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ABSTRACT
Background: Declines of the Eastern oyster, Crassostrea virginica, and its numerous
ecological benefits have spurred oyster restoration initiatives. Successful restoration
of a self-sustaining oyster population requires evaluating the temporal and spatial
patterns of recruitment (settlement and survival) of oyster larvae in the target
waterbody. Restoration of the Eastern oyster population in the Maryland Coastal
Bays (MCBs), USA, a shallow lagoonal estuary, is of interest to federal, state, and
non-governmental, but the location and timing of natural recruitment is not known.
Methods:We assessed the spatial and temporal variation in oyster larval recruitment
throughout the MCBs using horizontal ceramic tiles and PVC plates. Newly settled
oyster larvae (recruits) were monitored biweekly from June to September 2019 and
2020 at 12 sites in the MCBs and a comparison site in Wachapreague, Virginia.
Water quality measurements collected included temperature, salinity, dissolved
oxygen, pH, and turbidity. The objectives of this study were to determine (1) the
most effective substrate and design for monitoring oyster recruitment, (2) the spatial
and temporal distribution of oyster larval recruitment in the MCBs, and (3) patterns
in oyster larval recruitment that would be applicable to other lagoonal estuaries.
Results: (1) Ceramic tiles were more effective than PVC plates for recruiting oyster
larvae. (2) Peak settlement began during the period from late June through July, and
oyster recruitment was greatest at sites closest to the Ocean City and Chincoteague
inlets. (3) Areas near broodstock that have slow flushing rates to retain larvae may
provide the best environments for recruitment of oysters to lagoonal estuaries.
Discussion: As the first study on oyster larval recruitment in the MCBs, our results
provide insight into their spatial and temporal distribution, methods that can serve as
a foundation for future recruitment studies in other lagoonal estuaries, and baseline
data that can be used to inform stakeholders and evaluate the success of oyster
restoration projects in MCBs.
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INTRODUCTION
Coastal lagoonal estuaries account for 13% of the coastline worldwide (McAvoy & Clancy,
1994). The Eastern oyster, Crassostrea virginica (Gmelin, 1791), is an inhabitant and
keystone species of coastal lagoonal estuaries along the Atlantic shoreline of the United
States. Important ecosystem services (Sanjeeva Raj, 2008) provided by the Eastern oyster
are water filtration (Wilber & Clarke, 2010), nitrogen cycling (Jiang et al., 2020),
benthic-pelagic coupling (Wazniak, Wells & Hall, 2005), habitat formation (Harding &
Mann, 2001), carbon and nitrogen sequestration (Smyth, Geraldi & Piehler, 2013; Fodrie
et al., 2017), and shoreline protection (Piazza, Banks & La Peyre, 2005). Despite their
ecological importance, anthropogenic stressors such as increased shoreline development,
habitat destruction, pollution, water quality degradation (Lotze et al., 2006; Worm et al.,
2006), overharvesting (Kirby, 2004), and disease (Harvell et al., 1999; Beck et al., 2011) have
contributed to their population decline.

Population declines and habitat losses of the Eastern oyster have motivated federal,
state, and non-governmental agencies to pursue restoration efforts to reestablish the
species in native waters (Chesapeake Bay Program, 2000). Successful oyster restoration
projects have been conducted in lagoonal estuaries along the east coast of the United States
at various scales and locations. Small scale restoration projects have occurred in the
Delaware Inland Bays, which encompass Rehoboth Bay, Indian River Bay, and Little
Assawoman Bay. Volunteers in the Delaware Oyster Gardening Program grow oysters for
two years on private docks to be utilized for research or restoration purposes (Reckenbeil &
Ozbay, 2014). In Maryland and Virginia, federal and state agencies are restoring native
Eastern oyster populations and habitats in 10 tributaries (by 2025) as part of the 2014
Chesapeake Bay Watershed Agreement. Of the five tributaries targeted in Maryland, 788
acres of oyster reefs have been restored since 2014, with a goal of 1,439 acres by 2025.
Restoration of Eastern oyster populations in the Maryland Coastal Bays (MCBs) have also
been discussed among federal, state, non-governmental organizations, and academic
partners prior to 2013 (B. Stevens, 2018, personal communication). However, the spatial
and temporal distribution of wild oyster larvae in the MCBs was not known.

Surveys on historical oyster bars and adult Eastern oyster populations in the MCBs have
been conducted as part of the annual shellfish population surveys by the Maryland
Department of Natural Resources (MD DNR) through their Shellfish Monitoring and
Assessment Program. Remnant populations of wild Eastern oysters exist in intertidal areas
of the MCBs. The Eastern oyster populations have declined dramatically from historic
levels due to overharvesting and lasting effects from the creation of the Ocean City Inlet
during a hurricane in 1933. This inlet introduced changes in salinity and hydrodynamics
within the MCBs as well as new diseases, predators, and competitors (Tarnowski, 2005;
Jesien et al., 2009; Kang et al., 2017). Shellfish surveys have never found natural oysters on
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the former oyster bars of the MCBs since 1993. Instead, oyster shells are deteriorating,
becoming fouled, and buried in sediment (Tarnowski, 2005). Although no viable natural
oysters exist in subtidal areas of the MCBs, small populations have settled on
anthropogenic structures in intertidal areas near Ocean City Inlet and southern
Chincoteague Bay where subtidal oyster farms exist (Tarnowski, 2005; Jesien et al., 2009).
Since the annual shellfish surveys only provide data on adult oyster populations, there is an
absence of data on the locations of settled oyster larvae, thus spatial and temporal
distribution of wild oyster larvae remains unknown in the MCBs.

Prior to restoration initiatives, it is crucial to evaluate the spatial and temporal
recruitment patterns of wild oyster larvae as well as their growth and survival over multiple
years to determine the feasibility, scale, and location of a restoration effort (Kennedy et al.,
2011; Soniat et al., 2012; Casas, La Peyre & La Peyre, 2015). Additionally, identifying the
locations of wild oyster larvae are important because natural recruitment supplements and
aids in the success of restoration efforts (Schulte & Burke, 2014). Therefore, we conducted
the first study on the recruitment of oyster larvae in the MCBs and assessed the best
methods for measuring recruitment to guide future studies in other waterbodies. From
June to September in 2019 and 2020, our objectives were to (1) determine the most
effective sampler type (ceramic arrays, PVC arrays, and PVC collectors) for recruitment,
(2) determine the spatial and temporal distribution of oyster larval recruitment in the
MCBs, and (3) identify patterns in oyster larval settlement that would be applicable to
other lagoonal estuaries. Successful oyster restoration in the MCBs would help improve
poor water quality (Jesien et al., 2009), create hard substrate habitat, and provide additional
ecosystem services (Carruthers & Catherine Wazniak, 2005; Jesien et al., 2009).

MATERIALS AND METHODS
Study area
This study was conducted throughout the MCBs, located along the Mid-Atlantic coast of
the United States between the Delmarva Peninsula (spanning the states of Delaware,
Maryland, and Virginia) and the Atlantic Ocean (Dennison et al., 2016). The MCBs system
is a shallow lagoonal estuary that encompasses a 453 km2 watershed comprised of six bays
ranging from north to south: Assawoman Bay, Saint Martin River, Isle of Wight Bay,
Sinepuxent Bay, Newport Bay, and Chincoteague Bay (Wazniak, Wells & Hall, 2005;
Krantz et al., 2009). The MCBs is a two-inlet system with Ocean City Inlet in the north and
Chincoteague Inlet in the south. It has an average depth of 1.5 m, but approximately 3 m at
Ocean City Inlet and 4 m at Chincoteague Inlet (Dennison et al., 2016; Kang et al., 2017;
Oseji, Fan & Chigbu, 2019). As a shallow estuary, it is well-mixed and highly productive
with little to no salinity or thermal gradients (Bricker et al., 2009; Oseji, Fan & Chigbu,
2019).

The MCBs have varied flushing rates, the amount of time it takes for water to be
replaced by water exchange through the inlets and freshwater inputs, which range from
nine days in Isle of Wight Bay to 63 days in Chincoteague Bay (Pritchard, 1969; Thomas
et al., 2009). Another characteristic of the MCBs is uneven circulation with high current
velocities near the inlets that decrease with distance from the inlets (Krantz et al., 2009).
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The only sources of “new” water (inlets and freshwater input) account for approximately
7.5% of the volume in the MCBs daily (Pritchard, 1960). Well-circulated areas have better
water quality than areas in or close to tributaries. The uneven distribution of
well-circulated areas in combination with input from non-point sources can cause nutrient
enrichment that leads to poor water quality (Bricker et al., 2009; Dennison et al., 2016;
Oseji, Fan & Chigbu, 2019).

Site selection
Historical water quality data from the National Park Service (NPS; 2016–2018), MD DNR
(1999–2019), and MCBs Program (2013–2015) were used to guide the selection of study
sites. From the historical water quality data, twelve sites in the MCBs (10 sites in Maryland
and two in Virginia) were selected based on several factors including geographic location,
proximity to inlets, salinity (18–39 ppt), bottom type, depth, historical water quality data,
and expert recommendations (Fig. 1, Table S1). The study sites (n = 12) included three
currently monitored for water quality by local agencies: DNR XDN4312 (site: St. Martin
River), DNR TUV0021 (site: Turville Creek), and NPS ASSA 2 (site: Verrazano Bridge).
Sites had a range of bottom sediments from coarse sand to silt (Mid-Atlantic Ocean Data
Portal, 2021) and were defined as either Pier or Bay Sites depending on whether sampling
equipment was attached to a shore-based pier or placed in open water. An additional study
site for sampling gear comparison (substrate and design) was established in
Wachapreague, VA, at the Virginia Institute of Marine Science (VIMS) Eastern Shore
Laboratory (ESL), where VIMS conducts a recruitment study on oyster larvae.

Sampler types
“Settlement” is defined as an oyster larvae cementing itself to a substrate, thereby becoming
sessile (Connell, 1985). “Recruitment” refers to settlement in addition to survival for a time
frame defined by the investigator (Bushek, 1988; Roegner & Mann, 1995). In this study,
we defined “recruitment” as recently settled oyster larvae or recruits that survived on
settlement substrate for up to two weeks as described in Rimler (2014). Recruitment of
oyster larvae was monitored using two different types of sampler designs (collectors and
arrays) containing either PVC plates (12.70 cm × 13.97 cm) or ceramic tiles (10.16 cm ×
10.16 cm).

PVC collectors consisted of a cage made of plastic-coated wire (22.86 cm × 22.86 cm ×
53.34 cm) with 1.5 in2 apertures containing PVC plates and built to our specifications by
Ketcham Traps (New Bedford, MA, USA). Each collector contained three PVC plates
suspended horizontally using bungee cords at 35.6, 40.6, and 45.7 cm above the substrate
and was weighted with two bricks placed in the bottom (Fig. 2A). PVC plates were custom
cut to be 12.70 cm × 13.97 cm but had an outer border that confined a counting area to
10.16 cm × 12.70 cm. Plates were drilled in four corners and sanded on both sides with 100
grit sandpaper in a cross-hatched pattern to simulate the rugosity of the outside of an
oyster shell to enhance settlement (Beiras & Widdows, 1995). An outer border of 6.35 mm
on two sides and 12.70 mm on two sides was scored to define a counting area of exactly
10.16 cm × 12.70 cm (129 cm2). The border was defined to ease plate removal and reduce
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the risk of dislodgement of organisms because the plates could not be picked up
comfortably using one hand width.

Arrays consisted of a 30.5 cm nylon threaded rod (0.95 cm diameter) on which three
center-drilled PVC plates or ceramic tiles (10.2 cm × 10.2 cm × 0.7 cm, 103 cm2) were

Figure 1 Study area map. Map of study area depicting the locations of 10 coastal bay sites in Maryland
and three in Virginia where three sampler types were deployed from June to September 2019 and 2020 to
assess the distribution of oyster larvae. Circles indicate sites in which sampler types were suspended from
a pier while squares indicate sites where sampler types were set on a floating buoy line. Inset shows the
location of the study area within the Delmarva Peninsula (USA). Sites include Greys Creek (GC), St.
Martin River (SM), Turville Creek (TC), DNR Pier (DP), Verrazano Bridge (VB), Island Mark 12 (IM),
South Point (SP), Public Landing (PL), Taylor Landing (TL), Mills Island (MI), Guys Point (GP), Queen
Sound (QS), and Wachapreague (W). Full-size DOI: 10.7717/peerj.15114/fig-1
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positioned and separated by 5 cm sections of 1.25 cm PVC pipe (Figs. 2B, 2C). Arrays did
not have a surrounding wire mesh cage. Ceramic tiles were arranged with the unglazed side
facing downwards. This design was similar to arrays used by VIMS ESL (Ross & Snyder,
2020) but modified with weights (two bricks) below, and a small float (buoy) above, to keep
the plates suspended in the water column at a fixed height off the sediment. Ceramic tiles
did not have a border, like the PVC plates, because they were smaller and could easily be
picked up on the sides using one hand, without risk of dislodging organisms. PVC
collectors were deployed in 2019 and 2020 while arrays (both ceramic and PVC) were
deployed only in 2020. Because chemical cues have been suggested to induce settlement
(Pawlik, 1986), approximately 90% of plates and tiles were conditioned in seawater for
8–24 h prior to deployment; the remaining were not due to time constraints.

In 2019, an additional observational study was conducted at VIMS ESL to compare
VIMS ceramic arrays and our PVC collector design. Three PVC collectors were suspended
next to VIMS arrays made of ceramic tiles. This comparison was made to determine (1) if
PVC plates were as effective as ceramic tiles and (2) if a potential lack of recruitment on the
PVC plates was due to the collector design, plate substrate, or presence of fewer oysters.
Due to the results of this study and low counts in 2019 on PVC plates vs. ceramic tiles, we
added ceramic array designs to six sites in 2020 as described below. Results from this
observational study suggested that ceramic tiles were more effective for monitoring oyster
larval recruitment. Therefore, ceramic and PVC arrays employing the VIMS array design
were added in 2020 to the sites where recruitment was observed during 2019. Although
PVC collectors were less suitable for recruitment than ceramic tiles, they were deployed

Figure 2 Sampler types used to monitor recruitment of oyster larvae at 13 sites to assess their
distribution. (A) PVC collector. (B) PVC array. (C) Ceramic array.

Full-size DOI: 10.7717/peerj.15114/fig-2
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again in 2020 to compare spatial and temporal distribution between years and evaluate
potential patterns.

Field sampling
PVC collectors and arrays were either attached to lines suspended from a shore-based pier
(Pier site) or attached to a surface line suspended by buoys between each sampler type (Bay
site) (Figs. 3A, 3B). The PVC plates and ceramic tiles were replaced biweekly at the sites for
a total of five times per site, or five “swaps” from June–September of 2019 and 2020.
In 2019, three PVC collectors (three replicates), each containing three PVC plates (n = 9)
were deployed at all 13 sites. At all 13 sites in 2019, PVC plates (total n = 117) were
collected and replaced biweekly (n = 531 plates total). During 2020, PVC collectors
(n = 333 plates), PVC arrays (n = 225 plates), and ceramic tiles (n = 225 ceramic tiles)
could not be deployed at the same five swap dates nor at all 13 sites from 2019 due to
COVID-19 and transportation restrictions. Therefore, the “swap dates” typically occurred
later and fewer sites were sampled in 2020 than in 2019.

In 2020, PVC collectors were deployed at 11 of the 13 sites, while three PVC arrays and
three ceramic arrays were added to six of those sites (designated as “primary sites”). These
six sites included four sites where oyster larvae settled in 2019 (Fig. S1), in addition to site
Mills Island and Island Mark 12 that were recommended by watermen. Among the six
primary sites (DNR Pier, Island Mark 12, Mills Island, Guys Point, Queen Sound, and
Wachapreague), plates (n = 54) in PVC collectors, plates (n = 54) in PVC arrays, and
ceramic tiles (n = 54) in ceramic arrays were collected and replaced biweekly. Only PVC

Figure 3 Diagrams of sampler types deployed at six primary sites in 2020. (A) Pier site in which
ceramic arrays (white), PVC arrays (black), and PVC collectors (black, in rectangles) were suspended
from a shore-based pier. (B) Bay site in which sampler types were suspended from a floating buoy line.
At both site locations, each sampler type had three replicates that were positioned in random order.
In 2019, all 13 sites included three PVC collectors. In 2020, six primary (sites DNR Pier, Island Mark 12,
Mills Island, Guys Point, Queen Sound, and Wachapreague) included all three sampler types (ceramic
arrays, PVC arrays, and PVC collectors), while the remaining sites included three PVC collectors.

Full-size DOI: 10.7717/peerj.15114/fig-3
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collectors with plates were used at the remaining sites including Greys Creek, Verrazano
Bridge, South Point, Public Landing, and Taylor Landing. Not all plates and ceramic tiles
could be retrieved, however, due to being lost in the field, removed etc.

Environmental data were also measured using a Xylem ProDSS Multiparameter Water
Quality Meter (Xylem, Yellow Springs, OH, USA) that was positioned above the sediment.
Environmental parameters measured included temperature (�C), salinity (ppt), dissolved
oxygen (mg/l), pH, and depth (m). Turbidity was measured as secchi disk depth (m). Field
experiments were approved by MD DNR under Scientific Collection Permit numbers
SCP201964 and SCP202091.

Laboratory processing
PVC plates and ceramic tiles collected in the field were transported to the laboratory at the
University of Maryland Eastern Shore in CD containers to prevent abrasion among plates.
Sediment on the plates was gently rinsed and brushed off then a dissecting microscope was
used to count oyster larvae. Rugosity of PVC material was consistent on both sides, while
ceramic tiles had a smooth glazed top and a rough unglazed bottom. Oyster larvae were
counted on the underside of the PVC plates and ceramic tiles to replicate the methods used
by VIMS ESL (Wachapreague, VA, USA; Ross & Snyder, 2020) and because of the texture
differences. Oyster larvae identification was conducted after confirmation by P. G. Ross at
VIMS ESL.

Statistical analysis
All statistical analyses were performed in R version 4.2.2 (R Core Team, 2022) and the
graphics were generated using the “ggplot2” R package (Wickham, 2016). Histogram plots
and the Shapiro–Wilk test for normality showed a non-normal distribution for the oyster
larval count data. Kruskal–Wallis rank sum tests (R Core Team, 2022) followed by Dunn’s
post hoc multiple comparison tests (Ogle et al., 2022) were used to determine differences
(a = 0.05) among sites and sampler types. Due to larval counts producing zero inflated
data, the data was subset to counts ≥1 to determine statistical differences among sites and
sampler types.

Densities of the larval counts (larval count per cm2 = larval counts from each PVC plate
or ceramic tile/area of PVC plate or ceramic tile) were calculated to generate density maps
for spatial data visualization. Densities adjusted for plate size differences between ceramic
(10.16 cm × 10.16 cm) and PVC plates (10.16 cm × 12.70 cm).

Larval counts and water quality measurements from all sites 2019 (n = 496) and 2020
(n = 830) were combined into one dataset to examine potential relationships. The larval
counts from plates/tiles and sampler types were summed to obtain independent
observations of larval counts and water quality measurements from sampling time points
within each site (n = 13). The correlations between the larval counts and water quality
measurements in the combined (n = 58) and 2020 (n = 47) dataset were evaluated using
principal component analysis (PCA). The significance of these correlations was tested
using the Kendall Tau-b (τB) rank correlation method (a = 0.05; McLeod, 2011). This
correlation method is appropriate when data contains non-normal distributions, tied
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ranks, and outliers (Croux & Dehon, 2010; Alfons, Croux & Filzmoser, 2017; Akoglu, 2018).
The PCA plot was generated using the “prcomp” function in the FactoMineR package
(Kassambara & Mundt, 2020), which uses singular value decomposition to examine
covariances and correlations between the observations. The factoextra package (Lê, Josse &
Husson, 2008) was used to evaluate the eigenvalues to determine the highest percentages of
variance retained by each principal component.

To determine the influence of sampler type, site location, and sample timing on larval
recruitment, the oyster larval counts from 2019 and 2020 were used to generate a
generalized linear mixed model (GLMM) with the “glmmTMB” R package (Brooks et al.,
2017). Models were run with a zero-inflated Poisson (ZIP) regression due to the high
percentage of zeros (84.5%) in the dataset. The Akaike information criterion (AIC) values
from each model (mi) were used to calculate a second-order bias correction estimator
(AICC). A model was chosen based on the AICC values and quality checks provided by the
“DHARMa” R package (Fig. S2; Hartig, 2022).

RESULTS
Sampler types
The presence of oyster larvae varied by sampler type and site during 2020 with many zero
counts (absence) within sites (Fig. 4A). Ceramic arrays were the most effective sampler

Figure 4 The proportion of the presence and absence of oyster larvae and the number of times oyster
larvae was present on the sampler types at each site during 2020. The larval count data was used to
calculate the presence and absence of oyster larvae on sampler types from each site. (A) The proportion of
oyster larvae that was absent (gray) or present on ceramic arrays (CA; pink), PVC arrays (PA; orange),
and PVC collectors (PC; blue). Sites and total number of observations were DNR Pier (n = 127), Island
Mark 12 (n = 45), Mills Island (n = 113), Guys Point (n = 132), Queen Sound (n = 72), andWachapreague
(n = 137). (B) The number of times (frequency) that oyster larvae was observed on the sampler types.

Full-size DOI: 10.7717/peerj.15114/fig-4
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type for assessing oyster larval recruitment at the six primary sites in the MCBs. Oyster
larvae settled on 2–33% of the ceramic tiles and on 1–14% of the PVC plates (Fig. 4A).
Additionally, the settlement of oyster larvae was observed more frequently on the ceramic
arrays (116 times) than on the PVC arrays and PVC collectors combined (65 times) among
the sites (Fig. 4B;H (2) = 7.054, p = 0.029). The median larval counts were also significantly
higher on ceramic arrays (13.5 ± 18.53 [MAD]) compared to PVC collectors (1 ± 0
[MAD]) and PVC arrays (3 ± 2.97 [MAD]; Fig. 5A; H (2) = 34.393, p < 0.0001).
The ceramic arrays had larval counts up to 930 compared to the PVC arrays and PVC
collectors with counts up to 32 and 93, respectively (Fig. 5B). The oyster larvae on the
ceramic arrays were observed most frequently at DNR Pier (18), Guys Point (24), Queen
Sound (16), and Wachapreague (45; Fig. 4B). The median larval count (447 ± 189.78
[MAD]) was significantly higher at Queen Sound compared to the other five sites, but
maximum larval counts >100 were observed at Queen Sound, DNR Pier, and
Wachapreague (Figs. 5C, 5D; H (5) = 68.855, p < 0.05).

Spatial distribution
PVC collectors were deployed during 2019 and 2020 to compare distribution patterns in
oyster recruitment between years. No oyster settlement occurred at sites other than the six
primary sites during 2019 and 2020, except one occurrence at North Verrazano Bridge
during August 2020 (Table 1). Of the six primary sites, oyster settlement occurred in both
years at DNR Pier, Guys Point, Queen Sound, and Wachapreague. Little recruitment

Figure 5 Comparison of median and maximum larval counts to sampler types and sites during 2020.
Data was pooled by either sites or sampler types to compare the median and maximum larval counts
(≥1). (A, B) Counts from sampler types of ceramic arrays (CA; n = 116), PVC arrays (PA; n = 27), and
PVC collectors (PC; n = 38). (C, D) Counts from sites of DNR Pier (DP; n = 18), Island Mark 12 (IM;
n = 1), Mills Island (MI; n = 12), Guys Point (GP; n = 24), Queen Sound (QS; n = 16), and Wachapreague
(W; n = 45). Bars above median counts represent median absolute deviation (MAD). The letters above
the deviation bars denote significant differences (p < 0.05) between median larval counts.

Full-size DOI: 10.7717/peerj.15114/fig-5
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occurred at Island Mark 12 and Mills Island (Table 1). Spatial patterns of recruitment on
PVC collectors were consistent between 2019 and 2020 because all sites with settlement in
2019 also received settlement in 2020 (Fig. 6A). Total settlement density from all sites on
the PVC collectors was greater during 2020 (3.06 larvae per cm2) than 2019 (0.37 larvae
per cm2). At DNR Pier, settlement density was five times greater on the PVC collectors
during 2020 (0.50 larvae per cm2) than 2019 (0.11 larvae per cm2; Fig. 6A). Additionally,
total settlement density from 2019 and 2020 at Wachapreague (2.62 larvae per cm2) was
almost 4 times greater than settlement at DNR Pier (0.61 larvae per cm2). Interannual
differences were only significant at Wachapreague (H (1) = 4.95, p = 0.0204) but not at
DNR Pier or the primary sites. No recruitment occurred at IslandMark 12 andMills Island
for PVC collectors during both years. Recruitment on the PVC collectors was low at Queen
Sound in both years and recruitment was slightly less during 2020 (0.03 larvae per cm2)
than 2019 (0.07 larvae per cm2; Fig. 6A). Recruitment at Guys Point (0.05 larvae per cm2)
remained the same for both years.

The spatial distribution of settlement densities from the ceramic arrays were compared
to the settlement densities from the PVC arrays, which were only deployed during 2020 at
the six primary sites (Fig. 6B). Overall, total settlement density was greater on ceramic
arrays (109 larvae per cm2) than PVC arrays (0.93 larvae per cm2; H (1) = 96.291,
p < 0.0001). Within the MCBs, the greatest larval density on ceramic arrays occurred at
Queen Sound (66.81 larvae per cm2), Wachapreague (29.31 larvae per cm2), and DNR Pier
(11.73 larvae per cm2) in 2020 over the entire field season (Fig. 6B). Among the six primary
sites, settlement density on the ceramic arrays was greatest at the sites closest to the inlets
(DNR Pier and Queen Sound). Lastly, Island Mark 12 (0.01 larvae per cm2) and Mills

Table 1 Total oyster larval counts and water quality measurements of sites during 2019 and 2020. Larval counts were summed by site to
calculate totals and water quality measurements of depth, temperature, salinity, pH, dissolved oxygen, and turbidity. Values were averaged (mean ±
standard deviation) by site across years and time.

Site Site
type

n Total larval counts Depth
(m)

Temperature
(�C)

Salinity
(ppt)

pH Dissolved oxygen
(mg O L−1)

Turbidity
(m)

Greys Creek Pier 10 0 0.61 ± 0.09 28.80 ± 1.22 24.86 ± 2.09 7.65 ± 0.41 4.19 ± 2.80 0.44 ± 0.12

St. Martin River Bay 10 0 0.95 ± 0.13 27.79 ± 2.18 26.58 ± 0.91 7.85 ± 0.33 6.54 ± 0.81 0.45 ± 0.05

Turville Creek Bay 8 0 0.69 ± 0.25 28.40 ± 1.83 26.62 ± 1.14 7.77 ± 0.43 6.96 ± 1.01 0.45 ± 0.13

DNR Pier Pier 7 1,374 2.81 ± 0.60 22.54 ± 2.04 30.40 ± 1.29 8.10 ± 0.38 6.64 ± 0.76 0.95 ± 0.28

Verrazano Bridge Bay 4 3 1.09 ± 0.29 27.16 ± 1.04 29.07 ± 1.36 8.18 ± 0.47 7.57 ± 1.28 0.61 ± 0.12

Island Mark 12 Bay 8 1 0.87 ± 0.14 26.84 ± 1.70 28.69 ± 1.82 8.14 ± 0.31 7.02 ± 0.81 0.49 ± 0.11

South Point Pier 7 0 0.91 ± 0.12 28.43 ± 1.11 28.97 ± 2.00 8.08 ± 0.33 6.42 ± 1.12 0.43 ± 0.20

Public Landing Pier 10 0 0.76 ± 0.12 28.72 ± 0.98 28.20 ± 2.08 7.99 ± 0.31 6.54 ± 0.94 0.49 ± 0.15

Taylor Landing Pier 8 0 0.78 ± 0.16 28.81 ± 1.89 29.35 ± 2.21 7.94 ± 0.34 5.75 ± 1.42 0.37 ± 0.11

Mills Island Bay 10 22 0.88 ± 0.15 26.82 ± 1.49 30.88 ± 1.65 7.96 ± 0.36 5.93 ± 0.94 0.42 ± 0.12

Guys Point Pier 10 125 1.20 ± 0.25 29.61 ± 1.01 30.93 ± 1.48 7.87 ± 0.26 6.12 ± 1.99 0.59 ± 0.27

Queen Sound Bay 4 6,912 1.25 ± 0.14 26.61 ± 1.92 30.96 ± 1.25 8.01 ± 0.39 6.41 ± 0.79 0.54 ± 0.09

Wachapreague Bay 9 3,391 1.44 ± 0.59 28.26 ± 1.22 32.22 ± 1.29 7.52 ± 0.12 4.00 ± 0.63 0.38 ± 0.11
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Island (0.21 larvae per cm2) received little recruitment when both arrays were summed
(Fig. 6B).

Temporal distribution
At all sites in the MCBs and Wachapreague, settlement in 2019 and 2020 generally began
in early to mid-July, but settlement only occurred in late-July of 2019 at Island Mark 12
(Fig. 7) Settlement at the MCB sites continued until late July to mid-August during both
years. In 2020, settlement at sites Wachapreague and Queen Sound occurred earlier than
the remaining primary sites (Figs. 7D, 7E). Earliest settlement within the MCBs occurred at
site Queen Sound, but sampling equipment at that site disappeared after 30 July 2020 due
to a storm, which prevented further data collection (Fig. 7D). Settlement began slightly
earlier at site Wachapreague than in the MCBs, in late June (2019) and early July (2020),
and extended longer, until late August in 2020 (Fig. 7E). At site DNR Pier, near Ocean City
Inlet, two settlement peaks were observed in both 2019 and 2020 and occurred within
approximately the same week of each year (Fig. 7A).

Figure 6 Map of spatial distribution of oyster larvae that settled on three sampler types at six primary coastal bay sites. (A) Density of oyster
larvae per plate/tile over entire field season on PVC collectors in 2019 and 2020. (B) Density of oyster larvae per plate/tile over entire field season on
PVC arrays and ceramic arrays in 2020. The values and circle sizes represent the total density of oyster larvae from the underside of the ceramic tiles
or PVC plates. Total density was calculated by dividing the larval counts by the plate/tile area and then summing the density values at each site by
year or sampler type. Six primary sites included DNR Pier (DP), Island Mark 12 (IM), Mills Island (MI), Guys Point (GP), Queen Sound (QS), and
Wachapreague (W). Full-size DOI: 10.7717/peerj.15114/fig-6
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GLMM model for larval recruitment prediction
Several ZIP GLMMs were tested and compared against a null model to determine the best
fit model for predicting larval counts based on sampler type (St), site location (Si), and
sample timing represented as swap number (Sw; Table 2). The m4 model was rejected
because sampler type, site location, and sample timing as fixed effects increased the AICc
by 702.5, reduced the probability (wi) to <0.05, and failed quality check analyses (outlier
test and Kolmogorov-Smirnov test for uniformity of the residuals). Models m6 and m7

results had the lowest AICC values and uniquely contained the plate/tile levels within the

Figure 7 Temporal distribution of oyster larvae at coastal bay sites. Comparison of recruitment on
PVC collectors at five sites from June to September 2019 and 2020. Figures display raw counts of oyster
larvae counted on the underside of PVC plates within PVC collectors. Sites (A) DNR Pier. (B) Island
Mark 12. (C) Guys Point. (D) Queen Sound. (E) Wachapreague. Note scales of y-axes differ.

Full-size DOI: 10.7717/peerj.15114/fig-7
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samplers and line number, the location of the sampler on the pier or buoy line, as a nested
random effect. We chose model m7, with site (Si) and time (Sw) as fixed effects, as the best
fit model because it resulted in the lowest AICC value, a probability >0.05, and passed
model quality checks (Table 2; Fig. S2). The best fit model, m7, succesfully predicted the
highest larval counts to occur at DNR pier, Queen Sound, and Wachapreague sites and
during swaps 2 and 3 which represented the time period between late June and
mid-August (Fig. S3).

Environmental effects
The principal component analysis (PCA) plot showed potential relationships between
oyster larval counts and water quality measurements of temperature, salinity, dissolved
oxygen (DO), pH, and turbidity. The principal components (PC-1 and PC-2), calculated
from the water quality variables and larval counts, explained 59% of the variance observed
in the dataset (Fig. 8). Results of the Kendall Tau-b (τB) rank correlation tests showed that
larval counts had a significant positive correlation with salinity (τB = 0.49, z = 6.545,
p < 0.0001) and negative correlations with DO (τB = −0.17, z = −2.237, p < 0.05) and pH
(τB = −0.19, z = −2.453, p < 0.05). Average salinity ranged from 24.86–32.22 ppt among
sites and was highest (>30 ppt) at DNR pier, Mills Island, Guys Point, Queen Sound, and
Wachapreague (Table 1). At these five sites, the average pH and DO were 7.52–8.10 and
4.0–6.64 mg O L−1, respectively (Table 1). No correlations were found between the larval
counts and temperature or turbidity in the PCA analysis. The average temperature and
turbidity among these five sites ranged 22.54–29.61 �C and 0.38–0.95 m, respectively
(Table 1).

DISCUSSION
Sampler types
Oyster larvae exhibited preferential settlement (Keough & Downes, 1982), indicated by
significantly more counts on the ceramic arrays in 2020 than any other sampler type.

Table 2 Comparison of ZIP generalized linear mixed models (m0–m7) corresponding to the
different variables tested for oyster larval settlement prediction.

Model Variables df logLik AICC Δi w i

m0 L ~ 1 2 −18,161.9 36,327.9 +30,624.8 0

m1 L ~ Sw + (1|ST) + (1|Si) + (1|N) 9 −3,217.5 6,453.1 +750.0 <0.001

m2 L ~ Si + (1|ST) + (1|Sn) + (1|N) 17 −3,205.7 6,445.9 +742.8 <0.001

m3 L ~ Si + Sw + (1|ST) + (1|N) 20 −3,189.8 6,420.2 +717.1 <0.001

m4 L ~ Si + Sw + ST + (1|N) 21 −3,181.5 6,405.6 +702.5 <0.001

m5 L ~ Si + Sw + (1|ST) + (1|N) + (1|L) 21 −3,014.8 6,072.3 +369.2 <0.001

m6 L ~ Si + (1|Sw) + (1|ST) + (L|N) 22 −2,842.0 5,728.8 +25.7 <0.001

m7 L ~ Si + Sw + (1|ST) + (L|N) 25 −2,826.1 5,703.1 – 0.99

Note:
df, degrees of freedom; Loglik, log-likelihood; AICC, corrected AIC value; Δi, difference between each model and the best
selected model; and wi, probability that a given model provided is the best fit for the data. Variables: L, oyster larvae
counts; Si, site; Sw, swap number represented sampling time; ST, sampler type; L, plate level on the sampler; N, line
number represented the position of the sampler on the pier or buoy line. Model m7 was selected to be the best fit model.
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Despite our PVC plates being sanded with 100 grit sandpaper, the ceramic tiles had greater
rugosity, making it easier for oyster larvae to attach (Marques-Silva et al., 2006).
In addition, ceramic tiles are alkaline (Reig et al., 2013) and oyster larvae are more likely to
settle when exposed to ammonia, which is alkaline (Coon, Fitt & Bonar, 1990). Preferential
settlement on ceramic tiles rather than PVC was also evident in the study by Chuku et al.
(2020), who compared monthly recruitment of the West African mangrove oyster
Crassostrea tulipa among five substrates (coconut shell, oyster shell, nylon mesh, PVC
slats, and ceramic tile) in four lagoonal estuaries in Ghana. Ceramic tiles had the greatest
monthly settlement in three of the four estuaries and PVC slats had the greatest in only one
of the estuaries, but overall recruitment was not significantly different between ceramic
tiles and PVC slats (Chuku et al., 2020). The presence of biofilms on attachment substrates
can enhance oyster settlement (Tamburri, Zimmer-Faust & Tamplin, 1992; Zhao, Zhang &
Qian, 2003; Su et al., 2007; Campbell et al., 2011), but the effect varies with length of
conditioning and rugosity of the substrate (Taylor, Southgate & Rose, 1998; Devakie & Ali,
2002; Zhao, Zhang & Qian, 2003; Su et al., 2007; Tamburri et al., 2008; Bellou et al., 2020).

Spatial distribution
Although settlement and recruitment behaviors can be difficult to measure in-situ, our
results show a spatial distribution trend of greater recruitment at sites near Ocean City
(DNR Pier) and Chincoteague Inlet (Queen Sound), suggesting those are more attractive
locations for oyster settlement than sites further away from inlets. Additionally,

Figure 8 Principal component analysis (PCA) of oyster larval counts and water quality parameters.
PCA plot showing the potential correlations between oyster larval counts and water quality measure-
ments of salinity, turbidity, dissolved oxygen (DO), pH, and temperature (�C). The correlations between
larval counts and water quality measurements were obtained by combining the 2019 (n = 58) and 2020
(n = 47) datasets with all 13 sites. Full-size DOI: 10.7717/peerj.15114/fig-8
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broodstock live close to those inlets. Settlement of both Sydney rock oyster Saccostrea
glomerata and invasive Pacific oysters Crassostrea gigas in Port Jackson Estuary, Australia
was greater at sites closer to the Pacific Ocean than in the upper channel (Scanes et al.,
2016). Spatial distribution patterns in the Port Jackson Estuary were similar to those of the
MCBs with more observations of oyster larvae closer to the interface between the estuary
and ocean.

The MCBs have lower freshwater discharge, varied flushing rates, and high velocity
water near Ocean City and Chincoteague inlets. Flushing rates in the individual sub-bays
vary greatly, e.g., from 9 days in Isle of Wight Bay to 63 days in Chincoteague Bay
(Pritchard, 1969; Lung, 1994). This implies that oyster larvae are retained longer, thus have
a longer period of time to settle in Chincoteague Bay than in Isle of Wight Bay. The longer
retainment period in Chincoteague Bay supports the greater settlement observed near
Chincoteague Inlet (Wazniak, 2005). Retention within a system correlates to recruitment
success (Norcross & Shaw, 1984).

A hydrodynamic model by Kang et al. (2017) demonstrated that the northward flow of
water through the MCBs is primarily wind-driven, except when wind speeds are weak (e.g.,
3 m/s), at which times it becomes tidally driven. However, tidal cycles drive the circulation
patterns near the Ocean City and Chincoteague inlets (Wells, Hennessee & Hill, 2002).
The MCBs have a distinct seasonal wind pattern of prevailing winds from the southwest in
the summer, due to the Bermuda High pressure system, and from the northeast in the
winter. Circulation patterns in the MCBs may also be influenced by the shape of the
estuary’s basin and bathymetry, or depth (Lee & Valle-Levinson, 2012) where its shallow
basin and wind patterns can alter wave dynamics (Mao & Xia, 2018). Strong turbulence
from waves can cue oyster larvae to sink, increasing their proximity to suitable substrate in
which to attach (Fuchs et al., 2013). The strong turbulence at the inlets could be a reason
for the observed spatial distribution.

The MCBs are characterized as being “microtidal” since tidal exchange is limited to
Ocean City Inlet and Chincoteague Inlet. Although the tidal excursion of the MCBs is
unknown, similar lagoonal estuary systems have tidal excursions of 2.7 km in Haulover
Canal connecting Mosquito Lagoon and Indian River lagoon (Smith, 1993), 2 km both for
Little Egg Harbor and Barnegat Bays (Chant, 2001), and 1.02 to 8.25 km depending on the
site proximity to Fort Pierce Inlet within the Indian River lagoon (Smith, 1983). Tidal
excursion refers to the distance between low water and high water in which a particle
travels. It is a measurement to describe the movement of particles such as larvae and
pollutants within a tidal cycle (Ji, 2008). A coupled biological-physical transport model by
Kim, Park & Powers (2013) simulated that larger tidal excursions during a tropic tide
caused greater larval dispersion. We hypothesize that the spawning adult oysters are within
a 1–8 km range of settlement sites in the MCBs. Perhaps the coupling of flushing rates
(slowest in Chincoteague Bay), proximity, and tidal circulation near the inlets may have
contributed to greater settlement.
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Temporal distribution
The Eastern oysters in this study region typically spawn from June through October
(Haven & Fritz, 1985). Sampler types showed little variation in peak timing between 2019
and 2020 (<10 days apart) and all settlement peaks occurred in July during both years.
Our results showed that oyster larvae settled between late-June and mid-August, which
was expected based on settlement timing reported by previous studies at similar latitudes
in the Mid-Atlantic (Shaw, 1967; Kennedy, 1980; Haven & Fritz, 1985; Capelle et al., 2020;
Ross & Snyder, 2020). Although monitoring in our study did not continue into late
September, it has been documented by other studies that peaks do occur during that time
(Haven & Fritz, 1985).

Environmental effects
Temperature and salinity are known to have an influence on oysters throughout their life
cycle (Hori, 1933; La Peyre et al., 2013). Although there was no correlation found between
larval counts and temperatures, settlement was greatest between 22 and 26 �C at DNR Pier,
Guys Point, Queen Sound, and Wachapreague (data not shown). These temperatures were
within the optimal range (20 and 32.5 �C) for oyster larval growth (Calabrese & Davis,
1970) and the ambient water temperatures (20 and 30 �C) that induce adult oysters to
spawn (Horn Point Oyster Hatchery, 2021). Previous studies observed increased settling
with thermal shock (Lutz, Hidu & Drobeck, 1970; Hidu & Haskin, 1971). Perhaps the
mixing and change in temperature between the warmer bay water and cooler ocean water
from the inlets may have contributed to settlement.

The optimal salinity ranges of 12–28 ppt (Dame, 1996) and 15–20 ppt (Barnes et al.,
2007) have been reported for oyster growth. Our results are consistent withNelson (1923),
who observed the greatest abundance of straight-hinge larvae at stations in the most
saline and lower portion of Barnegat Bay, New Jersey. This is contrary to laboratory
experiments by Hidu & Haskin (1971), in which oyster larvae were not stimulated to
settle with an increase in salinity. In our study, the highest larval settlement occurred at
sites with average salinities >30 ppt over the 2019–2020 period, which is just above the
optimal range for oyster growth. Salinity had the strongest and most significant
correlation with larval counts. Although these sites were also located closest to the inlets,
where salinity is naturally higher, there are other factors such as current flow and/or tidal
excursion that can influence settlement.

The negative correlations between larval counts, pH, and DO were significant, but the
correlation coefficient was weak (<0.20). For oysters, the ideal range in pH and DO for
growth is 6.75 to 8.75 (Calabrese & Davis, 1966; Clark & Gobler, 2016) and 7 mg O L−1,
respectively (Clark & Gobler, 2016). The average pH at DNR pier, Mills Island, Guys Point,
Queen Sound, andWachapreague fell within the desired range for oyster larvae, but not for
DO. Interestingly, the site with the lowest average DO was at Wachapreague (4.6 mg
O L−1), which had the second greatest larval counts. This further corroborates the negative
correlation between larval counts.
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CONCLUSIONS
This is the first recruitment study for oyster larvae in the MCBs, and the resulting spatial
and temporal distribution patterns can provide insight into evaluating restoration
initiatives and serve as a foundation for future recruitment studies in other lagoonal
estuaries. This study resulted in four significant findings: (1) ceramic tiles received
significantly greater recruitment than PVC plates, (2) new recruits settled in the greatest
numbers at sites that were closest to Ocean City and Chincoteague inlets, as opposed to
sites further within the bays, (3) settlement occurred between late June and early July into
mid-August, which was consistent with previous studies at similar latitudes (Shaw, 1967;
Kennedy, 1980), and (4) the spatial and temporal patterns of settlement were essentially
identical in both 2019 and 2020, although recruitment was four to five times greater in
2020. These results can supplement ongoing data collection (e.g., surveys of fish, shellfish,
submerged aquatic vegetation, water quality, and current drift monitoring) to gain a
broader understanding of the MCBs and provide baseline data upon which to build.
Notably, it may guide stakeholders in evaluating the decision to potentially pursue an
oyster restoration project within the MCBs and similar lagoonal estuaries.

Recommendations
For any oyster restoration project, monitoring is recommended prior, during, and after
restoration to assess the reef habitat, the organisms living on the reef, and interactions
among organisms (Thayer et al., 2005). This is important so adjustments can be made as
needed and the progress of the restoration can be observed over time. Examples of
restoration techniques used in the Mid-Atlantic and other areas include creating 3-
dimensional structures with vertical relief that emulate natural oyster reefs. These consist
of clutch, which is a material (e.g., shells, shell fragments, limestone, concrete, etc.) used to
build attachment substrates for oyster larvae (Kurz, 2012). Clutch is deposited on the
sediment or a foundation then are piled to make the vertical structure (Luckenbach, Mann
& Wesson, 1999; O’Beirn et al., 2000; Brumbaugh & Coen, 2009). Other methods include
pre-cast limestone or concrete structures (e.g., oyster castles or oyster balls) and oyster
shells in bags (Olander et al., 2020; Virginia Institute of Marine Science, 2023). Partnering
with local agencies as well as oyster farmers and watermen would aid in the collection of
necessary data.

For setting up a larval recruitment and settlement monitoring study, ceramic arrays
would be the best sampler to use in the short term (a spawning season), prior to
restoration, to evaluate the location and time to establish a restoration project. The ceramic
arrays should be utilized during at least two spawning seasons to determine if there are
spatial and temporal patterns in settlement. Oyster shells should be prioritized for use in
restoration efforts over ceramic substrate because of the protein periostracum present on
oyster shells (Crisp, 1967), chemical cues released from conspecifics (Tamburri,
Zimmer-Faust & Tamplin, 1992), and the contoured surface (Taylor, Southgate & Rose,
1998), but ceramic tile is an alternative if oyster shells are not readily accessible. Natural
recruitment of wild oyster larvae aid in restoration success by supplementing restoration
efforts (Schulte & Burke, 2014). Schulte & Burke (2014) concluded that restored reefs with
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planted oyster larvae and adults recruited populations with greater densities than
unenhanced reefs because wild settlement increased populations by two to three orders of
magnitude. The additional larvae and adults provide additional substrate for wild oysters
in which to settle (Southworth & Harding, 2014).

Based on the results of our study, we recommend the following for site selection prior to
pursuing oyster restoration in the MCBs and other lagoonal estuaries: (1) selecting a
restoration site that is in close proximity to broodstock, has a slow flushing rate, and
circulation patterns that retain larvae, (2) utilizing oyster shells as substrate for preliminary
recruitment studies and/or restoration projects (if oyster shells are not accessible, a ceramic
array design as seen in this study, can be used as an alternative), (3) establishing a
restoration site prior to or in early June (in the Mid-Atlantic) to ensure wild oyster larvae
settle during peak time, (4) conducting additional research on the current state of parasites,
overwintering, and diseases to ensure survival and growth of oysters, and (5) establishing a
monitoring program to assess progress and address environmental changes
(recommendations further described in Kennedy et al., 2011).
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