 133 0.641 (0.438–0.939) 0.024 0.001584 0.173404
IVW 133 0.800 (0.647–0.989) 0.039 0.001255

LTL Maximum likelihood 133 0.799 (0.668–0.956) 0.014
MR-PRESSO (RAW) 133 0.800 (0.646–0.991) 0.041
MR-RAPS 133 0.798 (0.667–0.955) 0.014

Notes.
MR, Mendelian randomization; LTL, leukocyte telomere length; BD, bipolar disorder; IVW, inverse variance weighted;
MR-PRESSO, Mendelian randomization-pleiotropy residual sum outlier; MR-RAPS, MR-robust adjusted profile score; OR,
odds ratio; P-het, P value for heterogeneity using Cochran Q test; P-intercept, P value for MR-Egger intercept; SNP, single-
nucleotide polymorphism.

Method
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MR−RAPS

Total SNP
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Figure 2 Forest plot to visualize causal effects of variation in LTL on BD. Presented odds ratios (OR)
and confidence intervals (CI) correspond to the effects of LTL on BD. The results of MR analyses using
various analysis methods (MR–Egger, maximum likelihood, MR-PRESSO, MR–RAPS, IVW) are pre-
sented for comparison. Total single-nucleotide polymorphism (SNP) indicates the number of genetic vari-
ants used as instruments for MR analysis.

Full-size DOI: 10.7717/peerj.15129/fig-2

DISCUSSION
In the present study, we estimated the causative influence of LTL on the risk of BD using
the MR method. We observed that genetically determined LTL was negatively associated
with BD.

Telomeres are nucleoprotein structures that are present at the ends of each chromosome
arm and help to keep the genome stable. Gene abnormalities that are connected with
telomere maintenance in humans have been linked to a variety of germline and somatic
degenerative illnesses, including dyskeratosis congenital and ulcerative colitis (Calado et
al., 2009). In addition, telomere dysfunction has become one of the molecular hallmarks
of cellular aging (Lopez-Otin et al., 2013). Therefore, TL may be related to many aging-
related diseases. For example, Haycock et al. (2014) found that LTL was linked to a lower
risk of coronary heart disease, even when traditional vascular risk factors were taken into
account. Pousa et al. (2021) reported an inverse association between TL and distress-related
mental disorders (including traumatic stress disorder, anxiety disorder, and depression).
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Figure 3 Scatter plots of LTL with the risk of BD. Scatter plot demonstrating the effect of each LTL-
associated SNP on BD on the log-odds scale. The slopes of each line represent the causal association for
each method.
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Interestingly, Roberts et al. (2014) indicated that both long and short TL may play a role in
the pathogenesis of amnestic mild cognitive impairment (aMCI) and may be markers of
increased risk of aMCI. In addition, according to the findings of Jebaraj and colleagues,
chronic lymphocytic leukemia is characterized by short telomeres, which are linked to a
poor prognosis, genomic complexity, and clonal evolution (Jebaraj et al., 2019).

In addition to the results of observational studies, there are many studies using
MR methods that also show a causal association between telomere length (TL) and
many diseases. For example, a comprehensive MR analysis by The Telomeres Mendelian
Randomization Collaboration (2017) showed the strongest positive association between
genetically predicted longer TL and a variety of cancers. There were also many MR studies
reporting the relationship between TL and neurological diseases, including amyotrophic
lateral sclerosis (Xia et al., 2021), Alzheimer’s disease (Gao et al., 2019;Rodriguez-Fernandez
et al., 2022; Yu et al., 2021), multiple sclerosis (Liao et al., 2022; Shu, Li & Zhu, 2022). But

Lu et al. (2023), PeerJ, DOI 10.7717/peerj.15129 7/18

https://peerj.com
https://doi.org/10.7717/peerj.15129/fig-3
http://dx.doi.org/10.7717/peerj.15129


0.0

0.1

0.2

0.3

−5 0 5
Per SNP MR estimate

de
ns

ity

1/se

1
2
3

method

Inverse variance weighted
Maximum likelihood
MR−PRESSO (RAW)
MR−RAPS
MR Egger

Figure 4 MR density plots to visualize the overall heterogeneity of MR estimates for the effect of LTL
on BD.MR, Mendelian randomization; SNP, single-nucleotide polymorphism.
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there are also some MR studies showing that telomere length is not associated with some
neurological traits, such as depression (Wium-Andersen et al., 2017), and Parkinson’s
disease (Chen & Zhan, 2021).

Currently, observational studies exist on the association of TL with BD. Rizzo and
colleagues revealed evidence of accelerated aging in BD in the form of shorter telomeres
(a marker of cellular aging) (Rizzo et al., 2013). In addition, Huang et al. (2018) found BD
patients had shorter LTLs than controls. Ferensztajn-Rochowiak et al. (2021) also found
that BD patients had significantly shorter TL compared with the control group. In addition
to observational studies, an MR analysis enrolling 131 patients with BD and 336 controls
conducted by Pisanu et al. (2020a) and Pisanu et al. (2020b) indicated that there was no
association between genetically determined LTL and BD risk. Nevertheless, Pisanu’s study
had a limited number of participants, which is a significant limitation that has an impact
on the outcomes of theMR analysis (Davies, Holmes & Davey Smith , 2018). Besides this, to
our knowledge, there were no large-sample MR analyses to explore the causal relationship
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between telomere length and BD. Consequently, it is crucial to reevaluate whether it will
produce different conclusions if more extensive GWAS datasets become available. In line
with previous studies, utilizing the MR analysis based on the largest LTL and BD-related
datasets, we found a negative association between LTL and BD risk. At the same time,
to ensure the reliability of the results, we performed a series of sensitivity analyses. The
results show strong consistency of our findings across methods. Taken together, these data
indicate that LTL is a substantial protective factor for BD. In addition, LTL may be an
essential indicator for predicting BD risk.

MR studies must satisfy three basic assumptions (Davies, Holmes & Davey Smith, 2018).
In this study, we evaluated the veracity of these assumptions in various methods. We
primarily assessed the relevance assumption through P-value (P < 5 × 10−8) and LD
analyses. In addition, we also use the F statistic to rule out the presence of weak instrumental
variables. Horizontal pleiotropy cannot exist due to the nature of the exclusion restriction
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assumption. Hence, many sensitivity analyses were performed to examine the impact of
horizontal pleiotropy on our MR study. The estimates between LTL and BD were generally
consistent throughout IVW and sensitivity analysis, making the conclusion trustworthy.
Finally, it is challenging to ensure that the independence assumption is not violated due to
the presence of confounders that cannot be assessed or are unknown from prior knowledge.
There is a possibility that the link between a GIV and an outcome is confounded in certain
samples due to a hidden population structure (Davies, Holmes & Davey Smith , 2018).
Consequently, the exposure and outcome datasets utilized in this investigation were all
sourced from European populations, thereby avoiding the confounding effects of diverse
populations on causal analyses. However, it remains to be determined whether additional
confounding factors influence the association between LTL and BD risk.

Despite the fact that two-sampleMR is an excellent method for making causal inferences
among exposures and outcomes employing summary statistics, we should proceed with
caution due to a number of limitations. First, our study was conducted using European
populations, which limits its ability to be applied to a larger group. Second, it is also possible
that additional factors, such as other disease states, confound our results, but it is hard to
avoid. In addition, in our work, telomere length was detected in leucocytes, and whether it
also be able actually to reflect the telomere length of other organ tissues is unclear. Lastly,
even though that a number of sensitivity analyses were done to investigate violations of
exchangeability and exclusion limitation criteria, those assumptions remain unverifiable.

The large sample size is one of the strengths of this study. In addition, to our knowledge,
noMR evaluating the link between LTL and BDhas been done.MR research had advantages
over conventional observational studies, such as the reduction of residual confounding
risk. In addition, we performed a series of sensitivity assessments to verify the stability
and reliability of the MR analysis results. As a consequence, we were able to provide novel
insights that may help clarify the role of LTL in BD occurrence.

In summary, using the MR method, we found that LTL was a negative causal factor
for BD risk. More research is required to establish how this potential cause-and-effect
relationship works. Clinically, BD may be predicted by detecting LTL. In addition, because
genetic variants cause the effect of LTL on BD is lifelong. Therefore, our findings are helpful
in developing strategies for treating BD.

Abbreviations

LTL leukocyte telomere length
BD bipolar disorder
MR mendelian randomization
SNPs single-nucleotide polymorphisms
GWAS genome-wide association study
IVW inverse-variance-weighted
MR-PRESSO Mendelian randomization-pleiotropy residual sum outlier
MR-RAPS MR-robust adjusted profile score
OR odds ratio
GIVs genetic instrument variables
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