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Eastern Oysters Crassostrea virginica settle near inlets in a
lagoonal estuary: Spatial and temporal distribution of
recruitment in mid-Atlantic Coastal Bays (Maryland, USA)
Madeline A Farmer Corresp., 1 , Daniel W Cullen 1 , Bradley G Stevens 1

1 Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States

Corresponding Author: Madeline A Farmer
Email address: madelinea.farmer6@gmail.com

Background. Declines of the Eastern oyster Crassostrea virginica, and its numerous ecological beneûts
have spurred oyster restoration initiatives. Successful restoration of a self-sustaining oyster population
requires evaluating the temporal and spatial patterns of recruitment (settlement and survival) of oyster
larvae in the target waterbody. Restoration of the eastern oyster population in the Maryland Coastal Bays
(MCBs), U.S.A., a shallow lagoonal estuary, is of interest to federal and state agencies, but the location
and timing of natural recruitment is not known.

Methods. We assessed the spatial and temporal variation in oyster larval recruitment throughout the
MCBs using horizontal ceramic tiles and PVC plates. Newly settled oyster larvae (recruits) were monitored
biweekly from June to September 2019 and 2020 at 12 sites in the MCBs and a comparison site in
Wachapreague, Virginia. Water quality parameters (temperature, salinity, dissolved oxygen, turbidity,
and pH) were also measured. The objectives of this study were to determine 1) the most eûective
substrate design for monitoring oyster recruitment, 2) the spatial and temporal distribution of oyster
larval recruitment in the MCBs, and 3) patterns in oyster larval recruitment that would be applicable to
other lagoonal estuaries.

Results. 1) Ceramic tiles were more eûective than PVC plates for recruiting oyster larvae; 2) Peak
settlement began during the period from late June through July, and oyster recruitment was greatest at
sites closest to the Ocean City and Chincoteague inlets; 3) Areas near broodstock that have long ûushing
rates to retain larvae, may provide the best environments for recruitment of oysters to lagoonal
estuaries.

Discussion. As the ûrst study on oyster larval recruitment in the MCBs, our results provide insight into
their spatial and temporal distribution, methods that can serve as a foundation for future recruitment
studies in other lagoonal estuaries, and baseline data that can be used to inform stakeholders and
evaluate the success of oyster restoration projects in MCBs.
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16 Abstract

17

18 Background. Declines of the Eastern oyster Crassostrea virginica, and its numerous ecological 

19 benefits have spurred oyster restoration initiatives. Successful restoration of a self-sustaining 

20 oyster population requires evaluating the temporal and spatial patterns of recruitment (settlement 

21 and survival) of oyster larvae in the target waterbody. Restoration of the eastern oyster 

22 population in the Maryland Coastal Bays (MCBs), U.S.A., a shallow lagoonal estuary, is of 

23 interest to federal and state agencies, but the location and timing of natural recruitment is not 

24 known.

25 Methods. We assessed the spatial and temporal variation in oyster larval recruitment throughout 

26 the MCBs using horizontal ceramic tiles and PVC plates. Newly settled oyster larvae (recruits) 

27 were monitored biweekly from June to September 2019 and 2020 at 12 sites in the MCBs and a 

28 comparison site in Wachapreague, Virginia. Water quality parameters (temperature, salinity, 

29 dissolved oxygen, turbidity, and pH) were also measured. The objectives of this study were to 

30 determine 1) the most effective substrate design for monitoring oyster recruitment, 2) the spatial 

31 and temporal distribution of oyster larval recruitment in the MCBs, and 3) patterns in oyster 

32 larval recruitment that would be applicable to other lagoonal estuaries.

33 Results. 1) Ceramic tiles were more effective than PVC plates for recruiting oyster larvae; 2) 

34 Peak settlement began during the period from late June through July, and oyster recruitment was 

35 greatest at sites closest to the Ocean City and Chincoteague inlets; 3) Areas near broodstock that 

36 have long flushing rates to retain larvae, may provide the best environments for recruitment of 

37 oysters to lagoonal estuaries.

38 Discussion. As the first study on oyster larval recruitment in the MCBs, our results provide 

39 insight into their spatial and temporal distribution, methods that can serve as a foundation for 

40 future recruitment studies in other lagoonal estuaries, and baseline data that can be used to 

41 inform stakeholders and evaluate the success of oyster restoration projects in MCBs. 

42

43 Subjects: Ecology, Natural Resource Management, Conservation Biology 

44

45 Keywords: Oyster, Crassostrea virginica, Larval recruitment, Settlement, Restoration, 

46 Ecosystem services, Lagoonal estuary, Maryland, Mid-Atlantic. 
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48 Introduction

49

50 Coastal lagoonal estuaries account for 13% of the coastline worldwide (McAvoy & 

51 Clancy, 1994). As an inhabitant of coastal lagoonal estuaries along the Atlantic shoreline of the 

52 United States, the Eastern oyster Crassostrea virginica (Gmelin 1791), serves as a keystone 

53 species that provides invaluable ecosystem services (Sanjeeva Raj, 2008) such as filtering water 

54 (Wilber & Clarke, 2010), cycling nitrogen (Jiang et al., 2020), conducting benthic-pelagic 

55 coupling (Maryland Department of Natural Resources, 2004), providing habitat (Harding & 

56 Mann, 2001), sequestering carbon and nitrogen (Smyth, Geraldi & Piehler, 2013; Fodrie et al., 

57 2017), and protecting shorelines (Piazza, Banks & La Peyre, 2005). Despite its ecological 

58 importance, however, anthropogenic stresses (e.g., increased shoreline development, habitat 

59 destruction, pollution, water quality degradation) (Lotze et al., 2006; Worm et al., 2006), 

60 overharvesting (Kirby, 2004), and disease (Harvell et al., 1999; Beck et al., 2011) have 

61 contributed to its decline. 

62 Remnant populations of wild eastern oysters exist in intertidal areas of the Maryland 

63 Coastal Bays (MCBs), a two-inlet lagoonal estuarine system along the east coast of the United 

64 States in the Mid-Atlantic. Current populations have declined dramatically from historic levels 

65 due to overharvesting and lasting effects from the creation of the Ocean City Inlet during a 

66 hurricane in 1933. This inlet introduced changes in salinity and hydrodynamics within the MCBs 

67 as well as new diseases, predators, and competitors (Maryland Department of Natural Resources, 

68 2004; Jesien et al., 2009; Kang et al., 2017). Shellfish surveys conducted by the Maryland 

69 Department of Natural Resources in the MCBs since 1993 have never found natural oysters on 

70 the former oyster bars of the MCBs. Instead, oyster shells are deteriorating, becoming fouled, 

71 and buried in sediment (Maryland Department of Natural Resources, 2004). Though no viable 
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72 natural oysters exist in subtidal areas of the MCBs, small populations of oysters have settled on 

73 anthropogenic structures in intertidal areas (Maryland Department of Natural Resources, 2004; 

74 Jesien et al., 2009) especially in the general vicinity of the two inlets.

75 Population declines and habitat losses for C. virginica have inspired federal, state, and 

76 non-governmental agencies to pursue restoration efforts to reestablish the species in native 

77 waters (Chesapeake Bay Program, 2000). Successful oyster restoration projects have been 

78 conducted in lagoonal estuaries along the east coast of the United States at various scales, among 

79 other locations. Restoration efforts in the Delaware Inland Bays, which encompass Rehoboth 

80 Bay, Indian River Bay, and Little Assawoman Bay, include smaller restoration projects. 

81 Volunteers in the Delaware Oyster Gardening Program grow oysters for two years on private 

82 docks after which they are utilized for research or restoration purposes (Reckenbeil & Ozbay, 

83 2014). In addition, federal and state agencies are restoring native eastern oyster populations and 

84 habitats in 10 tributaries throughout Maryland and Virginia (by 2025) as part of the 2014 

85 Chesapeake Bay Watershed Agreement. Of the five tributaries targeted in Maryland, 788 acres 

86 of oyster reefs have been restored since 2014, with a goal of 1,439 acres by 2025. 

87 An oyster restoration project in the MCBs would help improve its poor water quality 

88 (Jesien et al., 2009), create hard substrate habitat, and provide additional ecosystem services 

89 (Maryland Department of Natural Resources, 2004; Jesien et al., 2009). Restoration of Eastern 

90 Oyster populations in the MCBs had been discussed among federal, state, NGO, and academic 

91 partners prior to 2013 (B. Stevens, 2018, pers. comm.) 

92 Natural recruitment of wild oyster larvae aid in restoration success by supplementing 

93 restoration efforts (Schulte & Burke, 2014). However, the spatial and temporal distribution of 

94 wild oyster larvae was not known. Prior to restoration initiatives, it is crucial to evaluate the 
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95 spatial and temporal recruitment patterns of wild oyster larvae, in addition to their growth and 

96 survival over multiple years in order to determine the feasibility, scale, and location of a 

97 restoration effort (Kennedy et al., 2011; Soniat et al., 2012; Casas, La Peyre & La Peyre, 2015). 

98 Additionally, an assessment of the best methods for measuring recruitment is needed to guide 

99 future studies in other waterbodies.

100 The Maryland Department of Natural Resources (MD DNR) has conducted an annual 

101 survey of shellfish populations in the MCBs since 1993 through their Shellfish Monitoring and 

102 Assessment Program. The purpose of their survey is to collect data on shellfish populations in 

103 the MCBs, to guide management and policy decisions related to conservation. Shellfish 

104 populations assessed include Eastern Oysters, Hard Clams Mercenaria merceneria, Softshell 

105 Clams Mya arenaria, Stout Razor Clams Tagelus plebeius, and Bay Scallops Argopecten 

106 irradians (Maryland Department of Natural Resources). Since 1993, natural oysters in subtidal 

107 areas of the MCBs have been dead and no recruitment observed. Instead, oyster shells from 

108 remnant oyster bars such as Yates Oyster Bars, are deteriorating, becoming fouled, and buried in 

109 sediment (Maryland Department of Natural Resources, 2004). Though no viable natural oysters 

110 exist in subtidal areas of the MCBs, small populations of oysters have settled on anthropogenic 

111 structures in intertidal areas, especially around the southern (Chincoteague) inlet (Maryland 

112 Department of Natural Resources, 2004; Jesien et al., 2009). 

113 This study was conducted throughout the MCBs, located along the Mid-Atlantic coast of 

114 the United States between the Delmarva Peninsula (spanning the states of Delaware, Maryland, 

115 and Virginia) and the Atlantic Ocean (Fig. 1) (Dennison et al., 2016). The MCBs system is a 

116 shallow lagoonal estuary that encompasses a 453 km2 watershed and comprises six bays (ranging 

117 from north to south): Assawoman Bay, Saint Martin River, Isle of Wight Bay, Sinepuxent Bay, 
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118 Newport Bay, and Chincoteague Bay (Maryland Department of Natural Resources, 2004; Krantz 

119 et al., 2009). MCBs is a two-inlet system with Ocean City Inlet in the north and Chincoteague 

120 Inlet in the south. It has an average depth of 1.5 m, but approximately 3 m at Ocean City Inlet 

121 and 4 m at Chincoteague Inlet (Dennison et al., 2016; Kang et al., 2017; Oseji, Fan & Chigbu, 

122 2019). As a shallow estuary, it is well-mixed and highly productive with little to no salinity or 

123 thermal gradients (Bricker et al., 2009; Oseji, Fan & Chigbu, 2019). 

124 Despite these characteristics, however, the MCBs have long flushing rates, e.g., the 

125 amount of time it takes for water to be replaced by water exchange through the inlets and 

126 freshwater inputs (nine days in Isle of Wight Bay to 63 days in Chincoteague Bay) (Pritchard, 

127 1960; Thomas et al., 2009). The MCBs also have uneven circulation with well-flushed areas and 

128 high current velocities near the inlets that decrease with distance from the inlets (Krantz et al., 

129 2009); the only sources of  <new= water (inlets and freshwater input) account for approximately 

130 7.5% of the volume in the MCBs daily (Pritchard, 1960). Well-flushed areas also have better 

131 water quality than areas in or close to tributaries. The uneven distribution of well-flushed areas in 

132 combination with input from non-point sources can cause nutrient enrichment that leads to poor 

133 water quality (Bricker et al., 2009; Dennison et al., 2016; Oseji, Fan & Chigbu, 2019).

134 We conducted the first study of recruitment of oyster larvae in the MCBs. From June to 

135 September in 2019 and 2020, we assessed the spatial and temporal distribution of recruitment 

136 using three sampler types (ceramic arrays, PVC arrays, and PVC collectors) that utilized PVC 

137 plates or ceramic tiles. Specific objectives were to 1) determine which sampler type was most 

138 effective for recruitment, 2) determine the spatial and temporal distribution of oyster larval 

139 recruitment in the MCBs, and 3) identify patterns in oyster larval settlement that would be 

140 applicable to other lagoonal estuaries.
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141 Materials & Methods

142 Site Selection

143 Twelve sites in the MCBs (Fig. 1, Table 1) (10 sites in Maryland and two in Virginia) 

144 were selected based on several factors including geographic location, proximity to inlets, salinity 

145 (S= 18 3 39), bottom type, depth, historical water quality data, and expert recommendations. 

146 Historical water quality data were provided by the National Park Service (NPS) (2016 3 2018), 

147 Maryland Department of Natural Resources (MDNR) (1999 3 2019), and Maryland Coastal Bays 

148 Program (MCBP) (2013 3 2015). Final selected sites (n = 12) included three currently monitored 

149 for water quality by local agencies: DNR XDN4312 (site St. Martin River), DNR TUV0021 (site 

150 Turville Creek), and NPS ASSA 2 (site Verrazano Bridge). Sites had a range of bottom 

151 sediments from coarse sand to silt (Mid-Atlantic Ocean Data Portal, 2021) and were defined as 

152 either Pier or Bay Sites depending on whether sampling equipment was attached to a shore-based 

153 pier or placed in open water. 

154 An additional study site for sampling gear comparison (substrate material and design) 

155 was established in Wachapreague, Virginia, at the Virginia Institute of Marine Science (VIMS) 

156 Eastern Shore Laboratory (ESL), where VIMS conducts a recruitment study on oyster larvae. 

157 Sampler types and study site locations

158 <Settlement= in this study is defined as an oyster larvae cementing itself to a substrate, 

159 thereby becoming sessile (Connell, 1985), while <recruitment= refers to settlement in addition to 

160 survival for a time frame defined by the investigator (Bushek, 1988). In this study, we define 

161 <recruitment= as recently settled oyster larvae or recruits that survived on settlement substrate for 

162 up to two weeks (Rimler, 2014). 
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163 Recruitment of oyster larvae was monitored using two different types of sampler designs 

164 (collectors or arrays) containing either PVC plates or ceramic tiles (10.16 cm x 10.16 cm). PVC 

165 collectors consisted of a cage made of plastic-coated wire (dimensions: 22.86 cm x 22.86 cm x 

166 53.34 cm) with 1.5 in2 apertures containing PVC plates. PVC collectors were built to our 

167 specifications by Ketcham Traps (New Bedford, MA). Each collector contained three PVC plates 

168 suspended horizontally using bungee cords at 35.6 cm, 40.6 cm, and 45.7 cm above the substrate 

169 and was weighted with two bricks placed in the bottom (Fig. 2A). PVC plates were custom cut to 

170 be 12.70 cm x 13.97 cm. Plates were drilled in four corners and sanded on both sides with 100 

171 grit sandpaper in a cross-hatched pattern to simulate the rugosity of the outside of an oyster shell 

172 to enhance settlement (Beiras & Widdows, 1995). An outer border of 6.35 mm on two sides and 

173 12.7 mm on two sides was scored to define a counting area of exactly 10.16 cm x 12.7 cm (129 

174 cm2). 

175 Arrays consisted of a 30.5 cm nylon threaded rod (0.95 cm diameter) on which three 

176 center-drilled PVC plates or ceramic tiles (10.2 cm x 10.2 cm x 0.7 cm, or 103 cm2) were 

177 positioned and separated by 5 cm sections of 1.25 cm PVC pipe (Fig. 2B; Fig. 2C). Ceramic tiles 

178 were arranged with the unglazed side facing downwards. This design was similar to arrays used 

179 by VIMS (Ross & Synder, 2020) though our design included weights (two bricks) below, and a 

180 small float (buoy) above, to keep the plates suspended in the water column at a fixed height off 

181 the bottom. PVC collectors were deployed in 2019 and 2020 and arrays (both PVC and ceramic) 

182 were deployed only in 2020. Because chemical cues have been suggested to induce settlement 

183 (Pawlik, 1986), approximately 90% of plates and tiles were conditioned in seawater for 8324 

184 hours prior to deployment; the remaining were not due to time constraints. 
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185 In 2019, we compared recruitment rates between our PVC collector design and the VIMS 

186 ceramic arrays at the VIMS ESL pier. Three PVC collectors were suspended next to VIMS 

187 arrays made of ceramic tiles. This comparison was made to determine 1) if PVC plates were as 

188 effective as ceramic tiles and 2) if a potential lack of recruitment on the PVC plates in the MCBs 

189 was due to the presence of fewer oyster, or collector design, or PVC plates. Results from 2019 

190 suggested that ceramic tiles were more suitable for monitoring oyster larval settlement. 

191 Therefore, in 2020, ceramic tile and PVC arrays employing the VIMS design were added to sites 

192 in the MCBs where oyster larval recruitment was observed during the previous year.

193 Field Sampling 

194 PVC collectors and arrays were either attached to lines suspended from a shore-based 

195 pier (Pier site) or attached to a surface line suspended by buoys between each collector (Bay site) 

196 (Fig. 3A; Fig. 3B). Between June and September 2019 and 2020, PVC plates and ceramic tiles 

197 were replaced biweekly at the sites for a total of five times per site, or five <swaps=. In 2019 only 

198 PVC collectors (n = 531 plates) were deployed, whereas in 2020, PVC collectors (n = 333 

199 plates), PVC arrays (n = 225 plates), and ceramic tiles (n = 225 ceramic tiles) were deployed. In 

200 2020, samplers could not be deployed at the planned five swap dates or at all 13 sites because of 

201 novel COVID-19 restrictions and transportation issues.

202 In 2019, three PVC collectors (three replicates), each containing three PVC plates (n = 9) 

203 were deployed at all 13 sites. In 2020, PVC collectors were deployed at 11 of the 13 sites, while 

204 three PVC arrays and three ceramic arrays were added to six of those sites (designated as 

205 <primary sites=). These six sites included five sites where oyster larvae settled in 2019, in 

206 addition to site Mills Island that was recommended by watermen. At all 13 sites in 2019, PVC 

207 plates (total n = 117) were collected and replaced biweekly. In 2020, at six primary sites (DNR 
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208 Pier, Island Mark 12, Mills Island, Guys Point, Queen Sound, and Wachapreague), PVC plates in 

209 PVC collectors (n = 54), PVC plates in PVC arrays (n = 54), and ceramic tiles in ceramic arrays 

210 (n = 54) were collected and replaced biweekly. At the remaining sites including Greys Creek, 

211 Verrazano Bridge, South Point, Public Landing, and Taylor Landing, only PVC collectors (n = 

212 54) with PVC plates were used. Note that the sampling units for this study were the individual 

213 PVC plates or ceramic tiles, so n values refer to the number of plates or tiles in all cases that 

214 were deployed biweekly. Not all plates and ceramic tiles could be retrieved, however, due to 

215 being lost in the field, removed etc.

216 Environmental data were also measured using a Xylem ProDSS Multiparameter Water 

217 Quality Meter (Xylem, Yellow Springs, OH) that was positioned above the sediment. 

218 Environmental parameters measured included temperature (°C), salinity, dissolved oxygen 

219 (mg/l), pH, and depth (m). Turbidity was measured as secchi disk depth (m). Field experiments 

220 were approved by the Maryland Department of Natural Resources under Scientific Collection 

221 Permit numbers SCP201964 and SCP202091.

222 Laboratory processing

223 In the laboratory, any sediment on the plates was gently rinsed and brushed off, then 

224 organisms including oyster larvae, barnacles, serpulid worms, and bryozoans were counted under 

225 a dissecting microscope. Data were collected differently depending on the substrates or the types 

226 of animals being counted. All animals within the PVC border were quantified, while only oyster 

227 larvae on the underside of the ceramic tile were quantified. Oyster larvae identification was 

228 conducted after confirmation by P. Ross at VIMS. Oyster larvae were counted on the upper side 

229 (A side) and underside (B side) of the PVC plates in PVC collectors in 2019 and 2020 for 

230 consistency between years and to identify differences in preferential side settlement. Conversely, 
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231 oyster larvae were only counted on the B side of the PVC plates and ceramic tiles in the array 

232 samplers in 2020 to replicate the VIMS methods (Ross & Synder, 2020) and because the textures 

233 of the tiles were different on either side (i.e. glazed A side, unglazed B side). Lastly, fouling 

234 organisms were enumerated in both 2019 and 2020 to determine their distribution (data not 

235 presented in this manuscript). 

236 Statistical Analysis

237 We tested for differences in oyster recruitment among 1) six primary sites and 2) three 

238 collector types. To maintain consistency between PVC and ceramic arrays, recruitment data 

239 collected only from the B side of PVC collectors was included in the analyses, unless stated 

240 otherwise. Because of differences in the surface areas of the PVC plates and ceramic tiles, raw 

241 oyster counts (c) were adjusted to a standardized area of 100 cm2 (referred to hereafter as 

242 StndCounts) using the formula:

243 StndCount = 100 ; c/A

244  where A = area of PVC plate or ceramic tile. Normality of StndCounts was tested quantitatively 

245 using Shapiro-Wilk's normality test and visually with Quantile-Quantile plots and histograms. 

246 The distribution of StndCounts was deemed non-normal and transformed to help meet the 

247 assumptions of parametric statistical tests (see below). Due to a combination of many small and 

248 fewer large values, StndCounts were log-transformed after adding 1 to accommodate 0 values: 

249 log10(StndCounts + 1). Although this did not completely normalize the StndCounts, the 

250 log10(StndCounts + 1) transformation did improve their distribution.

251 Data were analyzed using RStudio version 3.6.3, with the "MASS'' and "mgcv" packages 

252 (R Core Team, 2020). Two separate generalized linear models (GLMs) were used to test for 

253 differences in oyster larval recruitment by 1) spatial distribution and 2) sampler type among the 
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254 six primary sites. Because raw counts were corrected to a standardized area (O9Hara & Kotze, 

255 2010), log10(StndCounts + 1) was chosen as the response variable and GLMs were fitted using 

256 the Gaussian distribution with an Identity link function. Post Hoc Tukey9s honestly significant 

257 difference (HSD) tests were performed to identify which sites or sampler types differed 

258 statistically from one another. A Mann-Whitney U test was also used to examine for a significant 

259 difference between recruitment at sites DNR Pier and Wachapreague in 2020 while 

260 nonparametric Wilcoxon signed-rank tests were performed to identify any significant differences 

261 between recruitment on PVC collectors at sites (i.e., sites DNR Pier and Wachapreague) that 

262 experienced high recruitment in both years.

263

264 Results

265 Sampler types

266 Ceramic arrays were the most effective collector type for assessing oyster larval 

267 recruitment at all sites (Fig. 4). The number of oyster larvae recruits was significantly greater, by 

268 two orders of magnitude, on Ceramic arrays than on either PVC arrays (Tukey9s HSD test, 

269 P<0.001) or PVC collectors (Tukey9s HSD test, P <0.001) (Fig. 5).

270 Within the PVC collectors deployed in 2019, 37% of oyster larvae settled on the A side 

271 and 63% on the B side, whereas in 2020, 29% settled on the A side and 71% on the B side. 

272 Considering both years, 32% of oyster larvae settled on the A side and 68% on the B side of 

273 PVC collectors.

274 Spatial distribution

275

276 There were consistent spatial patterns in recruitment for PVC collectors (bottom, B side 

277 only) deployed in 2019 and 2020 (Fig. 6A, Fig. 6B). In 2019 and 2020, sites DNR Pier and 

278 Wachapreague exhibited the greatest recruitment in comparison to the remaining sites. No 
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279 significant difference in recruitment occurred between sites DNR Pier and Wachapreague in 

280 2019 (Mann-Whitney U test, U = 958.00, P = 0.60), though in 2020 the difference was 

281 marginally non-significant (Mann-Whitney U test, U = 861.00, P = 0.06). 

282 Settlement on PVC collectors was five times greater in 2020 than in 2019 at both sites 

283 DNR Pier and Wachapreague, although inter-annual differences were significant only for site 

284 Wachapreague (Wilcoxon signed-rank test, Z = 2.60, P< 0.01) but not for site DNR Pier 

285 (Wilcoxon signed-rank test, Z = 1.09, P = 0.28). No recruitment occurred on the underside or B 

286 side at site Island Mark 12 and Mills Island for PVC collectors in both years. However, a single 

287 oyster larvae settled on the upper (A) side at site Island Mark 12 in southern Sinepuxent Bay in 

288 2019. Little recruitment occurred on PVC collectors at sites Guys Point and Queen Sound in both 

289 years and recruitment was slightly less in 2020 than 2019. When considering both the A and B 

290 side of PVC plates, oyster larvae were found in 2020 at all sites where they occurred in 2019, in 

291 addition to site Verrazano Bridge in 2020. Oyster larvae were not identified at this site in 2019, 

292 so only three PVC collectors were deployed in 2020, and three oyster larvae were observed on 

293 the B side of PVC plates collected on 12 August 2020. 

294 PVC and ceramic arrays deployed solely in 2020 exhibited certain spatial patterns that 

295 occurred on the PVC collectors as well (Fig. 6A, Fig. 6B). Within the MCBs, the greatest 

296 recruitment on PVC arrays over the entire field season occurred at site DNR Pier (66 total oyster 

297 larvae in 2020, mean 1.57 ± 4.30 s.d.), while the greatest recruitment on ceramic arrays in the 

298 MCBs occurred at site Queen Sound (6682 total oyster larvae in 2020, mean 278.40 ± 282.11). 

299 For ceramic arrays, site Queen Sound received six times the total number of oyster larvae than 

300 site DNR Pier, which had the second highest recruitment (1173 total oyster larvae in 2020, mean 

301 29.33 ± 49.78). Sites Island Mark 12 and Mills Island received little to no recruitment on both 
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302 array types. PVC arrays at site Guys Point received more recruitment than PVC arrays at sites 

303 Mills Island and Queen Sound, whereas ceramic arrays at site Guys Point received less 

304 recruitment than ceramic arrays at site Queen Sound. Recruitment on ceramic arrays at site 

305 Wachapreague was less than half that at site Queen Sound, but approximately three times that of 

306 site DNR Pier. 

307 For ceramic arrays in the MCBs during 2020, the sites closest to the inlets (sites DNR 

308 Pier and Queen Sound) had the greatest recruitment of all sites. Settlement (i.e. mean 

309 standardized count per plate/tile) was 2.62 orders of magnitude greater on Ceramic arrays than 

310 on PVC collectors for DNR Pier, and 4.14 orders greater at Queen Sound, respectively (Fig. 6B). 

311 A Mann-Whitney U test was also used to examine for a significant difference between 

312 recruitment at sites DNR Pier and Queen Sound between Ceramic arrays and PVC arrays in 

313 2020. Significant difference in recruitment occurred between Ceramic and PVC arrays at site 

314 DNR Pier (Mann-Whitney U test, U = 1081.5, P = 0.008, effect size (r) = 0.29), and Queen 

315 Sound (Mann-Whitney U test, U = 412, P< 0.001, effect size (r) = 0.61. In considering both 

316 years and all sampler types, our results within the MCBs suggest that oyster larvae are more 

317 likely to be found at sites near inlets, rather than further away from them. Tukey HSD tests 

318 comparing recruitment at the six primary sites considering all collector types combined revealed 

319 that there were significant differences between multiple pairs of sites (Fig. 7; Table 2). 

320 Moreover, the greatest recruitment occurred at sites DNR Pier (near Ocean City Inlet), Queen 

321 Sound (near Chincoteague Inlet), and Wachapreague. 

322 Temporal distribution

323

324 PVC collectors were deployed in both 2019 and 2020 to compare temporal distribution 

325 patterns in recruitment between years (Fig. 8). Because only PVC plates were used in both 2019 
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326 and 2020, we compared raw counts of oyster larvae per PVC plate, rather than Stndcounts. No 

327 settlement occurred at sites other than the six primary sites. Of those sites, settlement on the B 

328 side occurred in both years at sites DNR Pier, Guys Point, Queen Sound, and Wachapreague, 

329 while sites Island Mark 12 and Mills Island received little to no recruitment. One recruit settled 

330 on the A side of a plate at site Island Mark 12 on 25 July 2019, while no recruits were observed 

331 at site Mills Island in either 2019 or 2020. In the MCBs, settlement occurred from 9 July to 9 

332 August 2019 and 2 July to 11 August 2020. In 2019, settlement on PVC collectors began in the 

333 same week at site Wachapreague and the MCBs sites except Island Mark 12. In 2020, settlement 

334 at sites Wachapreague and Queen Sound occurred earlier than the remaining primary sites (3 

335 July 2020). 

336 At all sites in the MCBs, settlement in 2019 and 2020 began in early to mid-July, 

337 excluding site Island Mark 12 at which settlement occurred only in late-July of 2019. Settlement 

338 continued until late July and early August during both years. Earliest settlement within the 

339 MCBs occurred at site Queen Sound, but sampling equipment at that site disappeared after 30 

340 July 2020 due to a storm, which prevented further data collection. Settlement began slightly 

341 earlier at site Wachapreague than in the MCBs, in late June (2019) and early July (2020), and 

342 extended longer, until late August in 2020. At site DNR Pier, near Ocean City Inlet, two 

343 settlement peaks were observed in both 2019 and 2020 and occurred within approximately the 

344 same week of each year. 

345

346 Discussion

347

348 This is the first recruitment study for oyster larvae in the MCBs, and the resulting spatial 

349 and temporal distribution patterns can provide insight into evaluating restoration initiatives and 

350 serve as a foundation for future recruitment studies in other lagoonal estuaries. We assessed the 
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351 recruitment distribution of oyster larvae at 12 sites within the MCBs and a site for sampling gear 

352 comparison, using PVC plates and ceramic tiles that were monitored biweekly in summer 2019 

353 and 2020. This study resulted in four significant findings: 1) ceramic tiles received significantly 

354 greater recruitment than PVC plates, 2) new recruits settled in the greatest numbers at sites that 

355 were closest to Ocean City and Chincoteague inlets, as opposed to sites further within the bays, 

356 3) settlement occurred between late June and early July into mid-August, which was consistent 

357 with previous studies at similar latitudes (Shaw, 1967; Kennedy, 1980), and 4) the spatial and 

358 temporal patterns of settlement were essentially identical in both 2019 and 2020, although 

359 recruitment was four to five times greater in 2020. This study can supplement ongoing data 

360 collection (e.g., surveys of fish, shellfish and submerged aquatic vegetation, water quality, and 

361 current drift monitoring) to gain a broader understanding of the MCBs and provide baseline data 

362 upon which to build. Notably, it may guide stakeholders in evaluating the decision to potentially 

363 pursue an oyster restoration project within the MCBs and similar lagoonal estuaries.

364 Sampler types and plates

365 Oyster larvae exhibit preferential settlement (Keough & Downes, 1982), which was 

366 apparent in this study, because they settled significantly more on ceramic arrays in 2020 than any 

367 other collector type. Despite our PVC plates being sanded with 100 grit sandpaper, the ceramic 

368 tiles did have greater rugosity, making it easier for oyster larvae to attach (Marques-Silva et al., 

369 2006). In addition, ceramic tiles are alkaline (Reig et al., 2013) and oyster larvae are more likely 

370 to settle when exposed to ammonia, which is alkaline (Coon, Fitt & Bonar, 1990). Preferential 

371 settlement on ceramic tiles rather than PVC was also evident in the study by Chuku et al. (2020), 

372 who compared monthly recruitment of the West African mangrove oyster Crassostrea tulipa 

373 among five substrates (coconut shell, oyster shell, nylon mesh, PVC slats, and ceramic tile) in 
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374 four lagoonal estuaries in Ghana. Ceramic tiles had the greatest monthly settlement in three of 

375 the four estuaries, and PVC slats had the greatest in the fourth; recruitment on ceramic tiles was 

376 not significantly different than on PVC slats (Chuku et al., 2020).  

377 Consistently for both years and overall, more oyster larvae settled on the B side (bottom, 

378 ~70% of the time) than on the A side (top) of the plates in the PVC collectors. This is the 

379 opposite of what was observed in a study by Kennedy (1980) in which oyster larvae most 

380 commonly settled on the upper side of plates (78% - 99%). However, more investigators have 

381 found that larvae preferentially settle on the underside of substrates, which is what we expected 

382 would happen in the present study (Chuku et al., 2020; Crisp, 1967; Grossman, Grossman, 

383 Barber, Gamblewood, & Crosby, 2020; Kenny et al. 1990; Marques-Silva et al., 2006; Pit & 

384 Southgate, 2003; Poirier et al., 2019). Michener and Kenny (1991) found that oyster recruitment 

385 was five times greater on the underside of plates than on the upper side. Greater settlement on the 

386 underside of plates is attributed to oyster larvae being negatively phototropic thus avoiding direct 

387 sunlight and seeking shaded areas (Michener & Kenny, 1991; Baker, 1997) and reduced 

388 sedimentation (Bahr & Lanier, 1981). Sedimentation can bury new recruits and prevent 

389 recruitment altogether with only a few millimeters of sediment accumulation (Thayer et al., 

390 2005; Wilber & Clarke, 2010). Not only does sedimentation inhibit recruitment (Michener & 

391 Kenny, 1991; Ortega & Sutherland, 1992; Jordan-Cooley et al., 2011; Quan et al., 2017), but it 

392 increases mortality (Wilber & Clarke, 2010), limits growth, (Housego & Rosman, 2016), and 

393 prevents metamorphosis (Tamburri et al., 2008). Biofilms are effective at inducing oyster 

394 settlement (Tamburri, Zimmer-Faust & Tamplin, 1992; Zhao, Zhang & Qian, 2003; Su et al., 

395 2007; Campbell et al., 2011), but the effect varies with length of conditioning and rugosity of the 

396 substrate (Taylor, Southgate & Rose, 1998; Devakie & Ali, 2002; Zhao, Zhang & Qian, 2003; Su 
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397 et al., 2007; Tamburri et al., 2008; Bellou et al., 2020). Therefore, our use of sanded PVC plates 

398 may have counteracted the need for conditioning. 

399 Spatial distribution 

400

401 Although settlement and recruitment behaviors can be difficult to measure in-situ, our 

402 results show a spatial distribution trend of greater recruitment at sites near Ocean City (DNR 

403 Pier) and Chincoteague Inlet (Queen Sound), suggesting those are more attractive locations for 

404 oyster settlement than sites further away from inlets. Additionally, broodstock live close to those 

405 inlets. Both Sydney rock oyster Saccostrea glomerata and invasive Pacific oysters Crassostrea 

406 gigas in Port Jackson Estuary, Australia, had greater settlement at sites nearer the Pacific Ocean 

407 than in the upper channel (Scanes et al., 2016). The Port Jackson Estuary exhibited similar 

408 spatial distribution patterns to that of the MCBs, with more oyster larvae being observed closer 

409 to the interface between the estuary and ocean.

410 The James River is well-flushed with high freshwater discharge, which reduces larval 

411 residency time prior to settling (two to three weeks). Andrews (1983) noted it was not surprising 

412 that the greatest settlement occurred in late summer, when there was lower freshwater discharge. 

413 The Delaware Bay is a large estuary that has lower freshwater discharge and shallow flats, which 

414 contribute towards greater settlement (Andrews, 1983). The MCBs also have lower freshwater 

415 discharge and high flushing close to Ocean City and Chincoteague inlets. Flushing rates in the 

416 individual sub-bays vary greatly, e.g. from 9 days in Isle of Wight Bay to 63 days in 

417 Chincoteague Bay (Pritchard, 1960). This implies that oyster larvae are retained longer, thus 

418 have a longer period of time to settle in Chincoteague Bay than in Isle of Wight Bay. The longer 

419 retainment period in Chincoteague Bay supports the greater settlement observed near 
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420 Chincoteague Inlet (Maryland Department of Natural Resources, 2004). Retention within a 

421 system correlates to recruitment success (Norcross & Shaw, 1984). 

422 Circulation in the MCBs is primarily driven by winds and tides (Kraines et al., 1999; 

423 Herrling & Winter, 2015). A hydrodynamic model by Kang et al. (2017) demonstrated that the 

424 northward flow of water through the MCBs is primarily wind-driven, except when wind speeds 

425 are weak (e.g., 3 m/s), at which times it becomes tidally driven. Tidal cycles however, drive 

426 circulation patterns near Ocean City and Chincoteague inlets (Wells, Hennessee & Hill, 2002). 

427 The MCBs have a distinct seasonal wind pattern, with prevailing winds blowing from the 

428 southwest in the summer from the Bermuda High pressure system and winds blowing from the 

429 northeast in the winter. Circulation patterns in the MCBs may also be influenced by the shape of 

430 the estuary's basin and bathymetry, or depth (Lee & Valle-Levinson, 2012) since the shallow 

431 basin and winds in the MCBs can alter wave dynamics (Mao & Xia, 2018). Strong turbulence 

432 from waves can cue oyster larvae to sink, increasing their proximity to suitable substrate in 

433 which to attach (Fuchs et al., 2013). Wheeler (2015) found a positive relationship between high 

434 average flow acceleration and diving of oyster larvae. Eastern oyster larvae primarily swim 

435 vertically in a loose helix (Hidu & Haskin, 1978) and infrequently swim horizontally (Kennedy 

436 et al., 1996, chap. 10). Therefore, currents are the primary mode of transport to habitat (Brown, 

437 Jackson & Brooks, 2000). Small, tidal currents are strongest at the inlets, causing turbulence and 

438 cuing larvae to sink closer to habitat. The turbulence from wind and tidal circulation could be a 

439 reason for the observed spatial distribution near the inlets. 

440 The MCBs are characterized as being <microtidal= since tidal exchange is limited to 

441 Ocean City Inlet and Chincoteague Inlet. Although the tidal excursion of the MCBs is unknown, 

442 similar lagoonal estuary systems have tidal excursions of 2.7 km in Haulover Canal connecting 
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443 Mosquito Lagoon and Indian River lagoon (Smith, 1993), 2 km both for Little Egg Harbor and 

444 Barnegat Bays (Chant, 2001), and 1.02 km to 8.25 km depending on the site proximity to Fort 

445 Pierce Inlet within the Indian River lagoon (Smith, 1983). Tidal excursion refers to the distance 

446 between low water and high water, in which a particle travels. It is a measurement to describe the 

447 movement of particles such as larvae and pollutants, within a tidal cycle (Ji, 2008). A coupled 

448 biological-physical transport model by Kim et al. (2013) simulated that larger tidal excursions 

449 during a tropic tide caused greater larval dispersion. We hypothesize that the spawning adult 

450 oysters are within a 1 km 3 8 km range of settlement sites in the MCBs. Perhaps the coupling of 

451 long flushing rates (especially in Chincoteague Bay) and tidal circulation through the inlets, 

452 contributed to greater settlement. 

453 The differences in spatial distribution of oyster larvae could be influenced by the amount 

454 of space occupied by fouling organisms and their physical size on the PVC plates and ceramic 

455 tiles (Sebens, 1982). For example, a relationship between physical space and survival between 

456 two species was illustrated by Sebens (1982) who found that colonies of octocoral Alcyonium 

457 siderium (Verrill, 1922) within quadrats with sea squirt Aplidium for 17 months survived if the 

458 average diameter of the octocoral was 11 mm (±5.3 mm, n = 53) but disappeared or was 

459 overgrown by sea squirts if the diameter of octocoral was 5.3 mm (±4.6 mm, n = 8) and 4.5 mm 

460 (±3.6 mm, n = 37) respectively. The results suggested that when animals take up greater space, 

461 they have a greater chance of survival. 

462 This may translate to small oyster larvae that can be overgrown by animals such as 

463 barnacles or worm tubes based on their small diameter. From observations in this study, the PVC 

464 plates at specific sites that were dominated by barnacles and worm tubes did not have oyster 

465 larvae (unpublished data). Conversely, branching bryozoans cover little space and were prevalent 
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466 at site Wachapreague with heavy oyster recruitment and little to no barnacle settlement. 

467 Therefore, the presence of barnacles or worm tubes on PVC plates or ceramic tiles grown over 

468 two weeks, could reduce the amount of space available for settlement. If settlement occurs, 

469 current fouling organisms may overgrow the larvae and reduce their survival. Thus, oyster larvae 

470 may have been deterred from settling in sites with high barnacle and worm tube counts or where 

471 other conditions were unsuitable for settlement.

472 Temporal distribution  

473 The eastern oysters in this study region typically spawn from June through October 

474 (Haven & Fritz, 1985). Samplers showed little variation in peak timing between 2019 and 2020 

475 (< 10 days apart) and all settlement peaks began in July in both years. Our results showed that 

476 oyster larvae settled between late-June and mid-August, which was expected based on settlement 

477 timing reported by previous studies at similar latitudes in the Mid-Atlantic (Shaw, 1967; 

478 Kennedy, 1980; Haven & Fritz, 1985; Capelle et al., 2020; Ross & Synder, 2020). Although 

479 monitoring in our study did not continue into late September, it has been documented by other 

480 studies that peaks do occur during that time (Haven & Fritz, 1985). 

481

482 Conclusions

483

484 The aims of this project were to 1) determine which collector type was most effective for 

485 recruitment 2) determine the spatial and temporal distribution of oyster larvae in the MCBs and 

486 3) identify patterns in oyster larvae settlement that would be applicable to restoration efforts in 

487 the MCBs and other lagoonal estuaries. Our results revealed that ceramic tiles received 

488 significantly greater recruitment than PVC plates, suggesting ceramic tiles are more suitable for 

489 recruitment and should be used in future recruitment studies. Oyster recruitment was greatest at 
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490 sites in well-flushed areas near Ocean City Inlet and Chincoteague Inlet, closest to the ocean. 

491 Finally, similar spatial and temporal patterns of recruitment were observed in both 2019 and 

492 2020, and these were similar to those described by previous studies at similar latitudes in the 

493 Mid-Atlantic. As the first oyster larval recruitment study in the MCBs, this study filled important 

494 knowledge gaps and served as a baseline for future recruitment studies within the MCBs and 

495 other lagoonal estuaries. This study provided information that will be useful to state and federal 

496 agencies in making informed decisions about restoration initiatives. 

497 Recommendations

498 Prior to pursuing oyster restoration in the MCBs and other lagoonal estuaries we 

499 recommend: 1) selecting a restoration site that is in close proximity to broodstock, has a long 

500 flushing rate, and circulation patterns that retain larvae, 2) utilizing oyster shells as substrate for 

501 preliminary recruitment studies and/or restoration projects (if oyster shells are not accessible, 

502 ceramic tiles can be used as an alternative), 3) establishing a restoration site prior to or in early 

503 June (in the Mid-Atlantic) to ensure wild oyster larvae settle during peak time, 4) conduct 

504 additional research on the current state of parasites and diseases to ensure survival and growth of 

505 oysters, and 5) establish a monitoring program to assess progress and address environmental 

506 changes (see Kennedy et al., 2011 for a more thorough review). Additional studies would 

507 provide insight into the potential success of an oyster restoration project. Future work is needed 

508 to assess the growth and survival of newly recruited oyster larvae, examine the effects of 

509 overwintering on juvenile and adult oysters, and identifying the presence and impact of diseases 

510 and predators. Partnering with local agencies as well as oyster farmers and watermen would aid 

511 in the collection of necessary data. 
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512 For any oyster restoration project, monitoring is recommended prior, during, and after 

513 restoration to assess the reef habitat, the organisms living on the reef, and interactions among 

514 organisms (Thayer et al., 2005). This is important so adjustments can be made if needed and the 

515 progress of the restoration can be observed over time. Kennedy et al. (2011) developed a set of 

516 recommendations for future restoration initiatives after studying restoration and monitoring 

517 projects of 12 agencies. They suggested that monitoring a restored oyster reef should include 

518 observations of oyster abundance, mean size, recruitment, disease, and mortality. In addition, 

519 new recruits can be monitored to understand recruitment surrounding the reef as well by 

520 deploying ceramic tile collectors (Thayer et al., 2005). Additional factors such as water quality 

521 and disease presence should also be evaluated (Thayer et al., 2005).

522
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Figure 1
Study area map.

Map of study area depicting the locations of 12 coastal bay sites in Maryland and one in
Virginia where three sampler types were deployed from June to September 2019 and 2020 to
assess the distribution of oyster larvae. Circles indicate sites in which three collector types
were suspended from a pier while squares indicate sites where three collector types were set
on a ûoating buoy line. Inset shows the location of the study area within the Delmarva
Peninsula (USA).
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Table 1(on next page)

Characteristics of 13 coastal bay sites.

Sites chosen to monitor the distribution of oyster larvae from June to September 2019 and
2020. Data about bottom type were obtained from the Mid-Atlantic Ocean Data Portal. Mean
salinity and depth (m) were calculated from data collected in 2019 and 2020.
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1 Table 1 Characteristics of 13 coastal bay sites. Sites chosen to monitor the distribution of oyster larvae from June to September 2019 

2 and 2020. Data about bottom type were obtained from the Mid-Atlantic Ocean Data Portal. Mean salinity and depth (m) were 

3 calculated from data collected in 2019 and 2020

     Temp (#) Salinity Depth (m)

ID Site name 

Site 

type Site location Lat Long Mean ± sd n Mean ± sd n Mean ± sd n

GC Greys Creek Pier 

Tributary of 

Assawoman Bay 38.45 -75.12 28.80 ± 1.22 10 24.86 ± 2.09 10 0.61 ± 0.09 7

SM St. Martin River Bay St. Martin River 38.41 -75.15 27.79 ± 2.18 4 26.58 ± 0.91 4 0.95 ± 0.13 3

TC Turville Creek Bay Turville Creek 38.36 -75.15 28.40 ± 1.83 4 26.62 ± 1.14 4 0.69 ± 0.25 4

DP DNR Pier Pier Sinepuxent Bay 38.33 -75.10 22.54 ± 2.04 10 30.40 ± 1.29 10 2.81 ± 0.60 7

VB

Verrazano 

Bridge Bay Sinepuxent Bay 38.24 -75.14 27.16 ± 1.04 7 29.07 ± 1.36 7 1.09 ± 0.29 7

IM Island Mark 12 Bay Sinepuxent Bay 38.22 -75.17 26.84 ± 1.70 7 28.69 ± 1.82 7 0.87 ± 0.14 7

SP South Point Pier Sinepuxent Bay 38.22 -75.19 28.43 ± 1.11 10 28.97 ± 2.00 10 0.91 ± 0.12 8

PL Public Landing Pier Chincoteague Bay 38.15 -75.29 28.72 ± 0.98 10 28.20 ± 2.08 10 0.76 ± 0.12 8

TL Taylor Landing Pier Chincoteague Bay 38.08 -75.36 28.81 ± 1.89 10 29.35 ± 2.21 10 0.78 ± 0.16 7

MI Mills Island Bay Chincoteague Bay 38.03 -75.35 26.82 ± 1.49 8 30.88 ± 1.65 8 0.88 ± 0.15 6

GP Guys Point Pier Chincoteague Bay 38.01 -75.39 29.61 ± 1.01 8 32.35 ± 4.65 8 1.20 ± 0.25 10

QS Queen Sound Bay Chincoteague Bay 37.92 -75.40 26.61 ± 1.92 8 30.96 ± 1.25 8 1.25 ± 0.14 6

W Wachapreague Bay

Burtons and 

Bradford Bay 37.61 -75.69 27.76 ± 1.54 10 31.69 ± 2.07 10 1.44 ± 0.59 9
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Figure 2
Sampler types used to monitor recruitment of oyster larvae at 13 sites to assess their
distribution:

(A) PVC collector, B) Ceramic array, and (C) PVC array.
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Figure 3
Diagrams of samplers deployed at coastal bay site locations:

(A) Pier site in which ceramic arrays (white), PVC arrays (gray), and PVC collectors (gray, in
rectangles) were suspended from a shore-based pier and (B) Bay site in which samplers were
suspended from a ûoating buoy line. At both site locations, each sampler type had three
replicates that were positioned in random order. In 2019, all 13 sites included three PVC
collectors. In 2020, six primary (sites DNR Pier, Island Mark 12, Mills Island, Guys Point,
Queen Sound, and Wachapreague) included all three sampler types (ceramic arrays, PVC
arrays, and PVC collectors), while the remaining sites included three PVC collectors.
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Figure 4
Comparison of Log10(StndCounts +1) for three sampler types at six primary coastal bay
sites.

The collector types include (A) Ceramic arrays, (B) PVC arrays, and (C) PVC collectors. All
three collector types were deployed from June to September 2020 to monitor the distribution
of oyster larvae at the six primary coastal bay sites. PVC collectors were deployed at the
remaining sites. StndCount = Oyster larvae counts (c) multiplied by 100/A, where A = area of
the PVC plate or ceramic tile. The bolded horizontal bars represent the median.
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Figure 5
Comparison of cumulative Log10(StndCounts +1) totaled from June to September 2020
to compare three sampler types at six primary coastal bay sites.

Three collector types were used to determine which was the most successful in recruiting
oyster larvae. Letters indicate similar groups as determined by Tukey9s honestly signiûcant
diûerence (HSD) test. Open circles indicate the vertical position of outliers; ûlled circles are
observed data (jittered to prevent overlap). Ceramic arrays (n= 202), PVC arrays (n = 197),
PVC collectors (n = 236). The bolded horizontal bars represent the median.
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Figure 6
Map of spatial distribution of oyster larvae that settled on three sampler types at six
primary coastal bay sites:

(A) Mean (with standard deviation) oyster larvae per plate over entire ûeld season on PVC
collectors in 2019 and 2020; (B) Mean (with standard deviation) oyster larvae per plate over
entire ûeld season on ceramic and PVC arrays in 2020. Values refer to oyster larvae counts

from the underside of a plate or tile standardized to an area of 100 cm2: Counts (n) x 100/A,
where A = plate or tile area. Six primary sites included site DNR Pier (DP), Island Mark 12
(IM), Mills Island (MI), Guys Point (GP), Queen Sound (QS), and Wachapreague (W).
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Figure 7
Comparison of cumulative Log10(StndCounts + 1) from all sampler types combined
among six primary coastal bay sites.

The three sampler types included ceramic arrays, PVC arrays, and PVC collectors. All three
sampler types were deployed sites from June to September 2020 to study the distribution of
oyster larvae at six primary coastal bay sites. StndCount = Oyster larvae counts (n)
multiplied by 100/A, where A = PVC plate or ceramic tile area. Open circles indicate the
vertical position of outliers; ûlled circles are observed data (jittered to prevent overlap). The
bolded horizontal bars represent the median.
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Table 2(on next page)

Results of Tukey9s honestly signiûcant diûerence (HSD) test.

Tukey9s HSD test results for signiûcant diûerences in log10(StndCounts + 1) among the six

primary coastal bay sites considering all collector types. Six primary sites include site DNR
Pier (DP), Island Mark 12 (IM), Mills Island (MI), Guys Point (GP), Queen Sound (QS), and
Wachapreague (W). P-values indicated as * < 0.05, ** < 0.01, *** <0.001.
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1

2

DNR Pier Island Mark 12 Mills Island Guys Point Queen Sound Wachapreague 

DNR Pier 

Island Mark 12 0.0236 *

Mills Island 0.0036 ** 0.999

Guys Point 0.0839 0.8331 0.878

Queen Sound 0.0716 <0.001 *** <0.001 *** <0.001 ***

Wachapreague <0.001 *** <0.001 *** <0.001 *** <0.001 *** 0.9713

Table 2 Results of Tukey9s honestly significant difference (HSD) test. Tukey9s HSD test results for 

significant differences in log10(StndCounts + 1) among the six primary coastal bay sites considering all 

collector types. Six primary sites include site DNR Pier (DP), Island Mark 12 (IM), Mills Island (MI), 

Guys Point (GP), Queen Sound (QS), and Wachapreague (W). P-values indicated as * < 0.05, ** < 0.01, 

*** <0.001.

PeerJ reviewing PDF | (2022:03:71727:0:1:NEW 9 May 2022)

Manuscript to be reviewed



Figure 8
Temporal distribution of oyster larvae at coastal bay sites.

Comparison of recruitment on PVC collectors at ûve sites from June to September 2019 and
2020. Figures display raw counts of oyster larvae counted on the underside of PVC plates
within PVC collectors. Site Mills Island was excluded because settlement occurred only on the
A side of a single PVC plate. Sites (A) DNR Pier, (B) Island Mark 12 , (C) Guys Point , (D)
Queen Sound , (E) Wachapreague . Note scales of y-axes diûer.
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