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ABSTRACT
The role of microorganisms in maintaining coral reef health is increasingly recog-
nized. Riverine floodwater containing herbicides and excess nutrients from fertilizers
compromises water quality in the inshore Great Barrier Reef (GBR), with unknown
consequences for planktonic marine microbial communities and thus coral reefs. In
this baseline study, inshore GBR microbial communities were monitored along a 124
km long transect between 2011 and 2013 using 16S rRNA gene amplicon sequenc-
ing. Members of the bacterial orders Rickettsiales (e.g., Pelagibacteraceae) and Syne-
chococcales (e.g., Prochlorococcus), and of the archaeal class Marine Group II were
prevalent in all samples, exhibiting a clear seasonal dynamics. Microbial communities
near the Tully river mouth included a mixture of taxa from offshore marine sites and
from the river system. The environmental parameters collected could be summarized
into four groups, represented by salinity, rainfall, temperature and water quality, that
drove the composition of microbial communities. During the wet season, lower salin-
ity and a lower water quality index resulting from higher river discharge corresponded
to increases in riverine taxa at sites near the river mouth. Particularly large, transient
changes in microbial community structure were seen during the extreme wet season
2010–11, and may be partially attributed to the effects of wind and waves, which re-
suspend sediments and homogenize the water column in shallow near-shore regions.
This work shows that anthropogenic floodwaters and other environmental parameters
work in conjunction to drive the spatial distribution of microorganisms in the GBR
lagoon, as well as their seasonal and daily dynamics.

Subjects Bioinformatics, Ecology, Ecosystem Science, Microbiology
Keywords Microbiology, Coral reefs, Anthropogenic impacts, Amplicon sequencing, Monitoring,
Seasonality, Floodwaters

INTRODUCTION
Coral reefs are among the most biologically diverse and productive ecosystems on
Earth. However, these complex assemblages, often compared to tropical rainforests, are
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under increasing anthropogenic pressure. Reefs are experiencing a rapid decline due to
a combination of local pressures such as overfishing, nutrient enrichment, increased
land runoff and sedimentation, and global disturbances such as rises in temperature
(Pandolfi et al., 2003; De’ath et al., 2012). The GBR is a World Heritage Area and the
largest reef complex in the world, stretching over 2,100 km along the Queensland coast
of Australia. Despite being considered one of the best managed marine areas, the GBR is
exposed to nutrient, sediments and pollutant inputs from land-based activities (Schaffelke
et al., 2012a; Schaffelke et al., 2013) resulting in a 50.7% decrease in coral cover over
the last 27 years (De’ath et al., 2012). Given the fundamental socio-economic role coral
reefs have in many countries (food production, tourism, coastal protection) and their
ecological value (biodiversity and productivity), it is vital that these ecosystems are better
understood and protected.

Microorganisms are a diverse group of unicellular organisms that form the base of the
marine food chain (Azam et al., 1983), hence indirectly sustaining higher order organisms
including invertebrates and fish. They are also an essential component of the coral
holobiont, and disturbing the balance between the corals and their associated microbiota
has been implicated in reduced reef health (Dinsdale et al., 2008; Bruce et al., 2012). In
addition, the small size and fast reproduction rate of microorganisms make them very
efficient at cycling nutrients, metabolizing foreign compounds in marine ecosystems and
colonizing new ecological niches (Thurber et al., 2009).

In the GBR lagoon, river runoff from agricultural areas introduces sediments, excess
nutrients from fertilizers (e.g., phosphate and nitrate) and pesticides (herbicides or
insecticides) from the land to the inshore waters (Furnas, 2003; Brodie et al., 2012),
predominantly during discrete, short-lived flood events during the 5-month summer
monsoonal wet season. Land use changes over the past 200 years (increased agriculture,
urbanization) have increased the amounts of sediments, nitrogen, phosphorus and
herbicides in these floodwaters (Devlin & Brodie, 2005; Devlin et al., 2012a), with pro-
found impacts on coastal ecosystems (Schaffelke, Mellors & Duke, 2005; Fabricius, 2005;
Brodie & Mitchell, 2005; De’ath & Fabricius, 2011; Schaffelke et al., 2013). Particularly
high levels of herbicides such as diuron are currently found in the GBR lagoon, which
inhibits the photosystem II and damages mangroves, seagrass, corals, and other non-
target photosynthetic organisms (Lewis et al., 2009; Shaw et al., 2010). While herbicides
can be toxic to some microorganisms (Leboulanger et al., 2008), they can be neutral to
others that have dedicated enzymes for their degradation (Aislabie & Lloyd-Jones, 1995).
To date, microbial communities co-existing with the other macroscopic species on the
GBR have not been characterized and it is unclear how anthropogenic compounds found
in seasonal runoff affect these communities.

In this study, we characterized planktonic microbial communities of seven GBR lagoon
sites differentially exposed to inputs from the rivers of the Wet Tropics catchment. Over
three years, we determined water chemistry and characterized microbial communities
using 16S rRNA gene amplicon sequencing. We hypothesized that microbial communities
follow seasonal dynamics and respond to riverine input, potentially buffering reef
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Figure 1 Overview of sampling area in the GBR lagoon. The river exposure index is shown for the Wet
Tropics river catchments in the 2010–11 wet season, with a color bar indicating clustered cumulative ex-
posure (concentration x days) above 1% of the incoming concentration (capped at 20 conc.d). The direc-
tion of the residual coastal current is indicated as a black vector. The location of the sites surveyed for mi-
crobial composition in 2011–13 is shown as colored paddles. The sites were classified as marine, plume or
riverine, according to their respective distance to the nearest influent river mouth.

ecosystems against effects of elevated floodwater constituents through nutrient cycling
and detoxification.

MATERIALS & METHODS
Sampling design
Sampling was performed in the Wet Tropics Region of the GBR (Fig. 1), a well-studied
coastal area which is regularly exposed to river runoff and flood events (Devlin &
Schaffelke, 2009; Schroeder et al., 2012; Turner et al., 2013). The sites surveyed were located
on a transect following a gradient of river exposure, from the highly-exposed Tully River
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mouth (TT1) to the fringing coral reefs of Dunk Island (TT3) that are seasonally reached
by flood plumes, and the TT4 off-shore location, rarely exposed to river water. Russel (RI)
and Fitzroy islands (FI) were additional reef sites with limited exposure to the waters of
the Johnstone and Russel rivers, respectively, and a consistently higher coral health index
than Dunk Island (Thompson et al., 2014). All sampling sites were classified based on their
proximity to the nearest influencing river mouth: ‘plume’ for <20 km downstream and
‘marine’ if >20km (Table S1). To characterize the influence of riverine microorganisms
on marine communities, a freshwater site located 12 km upstream of the river mouth was
also selected (TR).

The seven sites were surveyed between January 2011 and October 2013 in the dry
season (June), just prior to the wet season (October), and at the end of the wet season
(March). At each site and sampling date, a single 2 L seawater sample was taken from
a depth of 5 m (just below surface for the TR site, which was a very shallow river bed),
passed through a 0.22 µm Sterivex filter, which was stored at−20 ◦C until further pro-
cessing. All samples were collected under the auspices of the general permit (G12/35236.1)
granted by the Great Barrier Reef Marine Park Authority to the Australian Institute of
Marine Science.

Environmental conditions
Water samples collected from 2011 to 2013 were processed according to the long-
term GBR Reef Rescue Marine Monitoring Program (Thompson et al., 2013) to assess
temperature, salinity, bottom depth and water chemistry: concentrations of suspended
solids (SS), particulate organic carbon (POC), particulate phosphorus (PP), particulate
nitrogen (PN), dissolved inorganic nitrogen (DIN), silica (Si) and chlorophyll a (CHLA).
In addition, diuron concentration was determined by collecting 1 L of water in pre-
washed bottles, and storing the water at 4 ◦C until processing by solid phase extraction
liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) at Queensland
Health and Forensic Scientific Services, Coopers Plains, Australia. All these measured en-
vironmental parameters were deposited as NCBI BioSamples (accession # PRJNA276058).
In addition, meteorological parameters were acquired from public resources: Tully River
discharge and water temperature (Department of Natural Resources and Mines, http:
//watermonitoring.derm.qld.gov.au/host.htm), and solar exposure and rainfall (Bureau
of Meteorology, http://www.bom.gov.au/climate/data/index.shtml). An average of these
meteorological parameters was calculated for the seven days preceding each sampling
date.

A river exposure index was calculated using a hydrodynamic model (http://www.
bom.gov.au/environment/activities/coastal-info.shtml), based primarily on the Sparse
Hydrodynamic Ocean Code (SHOC) hydrodynamic model (http://www.emg.cmar.csiro.
au/www/en/emg/software/EMS/hydrodynamics.html). SHOC is a general purpose model,
applicable on spatial scales ranging from estuaries to regional ocean domains (Herzfeld,
2006). We used outputs from the regional application of SHOC to the GBR using a
horizontal spatial resolution of about 4 km, with a model grid size of 180× 600 with 48
vertical layers with 1 m resolution at the surface. In this context, conservative tracers were
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used in this study to simulate the transport of unique tracers ‘released’ from different
rivers. In mathematical terms, a conservative substance is represented without terms
of sinks or sources of mass in the transport equation. This means that the change in
concentration values happens due to physical processes (advection and diffusion).
Furthermore, it was stipulated that the tracers used do not affect the hydrodynamics.
This technique enables the identification of marine regions influenced by individual
catchments, and provides insight into the mixing and retention of river water along
various regions in a given domain (Brinkman et al., 2002; Brinkman et al., 2014; Luick et
al., 2007). Model simulations of the 3-dimensional distributions of passive tracers were
analyzed to produce weekly estimates of cumulative exposure to tracers above a threshold
of 1% of the source concentration. An exposure index was calculated that integrates the
tracer concentrations above this threshold, based on a cumulative measurement of the
exposure concentration and duration of exposure related to individual river sources, and
expressed as Concentration x Days (conc.d). For every location in the model domain, the
cumulative exposure index was calculated as:

Conc.Days=
T∑
t=0

Concexceed× t where

Concexceed=

{
Conc(t )−Concthresh, if Conc(t )>Concthresh
0, if Conc(t )≤Concthresh

and Concthresh is defined as 1% of the source concentration, Conc(t ) represents the time-
varying tracer concentration, and t is the time in days from the beginning of the wet
season to the end (01 November–31 March). Cumulative exposure was calculated for each
grid point in the model domain. Using this representation, the exposure index integrates
both concentration above a defined threshold and the duration of exposure. For example,
an exposure of 20 days at a concentration of 1% above the threshold would produce an
index value of 0.2, which is equivalent to 10 days exposure at 2% above the concentration
threshold. This index provides a consistent approach to assess relative differences in
exposure of inshore GBR waters to inputs from various rivers. For each of the wet seasons
simulated by the model, spatial maps of river exposure indices were calculated for the
target rivers: Herbert, Tully, Murray, Johnstone, Mulgrave and Russel rivers (Wet Tropics
catchment), Burdekin and Haughton rivers (Burdekin catchment, affecting the south of
the Wet Tropics catchment).

16S rRNA gene amplicon sequencing
DNA was extracted from each Sterivex filter using a modified method from Suzuki et al.
(2004). In brief, the filters were thawed on ice with Invitrogen’s P1 buffer with lysozyme
at a final concentration of 2 mg/mL, and incubated for 30 min at 37 ◦C, while rotating at
10 rpm. Proteinase K (0.75 mg/mL final concentration) and 10% sodium dodecyl sulfate
(1% final concentration) were added and the sample was incubated, with rotation, at
55 ◦C for 2 h. DNA was extracted using phenol:choloroform:isoamyl alcohol (25:24:1;
pH 8.0) followed by an overnight ethanol precipitation and purified using a MO BIO
PowerClean DNA Clean-Up kit (Carlsbad, CA, USA).
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Amplicons were generated by PCR-amplifying the V6–V8 variable regions of the 16S
rRNA gene using the pyroLSSU926F and pyroLSSU926F universal primers as described
in Dove et al. (2013). The resulting DNA amplicons were sequenced on a Roche-454 GS-
FLX instrument at the Australian Centre for Ecogenomics and deposited in the NCBI
Short Read Archive (accession # PRJNA276058).

Bioinformatic processing
Amplicon reads were processed using Hitman (https://github.com/fangly/hitman), a
bioinformatic workflow based around the UPARSE methodology (Edgar, 2013). In brief,
Hitman: (1) joins read pairs with PEAR (Zhang et al., 2014), but keeps the forward read
when pairs cannot be joined; (2) truncates the 3′ end of sequences at the first residue
below a threshold quality value (Q) using TRIMMOMATIC (Bolger, Lohse & Usadel,
2014); (3) trims the 3′ end of all sequences to a target length (L) using TRIMMOMATIC,
discarding all smaller sequences, (4) removes sequences exceeding the maximum number
of expected errors (E) using USEARCH’s fastq_filter (Edgar & Flyvbjerg, 2015); (5) uses
USEARCH’s cluster_otus to form operational taxonomic units (OTUs) from high-fidelity
sequences (stringent quality processing in steps 2 and 4) that are sorted by decreasing
abundance, occur at least twice in the dataset and meet a minimum percentage of
similarity (O); (6) discards chimeric OTUs using USEARCH’s cluster_otus in a reference-
independent, and using UCHIME (Edgar et al., 2011) based on a reference database
(C); (7) assigns regular-fidelity sequences (less stringent quality processing in steps
2 and (4) to each OTU using USEARCH’s usearch_global (Edgar, 2010); (8) formats
the results in BIOM format using Bio-Community’s bc_convert_files (Angly, Fields &
Tyson, 2014); (9) gives a taxonomic assignment to each OTU by globally aligning their
representative sequences against a database (T ) of reference sequences trimmed to the
target region (keeping only the best-matching alignment with a minimum required
identity percentage (I ) using USEARCH’s usearch_ global; (10) removes OTUs belonging
to specific taxa (W ) using Bio-Community’s bc_manage_ samples; (11) rarefies the
microbial profiles at the given depth (D) with Bio-Community’s bc_accumulate assuming
an infinite number of bootstrap replicates; and (12) corrects gene-copy number bias using
CopyRighter (Angly et al., 2014).

In this study, Hitman was run using the following parameters: L = 250 bp, Q = 7
(16 for HiFi sequences), E = 3.0 expected errors (0.5 for HiFi sequences), O = 97%
identity (species-level), C =GOLD database (Bernal, Ear & Kyrpides, 2001), T =merged
Silva (Quast et al., 2012) and Greengenes (McDonald et al., 2012) databases (https://
github.com/fangly/merge_gg_silva), I = 95% identity (genus-level),W = ‘‘Eukaryota*
*Chloroplast*’’ and D=279 for Bacteria & Archaea (100 for Eukaryotes). In addition,
rarefaction curves were generated using Bio-Community (Angly, Fields & Tyson, 2014).

Statistical analysis
All statistical analyses were carried out using the R language (R Core Development
Team, 2015)). Comparisons of diversity between groups of samples were carried out
using the non-parametric, unilateral Mann–Whitney U test (wilcox.test() function).
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Figure 2 Weather in the Tully catchment during the years 2011–13. (A) temperature and solar expo-
sure, and (B) rainfall and river discharge. An average value for the previous week is reported for each day.
Dashed lines indicate microbial sampling dates, and the purple line the landfall of tropical cyclone Yasi.
The shading represents the extent of the wet season. Sources: BOM, DERM.

Principal coordinates analysis (PCoA) and PERMANOVA were performed using the
capscale() and adonis() functions of the vegan package (Dixon, 2003). The indicspecies
package (Cáceres & Legendre, 2009) was used to determine indicator species with the
multipatt() function. Redundancy analysis (RDA) model selection was based on the AIC
(Akaike information criterion) and calculated by ordistep() in vegan. Pearson correlations
between environment variables were computed using rcorr() from the Hmisc package.
The functions fa.parallel(), fa(), target.rot() and fa.diagram() from the psych package
were used to conduct exploratory factor analysis (EFA), i.e., to identify groups of co-
varying variables. EFA was performed on several subsets of the data including different
environmental parameters and the results were summarized.

RESULTS & DISCUSSION
Sampling and environmental context
Seven inshore GBR sites exposed to different levels of river runoff from the Wet Trop-
ics catchments were surveyed over three years for water chemistry assessments and
determination of microbial community structure. The classification of these sites as
plume or marine sites was based on their distance to the nearest influencing river mouth
(Table S1) and matched well with their river exposure index as calculated by oceano-
graphic modeling (Fig. 1); sites <20 km from a river mouth were more highly exposed
to riverine water (>20 conc.d) than sites >20 km away (<15 conc.d).

The weather in the Tully catchment from 2010 to 2013 followed the expected seasonal
dynamics, dry and cool conditions between the months of May and October, hot and
humid with most of the annual rainfall from November to April (Fig. 2). However,
the 2010–11 wet season was marked by extreme weather (Table S2) and the landfall
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of category 5 tropical cyclone Yasi (3 February 2011), that significantly affected coral
reefs (Perry et al., 2014). Annual river discharges reached a record high (Schaffelke et
al., 2011), causing elevated exposure to nutrients, PSII herbicides and sediments across
most inshore GBR regions (Devlin et al., 2012b; Kennedy et al., 2012; Perry et al., 2014).
The following wet season (2011–12) represented a return to typical weather conditions,
with river discharge close to the long-term median (Schaffelke et al., 2012a;Wallace et al.,
2014). However, coral reef recovery was delayed until 2014, when the coral health index
reached pre-2011 levels again (Thompson et al., 2014).

Microbial diversity
The archaeal and bacterial microbial profiles obtained by Roche-454 sequencing of 16S
rRNA gene amplicons were rarefied (279 counts per sample) to allow comparison of
microbial profiles (Fig. S1). A ten times higher sequencing effort would have been needed
to sample nearly all the OTUs present in these aquatic samples (richness; Fig. S1A).
Nevertheless, the chosen rarefaction depth recovered the vast majority of archaeal and
bacterial diversity (Shannon–Wiener index; Fig. S1B). The microbial diversity of the
rarefied profiles was calculated, with a median richness of ∼65 OTUs in the river, and
∼90–100 at the marine and plume sites (Fig. 3A). At plume sites, richness (Fig. 3A)
and evenness (Fig. 3B) were higher in the dry season than in the wet season, which
corresponded to a larger overall diversity (Shannon–Wiener index) in the dry season
(Fig. 3C) (Mann–Whitney U test; p< 0.05).

Establishing a microbial monitoring baseline for inshore GBR
Taxonomic assignments and gene copy number correction were conducted to produce
accurate estimates of microbial relative abundance (Angly et al., 2014) (Fig. S2) that yield
an understanding of the prevalence of microbial taxa in the GBR lagoon waters. At a
coarse taxonomic level, the bacterial orders Sphingobacteriales, Burkholderiales, and
Xanthomonadales dominated the TR river site (Fig. 4), while the archaeal order E2 and
bacterial orders Rickettsiales and Synechococcales were prevalent at the plume and marine
sites (Fig. 4). On average, Rickettsiales and E2 had higher relative abundance at the
marine sites (29.6 and 17.7% respectively) compared to the plume sites (20.4 and 10.4
% respectively). This distribution was not constant over time, and notably, the plume
sites were characterized by a large fraction of Burkholderiales in the January–March 2011
period, i.e. the extreme wet season 2010–11. Flavobacteriales were found in all sites,
riverine, plume and marine. Burkholderiales are Betaproteobacteria commonly found
in rivers (Cottrell et al., 2005; Ghai et al., 2011; Liu et al., 2012). Sphingobacteriales have
been reported at riverine locations affected by waste water treatment effluent (Drury,
Rosi-Marshall & Kelly, 2013), where they may degrade complex compounds such as
herbicides and antibiotics (Kämpfer, 2011). Synechococcales such as those found in
the plume and marine sites include the Synechococcus and Prochlorococcus genera, which
represent themain photosynthetic bacteria in oceanic waters (Partensky, Blanchot & Vaulot,
1999; Partensky, Hess & Vaulot, 1999), and the small heterotrophic Rickettsiales are also
commonly reported in the ocean (Morris et al., 2002;Carlson et al., 2008).More specifically,
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Figure 3 Seasonal and spatial differences in microbial diversity. Boxplot of seasonal (wet or dry) and
spatial (three runoff exposure categories) differences in bacterial and archaeal diversity: (A) observed OTU
richness, (B) Shannon-Wiener evenness, (C) Shannon-Wiener index. Boxes represent the first quartile,
median and third quartile of the data, whiskers the minimum and maximum, and circles the outliers.
Blue bars show the statistical comparisons performed and significant differences are represented by a star
(Mann–Whitney U test; p< 0.05).
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Figure 4 Distribution and dynamics of abundant microbial orders for the seven sites surveyed in
2011, 2012–2013.Microbial orders present at less than 10% relative abundance in all samples were omit-
ted. The shading represents the extent of the wet season.

both orders were previously identified in coral reef waters (Kelly et al., 2012; Lu et al., 2015).
However, Thermoplasmata E2 Archaea have only occasionally been reported in temperate
surface seawater (Massana et al., 1997; Pernthaler et al., 2002). These Archaea are motile
photo-heterotrophic cells focused on the degradation of protein and lipids (Iverson et
al., 2012) and are found in coral mucus, suggesting a potential role in maintaining coral
health (Kellogg, 2004).

Genomic methods such as 16S rRNA gene amplicon sequencing are effective for
marine monitoring (Bourlat et al., 2013). The present taxonomic characterization of the
microbial communities in inshore GBR waters represents a baseline against which future
microbiological studies can be compared. This baseline may prove valuable for assessing
future change in this reef ecosystem, be it further degradation or recovery.

Geographical and temporal distribution of OTUs
Non-constrained ordination (PCoA) was applied to get a precise account of the dynamics
and distribution of specific microbial taxa in inshore GBR. At the finer operational
taxonomic unit (OTU) level (Fig. 5A), significant spatial (distance to river mouth and site
type; PERMANOVA, p< 0.05) and temporal effects (wet or dry; PERMANOVA, p< 0.05)
were confirmed. Site type (riverine, plume or marine) had the strongest effect (27.8%
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Figure 5 Spatiotemporal organization of microbial communities. PCoA plot showing the spatiotem-
poral organization of microbial communities based on their Hellinger dissimilarity. Symbol color, shape
and size depend on the type of site, season of collection and distance from the Tully River mouth, respec-
tively. The OTUs explaining the largest variation are represented by arrows and their assigned Green-
genes ID and genus-level taxonomy is shown. A star indicates indicator OTUs (indicator species analysis;
p< 0.05).
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explained variance along PC1, Fig. 5A), followed by seasons (wet or dry) (10.0% explained
variance along PC2, Fig. 5A).

Marine and plume samples were characterized by indicator OTUs, i.e. OTUs
characteristic of the marine and plume areas (indicator species analysis; p< 0.05). These
indicator OTUs belonged to the Rickettsiales (e.g., Pelagibacteraceae), Synechococcales
(e.g., Prochlorococcus), Acidimicrobiales (e.g., OCS155), and the Archaeal order E2
(e.g., Marine Group II) (Fig. 5A), which is largely consistent with the trends observed
at the order level (Fig. 4). The main difference between the OTU- and order-level analyses
(Figs. 5 and 4 respectively) was the detection of OCS155, an OTU indicator of marine and
plume sites (Fig. 5A). OCS155 belongs to the Acidimicrobiales, a group of likely planktonic,
free-living microorganisms with a photo-heterotrophic lifestyle (Mizuno, Rodriguez-Valera
& Ghai, 2015) found in all tropical and temperate photic areas (Ghai et al., 2013).

Indicator OTUs for the river samples were also identified (indicator species analysis;
p< 0.05), including members of the orders Burkholderiales (family Comamonadaceae,
e.g. Limnohabitans, Acidovorax and Rhodoferax ; family Oxalobacteraceae), and
Sphingobacteriales (family Flexibacteraceae, e.g., Arcicella; family Chitinophagaceae)
(Fig. 5A). These results are congruent with those at the order level (Fig. 4). The presence
of riverine OTUs belonging to the order Burkholderiales and Sphingobacteriales at some
plume sites surveyed in the wet months (Figs. 4 and 5A), when river discharge is high, is a
sign that these sites are affected by riverine water effluent.

When repeating the PCoA with the marine samples only, i.e. restricting the analysis to
samples unaffected by river output, a clear partition between dry and wet seasons (Fig. 5B)
was seen (PERMANOVA, p< 0.05). All samples clustered in one of two season-specific
groups arranged along PC1, except for one sample collected at TT4 in December 2011.
Several indicator OTUs were identified (indicator species analysis; p< 0.05) (Table S3),
e.g., Pelagibacteraceae (3 OTUs), Pirellulaceae (2 OTUs) and Marine group II (2 OTUs),
whichwere specific of the dry season.Generally though,Marine group IIOTUs seemed to be
more abundant in the wet season (Figs. 5A and 5B). Previous studies have shown seasonality
in near-shore microbial communities (Treusch et al., 2009; Gilbert et al., 2009; Gilbert et
al., 2012). In particular, Pelagibacter is known to exhibit seasonality (Alonso-Sáez et al.,
2007; Carlson et al., 2008; Eiler et al., 2009; Fortunato et al., 2013). Overall, the microbial
communities of the GBR lagoon seem to respond to seasonal influence, although it is not
as pronounced as the influence of geographical location, an observation that was also made
in a previous investigation of river to ocean gradient (Fortunato et al., 2012).

In addition to a seasonal effects, GBR lagoon samples were susceptible to short term
effects of potentially high magnitude. Rapid community changes were evident when
looking at the Tully transect samples (TT1–4) collected in the wake of Cyclone Yasi
(03 Feb 2011) (Fig. S3). The influence of Tully river input was marked, with elevated
levels of Sphingobacteriales and Burkholderiales recorded between 13 and 17 February.
While these changes were especially pronounced at the Tully River mouth, even the
offshore site TT4 experienced analogous changes in this period. Especially large changes
in community structure were observed between consecutive days, on February 12–13
(Fig. 2). These findings add to previous investigations of soil and gut microbiota, which
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have shown that community composition can change within a few days (Schmidt et al.,
2007; Michelland et al., 2011; David et al., 2014). While baselines may be established using
e.g., monthly sampling, it is clear that future research should adopt an intensive daily
sampling regimen to better characterize such transient changes in estuarine and marine
microbial communities.

Environmental drivers of coastal microbial dynamics
A range of measurements describing the environmental context of the microbial samples
were collected in this study, including temperature, salinity, bottom depth and water
chemistry variables (concentrations of suspended solids, silica, chlorophyll a, the herbicide
diuron, dissolved and particulate form of carbon, nitrogen and phosphorus), and
complemented with weather condition data (Tully River discharge, local rainfall and
solar exposure). Many of these environmental parameters were highly correlated (Pearson
test; 48.6% of the pairs with r > 0.3), requiring the need for EFA to extract groups of
uncorrelated parameters. Following this procedure (Fig. S4), four independent factors
were identified. Factor MR1 included local rainfall and Tully River discharge. Factor MR2
included chlorophyll a, suspended solids and other particulates (POC, PN, PP). FactorMR3
included DIN and salinity and can be interpreted as mixing with freshwater. Factor MR4
combined water temperatures and solar exposure. Although larger discharge (factor MR1)
can lead to increased suspended solids (factor MR2) and salinity decrease (factor MR3),
factor MR1, MR2 and MR3 were not directly correlated because salinity and the amount
of suspended solids depend not only on site location (proximity to the river mouth) but
also on the action of wind and waves, which homogenize the water column and resuspend
sediments (Larcombe et al., 1995;Orpin & Ridd, 2012; Fabricius et al., 2014). Awater quality
index based on comparison to water quality guidelines (GBRMPA, 2010) and ranging from
−1 for poor quality to +1 for very good quality was previously introduced (Thompson et
al., 2013). This index aggregates scores given to four indicator concentrations (suspended
solids, chlorophyll a, particulate nitrogen, particulate phosphorus), which are all part of
the suspended material factor (factor MR2) identified by EFA in the present study. Diuron
has a strong association with sediments (Stork, Bennett & Bell, 2008; Balakrishnan, Takeda
& Sakugawa, 2012; Xu et al., 2013) and is also included in this factor. Overall, this suggests
that factor MR2 can be interpreted as the quality of the water.

Constrained ordinations (RDA) were carried out to study the relative importance
of the four independent factors (MR1–4) on microbial community structure. A single
environmental parameter was chosen to represent each factor prior to conducting RDA
with model selection: rainfall for factor MR1, water quality index for MR2, salinity for
MR3, and water temperature for MR4 (Fig. 6). These four environmental parameters
were significantly associated with microbial community composition (PERMANOVA,
p< 0.05).Microbial community structure was affected by temperature (Fig. 6A), consistent
with previous findings in the Western English Channel (Gilbert et al., 2009), which could
explain the seasonality identified in marine sites. Further, seasonality can be attributed
to the higher rainfall typical of the wet season (Fig. 6A). However, large changes could
be attributed to decreases in water quality index and salinity, especially for plume sites
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Figure 6 Relationship between environmental parameters andmicrobial profiles. RDA plot showing
the relationship between GBR environmental parameters and Hellinger-transformed microbial profiles:
(A) for all environmental factors, and (B) with the contribution of salinity removed. Disks represent sam-
pling sites and are colored according to the AIMS water quality index (dark green: very good, green: good,
yellow: moderate, orange: poor, red: very poor). OTUs are depicted by red crosses and the genus-level
Greengenes taxonomy of the most discriminating ones is shown. The factors explaining sample distribu-
tion are represented by blue arrows: rainfall in the last 7 days (rain_7d), water temperature (water_temp),
water quality index (water_qual_idx) and salinity. Any significant association is indicated by a star (PER-
MANOVA; p< 0.05).
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(Fig. 6A), with negative consequences for corals (Fabricius et al., 2014). These changes can
be interpreted as the effect of riverine floodwater, which was especially pronounced for
sites located near the Tully river mouth, and helps explain the geographical pattern seen
in microbial communities. The effects of salinity and water quality index were mostly
collinear in Fig. 6A, despite the fact that they represent two separate factors (MR2 and
MR3). Repeating the RDA analysis with the influence of salinity removed (conditioning
term, Fig. 6B), water quality index was still identified as a significant driver of microbial
communities (PERMANOVA, p< 0.05). This suggests that, as a whole, nutrient, organic
compounds and herbicides such as diuron brought by riverine water into the ocean have
an effect on microbial communities.

RDA analysis was also conducted to identify the factors driving the large, transient
changes detected by microbial profiling at the plume sites on 12–13 February 2011 (Fig.
S5). Being only nine days after the landfall of tropical cyclone Yasi, this period was
characterized by extreme weather, e.g., high river discharge (12 Feb: 37.1 ML/d; 13 Feb:
36.2 ML/d; 7–13 Feb mean: 27.5 ML/d). While river discharge was similar on the two days,
the February 13 microbial communities were characterized by elevated levels of suspended
solids and lower salinity (PERMANOVA, p< 0.05), suggesting that other environmental
factors may contribute to microbial community structure. We speculate that larger wind or
waves were present on February 13, which would have decreased the vertical stratification
of the water column, resulting in lower salinity and higher concentration of suspended
solids. This example illustrates that salinity and suspended solids at inshore locations may
be a function of both river flow and wind (Schaffelke et al., 2012b; Fabricius et al., 2014).
The 12 February was also marked by an increase in the eukaryotic to prokaryotic reads ratio
(EPR) (Fig. S6), with a maximum EPR of 1.45 reached on February 13 at TT1. The most
abundant eukaryal taxon in this sample was assigned to the hydrozoan genus Merona, that
includes very small organisms that can spawn eggs (Schuchert, 2004). These data could be
interpreted as the potential spawning of hydrozoan or the displacement from their usual
habitat (e.g., the benthic zone) and they illustrate that extreme weather may dramatically
change environmental conditions, thereby affecting all microbial kingdoms (Archaea,
Bacteria and Eukaryota).

CONCLUSIONS
This study is a baseline description of microbial communities in the inshore GBR lagoon.
Marine Group II Archaea, Pelagibacteraceae and Rickettsiales were prevalent in all
the seawater samples. A seasonal effect of temperature and rainfall on the microbial
communities was apparent in the three year sampling period. However spatial effects were
more pronounced, with sites located close to the Tully river mouth including many river-
specific taxa, particularly during the wet season. Seasonal storms like those that occurred in
the wet season 2010–11 caused elevated suspended solids and decreased salinity at plume
sites, which translated into large, transient changes in microbial community structure.
Water quality played a role in driving microbial community structure in the GBR lagoon,
but the complex interconnections between environmental parameters mean that future
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research such as experimental manipulations will be needed to precisely elucidate how
each individual anthropogenic compound shapes microbial community composition and
affects coral reefs.
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