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ABSTRACT

Background. Diabetes and its complications represent a significant public health
burden in the United States. Some communities have disproportionately high risks
of the disease. Identification of these disparities is critical for guiding policy and
control efforts to reduce/eliminate the inequities and improve population health. Thus,
the objectives of this study were to investigate geographic high-prevalence clusters,
temporal changes, and predictors of diabetes prevalence in Florida.

Methods. Behavioral Risk Factor Surveillance System data for 2013 and 2016 were
provided by the Florida Department of Health. Tests for equality of proportions were
used to identify counties with significant changes in the prevalence of diabetes between
2013 and 2016. The Simes method was used to adjust for multiple comparisons.
Significant spatial clusters of counties with high diabetes prevalence were identified
using Tango’s flexible spatial scan statistic. A global multivariable regression model was
fit to identify predictors of diabetes prevalence. A geographically weighted regression
model was fit to assess for spatial non-stationarity of the regression coefficients and fit
a local model.

Results. There was a small but significant increase in the prevalence of diabetes in
Florida (10.1% in 2013 to 10.4% in 2016), and statistically significant increases in
prevalence occurred in 61% (41/67) of counties in the state. Significant, high-prevalence
clusters of diabetes were identified. Counties with a high burden of the condition
tended to have high proportions of the population that were non-Hispanic Black,
had limited access to healthy foods, were unemployed, physically inactive, and had
arthritis. Significant non-stationarity of regression coefficients was observed for the
following variables: proportion of the population physically inactive, proportion with
limited access to healthy foods, proportion unemployed, and proportion with arthritis.
However, density of fitness and recreational facilities had a confounding effect on
the association between diabetes prevalence and levels of unemployment, physical
inactivity, and arthritis. Inclusion of this variable decreased the strength of these
relationships in the global model, and reduced the number of counties with statistically
significant associations in the local model.

How to cite this article Lord J, Roberson S, Odoi A. 2023. A retrospective investigation of spatial clusters and determinants of diabetes
prevalence: scan statistics and geographically weighted regression modeling approaches. Peer] 11:¢15107 http://doi.org/10.7717/peerj.15107


https://peerj.com
mailto:aodoi@utk.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.15107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.15107

Peer

Conclusions. The persistent geographic disparities of diabetes prevalence and temporal
increases identified in this study are concerning. There is evidence that the impacts of
the determinants on diabetes risk vary by geographical location. This implies that a

one-size-fits-all approach to disease control/prevention would be inadequate to curb

the problem. Therefore, health programs will need to use evidence-based approaches
to guide health programs and resource allocation to reduce disparities and improve

population health.

Subjects Diabetes and Endocrinology, Epidemiology, Public Health

Keywords Spatial cluster detection, Diabetes prevalence, Spatial scan statistics, Geographically
weighted regression, GWR, Determinants, Risk factors, GIS, Geographic Information Systems

INTRODUCTION

Diabetes mellitus and its complications represent an ongoing public health challenge in
the United States (US). An estimated 26.9 million people in the US have been diagnosed
with diabetes, while an additional 7.3 million who are estimated to be living with the
condition have yet to be diagnosed (Centers for Disease Control and Prevention, 2020).
Obesity, physical inactivity, and dietary pattern are among the most well-described
modifiable risk factors of Type 2 diabetes mellitus (Bellou et al., 2018). Complications
associated with chronic diabetes include cardiovascular disease, retinopathy, renal disease,
neuropathy, and periodontal disease (International Diabetes Federation, 2017; Mealey ¢
Ocampo, 2007). In 2017, diabetes had an age-adjusted mortality risk of 21.5 per 100,000
persons, making it the seventh leading cause of death in the US, and representing a 2.4%
increase from the previous year (Kochanek et al., 2019). The condition accounts for a
significant portion of annual healthcare spending in the US, as well as economic costs
due to lost productivity. The total cost associated with diabetes in the US in 2017 was
an estimated $327 billion, representing a 27% increase from 2012 (American Diabetes
Association, 2018).

The burden of diabetes is not uniformly distributed across the US. In particular, the
Southeastern US was characterized as the “diabetes belt” following the identification
of spatial clusters of high diabetes risk in this region in analyses using 2007 and 2008
data (Barker et al., 2011; Shrestha et al., 2012). Rigorous statistical and epidemiological
investigations of spatial patterns and identification of high-risk clusters are essential to
expand upon the findings of previous, nation-wide studies as well as to overcome limitations
associated with more descriptive investigations. For instance, the “diabetes belt” was defined
using a prevalence cut-off of >11% (Barker et al., 2011). Moran Local Indicators of Spatial
Association (LISA), which was used to identify a significant spatial cluster in this region
in a subsequent study, has inherent limitations of multiple comparisons (Shrestha et al.,
2012). Therefore, it is important to continue to monitor the spatial and temporal patterns
of this condition using rigorous epidemiological approaches to better inform control and

prevention efforts.
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The statewide age-adjusted prevalence of diabetes in Florida has been higher than
that of the nation overall during every year since 2011 (Centers for Disease Control and
Prevention Division of Diabetes Translation, 2022). In addition, counties of northern
Florida have been included in the southern extent of the large “diabetes belt” cluster
in nation-wide studies (Shrestha et al., 2012). Our previous analysis focused specifically
on identifying pre-diabetes and diabetes hotspots at the county level within Florida,
using data from the 2013 Florida Behavioral Risk Factor Surveillance System (BRESS).
Multiple clusters with disproportionately high risks of the conditions were detected within
the state, and individual-level determinants of diabetes status differed for cluster and
non-cluster residents (Lord, Roberson ¢ Odoi, 2020). These findings suggest that thorough,
county-level investigations are valuable to inform targeted, evidence-based health planning.
Furthermore, a follow-up analysis identified an increase in pre-diabetes prevalence from
8.0% to 10.5% as well as changes in high-risk cluster locations between 2013 and 2016,
in addition to identifying significant predictors of the observed spatial patterns (Lord,
Roberson ¢ Odoi, 2021). Since the locations of high-risk clusters of pre-diabetes and
diabetes may not be identical (Lord, Roberson ¢ Odoi, 2020), ongoing surveillance is
warranted for diabetes to enable periodic reassessment of spatial patterns and to identify
any changes in these patterns over time. Similarly, since determinants of pre-diabetes
and diabetes may differ, at least at the individual level (Lord, Roberson ¢ Odoi, 2020), an
ecological investigation to identify determinants of spatial patterns of diabetes prevalence
is also warranted in order to guide population-level intervention strategies. Furthermore,
determining whether the strength of associations between diabetes prevalence and these
predictors varies based on location can help tailor such strategies to better meet the needs
of communities. Findings from these investigations will provide critical information for
evidence-based health planning, resource allocation and policy. Therefore, the objectives
of this study were to identify: (1) spatial patterns and high-prevalence county-level diabetes
clusters in Florida in 2016, (2) determinants of diabetes prevalence at the county level using
global and local models, and (3) significant temporal changes in diabetes prevalence and
spatial distribution between 2013 and 2016.

MATERIALS & METHODS

Ethics approval

This study was approved by the University of Tennessee, Knoxville Institutional Review
Board (Number: UTK IRB-19-05440-XM), which determined that it was eligible for
exempt review under 45 CFR 46.101. Category 4: Secondary research for which consent
is not required. All methods were carried out in accordance with relevant guidelines and
regulations.

Study area

This ecological study was conducted in Florida, a state that is comprised of 67 counties and
includes both rural areas and large urban centers. The state’s estimated population, based
on data collected between 2012 and 2016, was 19.9 million, 19.1% of whom were 65 years
of age or older (US Census Bureau, 2016a). County populations ranged from 8,285 in rural
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Figure 1 Urban-rural classification and geographic distribution of counties and major cities in the
state of Florida, USA.

Full-size Gal DOI: 10.7717/peer;j.15107/fig-1

Liberty County to 2.66 million in Miami-Dade, the most populated county in the state

(Fig. 1).

Data sources and data preparation
The various sources of data used for analysis in the current study are listed in Table 1.

Cartographic boundary files for Florida counties were obtained from the US Census
Bureau TIGER Geodatabase and the Florida Geographic Data Library (University of Florida
GeoPlan Center, 20225 US Census Bureau, 2016b). Behavioral Risk Factor Surveillance
System (BREFSS) data for 2013 and 2016 were provided by the Florida Department of
Health. State health departments conduct BRFSS surveys, with technical, methodological

and financial support from the Centers for Disease Control and Prevention (CDC) (Centers

for Disease Control and Prevention, 2019). Every three years, the Florida Department of

Health undertakes large sampling, sufficient for obtaining county-level estimates directly
from BRFSS data.
Diabetes status for respondents to the BRFSS survey was based upon self-report that

they had been told by a doctor that they had diabetes, not related to pregnancy. Additional
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Table 1 Data sources and variables used in the study of geographic disparities and temporal changes in prevalence of diabetes in Florida.

Source Data obtained

County Health Rankings and Roadmaps project Percent of the population with limited access to healthy foods

Florida Behavioral Risk Factor Surveillance System (BRFSS) Respondent diabetes status (self-reported)
(2013, 2016) Respondent’s county of residence
Age of respondent
Body mass index of respondent (BMI)
Physical activity level of respondent
Respondent arthritis status
Respondent disability status
Respondent health insurance status

Health Resources and Services Administration Area Health Number of primary care physicians per county

Resource Files (2016)

Lietal (2014) 2010 US Standard Population for age adjustment

National Center for Health Statistics classification scheme County rural-urban classification data

(2013)

United States Census Bureau American Community Survey Median household income

5-year estimates (2012-2016 and 2009-2013) Percent of the population 16 years and older who are unemployed

Percent of the population living below the federal poverty level

Percent of the population 25 years and older with less than a high school education
Percent of the population 16 years and older who are Hispanic

Percent of the population 16 years and older who are non-Hispanic Black

Percent of the male population

Percent of workers 16 years and older that walked or biked to work

Percent of workers 16 years and older that commuted to work for longer than

60 min one way

United States Census Bureau TIGER Geodatabase County-level cartographic boundary shapefile
United States Census Bureau County Business Patterns Number of limited service (fast food) restaurants per county
(2016) Number of fitness and recreational centers per county

variables extracted from the BRFSS database for each respondent included age, body
mass index (BMI), leisure time physical activity, arthritis, disability (defined as an activity
limitation due to health problems), health insurance coverage, and county of residence.
Survey questions with missing responses were excluded from analysis. Data obtained
from the BRESS database were aggregated to the county level prior to analysis using SAS
software (SAS Institute, 2016). Age adjustment of diabetes prevalence to the 2010 United
States standard population (Li et al., 2014) was performed as follows. First, weighted
frequencies of respondents with and without diagnosed diabetes in each of three age
groups (18—44, 45-64, and 65 years and older) were computed using the SURVEYFREQ
procedure in SAS 9.4 (SAS Institute, 2016). Then, direct age standardization to the 2010
U.S. standard population was performed using age-adjustment weights for these groups
(Li et al., 2014).

The 2013 National Center for Health Statistics (NCHS) classification scheme was
used for rural-urban designation of Florida counties (Fig. 1) (Ingram ¢ Franco, 2014).
In this scheme, metropolitan counties are categorized as either large, medium, or small
metro counties. Large metro counties, which have at least 1 million residents, are further
subdivided into “central” and “fringe” categories (Ingram ¢ Franco, 2014). Medium metro
counties have between 250,000 and 999,000 residents, and small metro counties have

Lord et al. (2023), PeerdJ, DOI 10.7717/peerj.15107 5/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.15107

Peer

under 250,000 inhabitants (Ingram ¢ Franco, 2014). Nonmetropolitan counties are either
categorized as micropolitan (with urban cluster populations of between 10,000-49,999
people) or noncore (rural areas that do not qualify as micropolitan) (Ingram ¢ Franco,
2014).

Data on demographic and socioeconomic characteristics of counties, as well as
commuting data for county populations, were extracted from the 2012-2016 ACS 5-year
estimates (US Census Bureau, 2016a). The following demographic variables were obtained:
percentage of the population who were Hispanic, percentage who were non-Hispanic Black,
and percentage of males. Socioeconomic variables included median household income,
percent unemployment among those 16 years and older, percent of the population with
income below the federal poverty level, and percent with less than a high school education
among those 25 years and older. Commuting information included percent in each county
who walked or biked to work, and percent whose one-way commute to work that was
longer than 60 min.

Physician workforce data were obtained from the Health Resources and Services
Administration (HRSA) 2016 Area Health Resource Files (Health Resources and Services
Administration, 2016). The number of physicians per capita was computed using the
number of primary care physicians per county and the total county population. The
percent of the population with limited access to healthy foods in each county was obtained
from the County Health Rankings and Roadmaps project, which used 2015 data. Criteria
used to define limited access to healthy foods include an annual family income of 200%
of the federal poverty level or less, and distance from a grocery store (further than 10
miles in rural areas, or one mile in non-rural areas) (University of Wisconsin Population
Health Institute, 2019). The number of limited service (fast food) restaurants and fitness
or recreational centers in each county in 2016 were obtained from the U.S. Census Bureau
County Business Patterns (CBP) data (US Census Bureau, 2016c).

Descriptive statistics

Descriptive analyses were conducted using SAS 9.4 (SAS Institute, 2016). Continuous
variables that were normally distributed, based on results of the Shapiro-Wilk test, were
summarized using mean and standard deviation, while median and interquartile ranges
were used for non-normally distributed variables.

Spatial cluster identification and investigation

Tango’s flexible spatial scan statistic (FSSS) was used to identify significant high-prevalence
spatial clusters of diabetes using FleXScan software (Tango ¢ Takahashi, 2005). The
maximum size for the spatial scanning window was set a priori to 15% of the regions in
the study area (10 counties) in order to avoid detecting unreasonably large clusters (Tarngo
& Takahashi, 2005). The model was specified as binomial using restricted log-likelihood
ratio (LLR). To calculate p-values for statistical inference, 999 Monte Carlo replications
were used, with a cutoff p-value of <0.05 for rejecting the null hypothesis of random spatial
distribution of cases. The cluster with the largest value of the restricted LLR was identified
as the primary cluster while the rest of the statistically significant clusters were secondary
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clusters. In order to avoid reporting low-risk clusters, secondary clusters were reported if
the prevalence ratio (PR) was greater than or equal to 1.2.

Investigation of predictors of county-level diabetes prevalence
Global model

A global multivariable ordinary least squares regression model was built in SAS 9.4 to
identify predictors of county-level diabetes prevalence in 2016 (SAS Institute, 2016). Global
models estimate one coefficient for each explanatory variable, averaged over all locations
in the study area. Spearman’s rank correlation coefficient was first used to identify highly
correlated (| 5] > 0.7) continuous potential predictor variables. To avoid multicollinearity
during regression modeling, only one of a pair of highly correlated variables was selected as
a potential predictor, based upon biological and statistical considerations. Once potential
predictors for consideration in the modeling process were selected, a multivariable model
with the outcome of age-adjusted county diabetes prevalence was fit using a two-step
process. First, univariable associations between potential predictor variables and county
diabetes prevalence were assessed. Variables that had significant univariable associations
at a p-value of <0.15 were then considered for multivariable modeling. Manual backwards
elimination, with a critical p-value of 0.05, was performed to fit a multivariable model to
the data, with the generalized linear modeling procedure in SAS 9.4 (SAS Institute, 2016).
Variance inflation factor (VIF) was used to assess for multicollinearity. Values of VIF >10
indicated unacceptably high levels of collinearity between variables in the model (Dohoo,
Martin & Stryhn, 2012). If removal of a variable from the model resulted in a change in
the estimated regression coefficients of any of the remaining variables of greater than
20%, it was considered as a potential confounder and retained in the model regardless
of statistical significance. Residual plots were generated to assess whether assumptions of
homoskedasticity and normality of distribution of residuals were met.

Local model

Local geographically weighted regression (GWR) models are used to investigate spatial
non-stationarity of the relationships between explanatory and dependent variables. These
models estimate as many regression coefficients as the number of locations in the study area,
and are important for investigating geographically varying associations between dependent
and independent variables. GWR4 software was used to investigate if these associations
varied by geographical location (Nakaya et al., 2015). Explanatory variables from the final
global model for diabetes prevalence were specified as independent variables in the local
GWR models. The adaptive bi-square kernel method was used, and the optimal bandwidth
was identified using the Golden section search method. Corrected Akaike’s information
criterion (AICc) was used to compare model fit. The geographical variability test was used
to assess for significant spatial variation in local coefficients for each explanatory variable.
Coefficients were considered to have significant spatial variability (non-stationarity) if the
difference in AICc reported by the geographic variability test was < —2. Spatial dependence
of the residuals of the local GWR model was assessed using Moran’s I with queen contiguity
weights, using GeoDa software (Anselin, Syabri ¢ Kho, 2006). Statistical significance was
assessed using 999 Monte Carlo replications.
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Assessment for temporal changes

Two-tailed tests of equality of proportions (or Fisher’s exact tests when appropriate
due to sample size) were used to identify significant changes between 2013 and 2016

in diabetes prevalence and county-level predictors from the final multivariable model
described above. Since these data were obtained from the BRFSS survey and the American
Community Survey, which use random sampling, the values for the two time periods were
based on independent samples (Florida Department of Health, 2016; US Census Bureau,
2022). Tests for equality of proportions, with adjustment for multiple comparisons using
the Simes method, were performed using R software (R Core Team, 2020).

Cartographic displays

County-level data were imported to ArcGIS (ESRI, 2017), which was used to perform
all geographic information system (GIS) manipulations and generate maps. Choropleth
maps were generated to display age-adjusted diabetes prevalence for 2013 and 2016, using
Jenks’ optimization classification scheme (natural breaks) to determine the breakpoints
used for display of continuous data (Jenks, 1967). The same intervals used to display 2013
diabetes prevalence were also applied to the 2016 map to enable visual comparison of
spatial patterns. Statistically significant changes in county-level diabetes prevalence were
also displayed in choropleth maps. In addition, a map was generated to display significant
spatial clusters of high diabetes prevalence.

Choropleth maps were also generated to display explanatory variables from the
final multivariable regression model as well as statistically significant changes in these
characteristics between 2013 and 2016. Local coefficients from explanatory variables
that had significant non-stationarity were also imported into ArcGIS and mapped. Local
coefficients were displayed for counties with a statistically significant relationship between
the explanatory and dependent variable based on the corrected ¢-statistic recommended
by da Silva & Fotheringham (2016).

RESULTS

Descriptive analyses

There were 36,955 total respondents to the Florida BRFSS survey in 2016. A total of 584
respondents with missing age data were excluded from further analysis; therefore, responses
for 36,371 participants were included in the current study. The median age of respondents
was 60 years, but ranged from 18 to 99, with an interquartile range of 45 to 71. Self-reported
race/ethnicity for the majority of respondents was non-Hispanic White (57.9%), followed
by Hispanic (23.4%) and non-Hispanic Black (14.1%).

In 2013, the state-wide age-adjusted prevalence of diabetes was 10.1%. In 2016, state-wide
diabetes prevalence was slightly higher (10.4%), ranging from 4.9% in St. Johns County
to as high as 28.5% in Glades County (Figs. 1 and 2). The rural counties surrounding the
Tallahassee area in the panhandle and northern Florida tended to have high prevalence
proportions of diabetes. Counties in the inland south-central portion of the state, which
were comparatively more rural and less densely populated than those along the Atlantic
and Gulf coasts, also had high diabetes prevalence. The major urban centers bordering this
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Figure 2 Age-adjusted county-level diabetes prevalence in Florida, (A) 2013 and (B) 2016.
Full-size Gal DOI: 10.7717/peerj.15107/fig-2

region that tended to have comparatively lower prevalence proportions of diabetes included
Miami (Miami-Dade County) and Orlando (Orange County). However, Hillsborough
County, a large central metro county where Tampa is located, had relatively high diabetes
prevalence in 2016.

Temporal changes in diabetes prevalence

There was a small but statistically significant (p < 0.0001) increase in state-wide diabetes
prevalence between 2013 (10.08%, 95% confidence interval (CI): [10.07%-10.09%]) and
2016 (10.42%, 95% CI: [10.40%—-10.43%]). Significant changes in diabetes prevalence
between the two time periods were observed in 64 of the 67 counties (Figs. 3A—3B). Only
Clay, Suwannee, and Washington counties did not have statistically significant changes
between 2013 and 2016 (Figs. 1 and 3). Among the counties with significant changes
in diabetes prevalence, 35.9% (23/64) had decreases, while 64.1% (41/64) had increases
in diabetes prevalence. Glades County, a rural county in south-central Florida, had the
greatest relative increase in diabetes prevalence (21.9%, a relative increase of 330.4%),
while Hendry County, the adjacent county to the south, had the greatest relative decrease
in diabetes prevalence (8.4%, a relative decrease of 42.9%) (Figs. 1 and 3).

Spatial clusters of diabetes

In 2013, six significant spatial clusters of high diabetes prevalence with PRs >1.2 were
identified, and seven were identified in 2016 (Table 2, Figs. 4A—4B). The primary cluster
in 2013 was located in central Florida, and included both rural counties and the major
metropolitan areas of Tampa (Hillsborough County) and Orlando (Orange County). The
primary cluster in 2016 included many of the same counties, but shifted south to include
more rural counties, and no longer included Orlando (Orange County). The prevalence
of diabetes in this cluster was 23% higher than the state prevalence (PR = 1.23, p =
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Figure 4 High-prevalence purely spatial clusters of diabetes in Florida, (A) 2013 and (B) 2016.
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0.001). Cluster 5 (PR = 1.52, p = 0.001), adjacent to the primary high-prevalence cluster,
consisted of a single county, Okeechobee County. The prevalence of diabetes in this county

was 15.8% in 2016. With the exception of cluster 5, all secondary diabetes clusters with

prevalence ratios >1.2 in 2016 were located in north Florida and across the panhandle.

In 2016, the two largest secondary diabetes clusters, clusters 2 and 3, were composed of nine

and seven counties, respectively. These clusters were located in rural areas in the western
panhandle (PR = 1.30, p = 0.001) and northern Florida (PR = 1.49, p = 0.001). While
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Table 2 Purely spatial significant clusters of diabetes in Florida, 2013 and 2016.

Cluster Population Observed Expected PR* p-value
number number
of cases of cases
2013
1 2,926,257 367,761 294,998 1.25 0.001
2 4,3847 8,168 4,419 1.85 0.001
3 3,5671 7,005 3,596 1.95 0.001
4 173,760 23,578 17,517 1.35 0.001
5 137,671 17,448 13,879 1.26 0.001
6 21,720 3,082 2,190 1.41 0.001
2016
1 1,979,806 254,713 206,276 1.23 0.001
2 819,546 110,750 85,388 1.30 0.001
3 195,164 30,318 20,334 1.49 0.001
4 36,285 6,264 3,781 1.66 0.001
5 40,390 6,395 4,208 1.52 0.001
6 39,474 5,285 4,113 1.28 0.001
7 5,192 686 541 1.27 0.001
Notes.

2Prevalence ratio.

there was some overlap between high-prevalence diabetes clusters in northern Florida

and the eastern panhandle between 2013 and 2016, none of the counties in the western

panhandle were part of a high-prevalence cluster in 2013. All the counties in the western

panhandle that were included in cluster 2 had statistically significant increases in diabetes

prevalence between 2013 and 2016.

County characteristics and significant predictors of diabetes

prevalence

Summary statistics of county characteristics investigated as potential predictors of county

diabetes prevalence are displayed in Table 3. The majority of these county characteristics

had significant univariable associations with age-adjusted diabetes prevalence (Table 4).

The results of the global multivariable model indicated that counties with high diabetes

prevalence tended to have high proportions of: non-Hispanic Black population (p =

0.020), population with limited access to healthy foods (p = 0.018), physically inactive
populations (p = 0.031), and individuals with arthritis (p = 0.032), as well as high

unemployment rates (p = 0.032) (Table 5). Fitness and recreational facility density was not

statistically significant in the global multivariable model (p = 0.099), but was a confounder

in the associations between county-level diabetes prevalence and levels of unemployment,

arthritis, and physical inactivity. Since removal of this variable from the model did not

substantially improve model fit to the data (AAICc = 0.081) and increased the magnitude

of the unemployment, arthritis and physical inactivity variables’ coefficients by 28.5%,
25.4%, and 28.5%, respectively, it was retained in the final global model (Table 5).
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Table 3 Summary statistics of variables considered as potential predictors of county-level diabetes prevalence in Florida, 2016.

Predictor variable

Mean (SD%)

Median (IQR")

Min. (county)

Max. (county)

Proportion that walk or bike to work’
Proportion with obesity

Primary care physicians per 1,000 persons
Proportion with less than high-school education’
Proportion with arthritis

Proportion non-Hispanic Black

Proportion Hispanic'

Median household income (in $10,000)
Proportion with a commute >60 min.’
Proportion physically inactive’

Fitness & recreational centers per 1,000 persons’

Proportion without health insurance coverage’
Proportion with limited access to healthy foods’
Limited service restaurants per 1,000 persons
Proportion below the federal poverty line’
Proportion reporting a disability

Proportion unemployed

Proportion male’

NCHS* urban-rural classification’

0.021 (0.015)
0.313 (0.065)
0.548 (0.335)
0.135 (0.062)
0.282 (0.062)
0.143 (0.093)
0.122 (0.120)
4.521 (0.838)
0.083 (0.035)
0.326 (0.070)
0.077 (0.050)

0.169 (0.048)
0.093 (0.057)
0.533 (0.183)
0.111 (0.032)
0.236 (0.046)
0.092 (0.021)
0.507 (0.045)
3.746 (1.627)

0.019 (0.013)
0.306 (0.081)
0.506 (0.429)
0.124 (0.087)
0.290 (0.075)
0.117 (0.104)
0.078 (0.109)
4.422 (1.369)
0.078 (0.049)
0.311 (0.102)
0.073 (0.065)

0.159 (0.054)
0.090 (0.060)
0.531 (0.219)
0.108 (0.036)
0.236 (0.064)
0.087 (0.026)
0.488 (0.055)
3(2)

0.005 (Washington)
0.143 (Martin)

0 (Liberty)

0.044 (St. Johns)
0.152 (Wakulla)
0.028 (Citrus)
0.017 (Holmes)
2.981 (Madison)
0.020 (Hamilton)
0.211 (Martin)

0 (Calhoun, DeSoto, Dixie,
Gadsden, Gilchrist, Glades,
Holmes, Jefferson, Lafayette,
Union, Washington)

0.080 (Sumter)

0 (Gilchrist, Wakulla)
0 (Liberty)

0.043 (Sumter)

0.127 (Miami-Dade)
0.049 (Monroe)
0.423 (Okeechobee)

1

0.111 (Monroe)
0.457 (Union)
2.076 (Alachua)
0.326 (Hendry)
0.463 (Glades)
0.536 (Gadsden)
0.673 (Miami-Dade)
6.952 (St. Johns)
0.183 (Bradford)
0.572 (Dixie)
0.246 (Monroe)

0.346 (DeSoto)
0.310 (Glades)
0.892 (Leon)
0.204 (DeSoto)
0.342 (Levy)
0.150 (Lafayette)
0.607 (Franklin)
6

Notes.

2Standard deviation.

bInterquartile range.

“National Center for Health Statistics.
*Non-normally distributed variables.

The geographic distributions of the determinants of diabetes geographic disparities

identified in the global multivariable model are displayed in Fig. 5. Counties with the
highest proportions of non-Hispanic Black residents tended to be located in northern
Florida along the border with Georgia, or had large population centers such as Jacksonville,
Tampa, and the Miami area. Counties with the highest relative unemployment rates tended
to be in rural parts of the state, including inland-south central Florida, northern Florida and
the north-central panhandle. Most of the counties with the highest relative proportions of
residents with limited access to healthy foods were also located in the inland south-central
region, in addition to the central Atlantic coast. Populations in the inland south-central
counties also reported relatively high levels of physical inactivity, as did those in the rural
counties in the panhandle surrounding Tallahassee. Relatively high arthritis prevalence
tended to occur in counties surrounding the Orlando area in central Florida. Rural counties
of the eastern panhandle and south-central Florida tended to have low densities of fitness
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Table 4 Univariable associations between county characteristics and age-adjusted diabetes prevalence

in Florida, 2016.
Predictor variable Coefficient (95% CI*) p-value
Proportion that walk or bike to work —0.102 (—0.706, 0.502) 0.740
Proportion with obesity 0.302 (0.181, 0.422) <0.0001
Proportion with overweight/obesity 0.303 (0.180, 0.425) <0.0001
Primary care physicians per 1,000 persons —0.049 (—0.073, —0.024) 0.0001
Prop. with less than high-school education 0.285 (0.155, 0.415) <0.0001
Proportion with arthritis 0.255 (0.121, 0.389) 0.0002
Proportion non-Hispanic Black 0.104 (0.009, 0.199) 0.032
Proportion Hispanic —0.009 (—0.086, 0.067) 0.808
Median household income (in $10,000) —0.025 (—0.034, —0.015) <0.0001
Proportion with a commute >60 min. 0.179 (—0.076, 0.435) 0.169
Proportion physically inactive 0.222 (0.104, 0.341) 0.0002
Fitness & recreational centers per 1,000 persons —0.438 (—0.589, —0.287) <0.0001
Proportion without health insurance coverage 0.138 (—0.048, 0.324) 0.145
Proportion with limited access to healthy foods 0.275 (0.131, 0.420) 0.0002
Limited service restaurants per 1,000 persons —0.082 (—0.128, —0.036) 0.0005
Proportion under the federal poverty line 0.358 (0.090, 0.626) 0.009
Proportion reporting a disability 0.216 (0.026, 0.406) 0.026
Proportion unemployed 1.045 (0.679, 1.411) <0.0001
Proportion male —0.016 (—0.217,0.186) 0.880
NCHS" urban-rural classification 0.009 (0.004, 0.014) 0.0005
Notes.
2Confidence interval.
National Center for Health Statistics.
Table 5 Global multivariable regression models predicting county-level age-adjusted diabetes prevalence in Florida, 2016.
Predictor variable Model 1 (reduced model) Model 2 (full model)
Coefficient (95% CI?) p-value Coefficient (95% CI?) p-value
Proportion non-Hispanic Black 0.103 (0.029, 0.177) 0.006 0.088 (0.014, 0.163) 0.020
Proportion unemployed 0.532 (0.173,0.891) 0.004 0.414 (0.035, 0.793) 0.032
Proportion with limited access to healthy foods 0.144 (0.017,0.271) 0.026 0.150 (0.025, 0.274) 0.018
Proportion physically inactive 0.140 (0.046, 0.233) 0.003 0.109 (0.010, 0.207) 0.031
Proportion with arthritis 0.165 (0.049, 0.281) 0.005 0.132 (0.011, 0.252) 0.032
Recreational facilities per 1,000 persons - - —0.142 (—0.311, 0.027) 0.099

AICc"

—283.970

—284.051

Notes.
2Confidence interval.
bCorrected Akaike’s information criterion.

and recreational facilities, while counties with the highest densities of these facilities tended

to be along the coasts and closer to metropolitan areas.

The coefficients of several variables exhibited significant non-stationarity; therefore,

local geographically weighted regression (GWR) models were fit to the data. Local models

were fit for both the full and reduced models to assess the impact of the confounder
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Figure 5 Distribution of predictors of county-level diabetes prevalence in Florida, 2016.
Full-size & DOI: 10.7717/peer;j.15107/fig-5

(fitness and recreational facility density) on the local regression coefficients and their
distribution (Table 6). Goodness-of-fit of each GWR model was similar to that of the
corresponding global model (AAICc (reduced model) = —1.546, AAICc (full model) =
1.474), and the optimal bandwidth size in both analyses was 67 counties, which comprised
the entirety of the study area. However, in both models, there were significant geographic
differences in the strengths of associations between diabetes prevalence and proportion
of the population physically inactive, proportion with limited access to healthy foods,
proportion unemployed, and proportion with arthritis, as evidenced by the results of the
geographical variability test for each variable (Table 6). This implies that the impact and
hence importance of these factors varies by geographic location. Thus, some factors may
play more important roles in influencing diabetes prevalence in some locations than others.
While the strength of associations varied by location for these four variables, the direction
of their associations with diabetes prevalence did not change. There was no evidence of
spatial dependence in the residuals of either GWR model (Moran’s I (reduced model) =
—0.042, p = 0.3880; Moran’s I (full model) = —0.030, p = 0.4340).

The number of counties with significant associations between diabetes prevalence and
levels of unemployment, physical inactivity, and arthritis decreased substantially when
fitness and recreational facility density was included in the full model (Fig. 6). For instance,
the association between the unemployment rate and diabetes prevalence in the reduced
model was significant in all 67 counties, with the highest local coefficients in west-central
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Table 6 Geographically weighted regression models predicting county-level age-adjusted diabetes prevalence in Florida, 2016.

Predictor variable Model 1 (reduced model) Model 2 (full model)

Local coefficients AAICC® Local coefficients AAICC"

Min. Median (IQR") Max. Min. Median (IQR") Max.

Proportion non-Hispanic Black 0.074 0.095 (0.048) 0.152 —1.133 0.058 0.081 (0.053) 0.144 —1.460
Proportion unemployed 0.513 0.531 (0.016) 0.561 —3.286 0.386 0.429 (0.026) 0.462 —4.942
Proportion with limited access to healthy foods 0.068 0.124 (0.109) 0.207 —2.460 0.075 0.140 (0.106) 0.216 —2.232
Proportion physically inactive 0.093 0.129 (0.044) 0.162 —3.228 0.065 0.094 (0.037) 0.131 —3.006°
Proportion with arthritis 0.149 0.163 (0.014) 0.191 —9.381 0.117 0.130 (0.010) 0.149 —5.650
Recreational facilities per 1,000 persons - - - - —0.169 —0.151 (0.021) —0.117 1.563

AICC”

—285.516

—282.577

Notes.
Interquartile range.
bCorrected Akaike’s information criterion.
*Indicates significant non-stationarity of local coefficients.
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Figure 6 Local coefficients of geographically variable predictors of diabetes prevalence in Florida,
2016.
Full-size &l DOI: 10.7717/peerj.15107/fig-6

Florida, particularly along the Gulf coast. However, in the full model this association was
only significant in four counties (Dixie, Gilchrist, Lafayette and Levy counties).

Counties in central and southern Florida had significant associations between diabetes
prevalence and proportion of the population with limited access to healthy foods, and
the distribution of significant local coefficients, which were highest in the southernmost
counties, was similar for the reduced and full models. Similarly, counties with significant
local coefficients for proportion of the population reporting physical inactivity extended
from the eastern panhandle to southern Florida in the reduced model, with the strongest
associations in southern Florida. However, in the full model their distribution was limited
to the southern third of the state. The proportion of the population with arthritis was a
significant predictor of diabetes prevalence in all 67 counties in the reduced model. This
association was strongest in the northeastern portion of the state near Jacksonville and
extending to the rural eastern panhandle, and weaker along the Gulf Coast and in southern
Florida. However, although the coefficient for this variable was deemed to have significant
non-stationarity in the full model based on results of the geographic variability test, local
coefficients for arthritis were not statistically significant in any individual counties.

Changes in county-level characteristics between 2013 and 2016
Relative changes in county characteristics with respect to the identified significant
determinants of geographic disparities in diabetes prevalence are displayed in Fig. 7.
None of the counties had significant changes in fitness and recreational facility density
between 2013 and 2016. Significant changes in the proportion of the population that was
non-Hispanic Black occurred in about half (50.7%) of the counties in the state, but the
magnitude of the changes for many of these counties was less than 5%. The vast majority
(95.5%) of the 66 counties with significant changes in unemployment showed decreases
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Figure 7 Statistically significant changes in predictors of county-level diabetes prevalence in Florida

between 2013 and 2016.

Full-size &l DOI: 10.7717/peer;j.15107/fig-7

in proportion of the unemployed population. Areas with relatively low decreases in the
unemployment rate compared to surrounding counties were located in the panhandle and
northern Florida near the border with Georgia, and south-central Florida, and tended to
have increases in diabetes prevalence between 2013 and 2016.

Most of the counties with statistically significant increases in the proportion of the
population that were physically inactive were located in northern Florida near the eastern
panhandle, overlapping with counties with high diabetes prevalence that formed clusters in
this region. The majority of counties with statistically significant increases in the proportion
of the population with arthritis were located in central Florida between Orlando and Tampea,

and tended to be metropolitan areas.
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DISCUSSION

This study investigated geographic disparities in diabetes prevalence in Florida, assessed
changes between 2013 and 2016, and identified determinants of these disparities. Study
findings are useful for guiding diabetes prevention and control efforts aimed at reducing
disease burden and disparities so as to improve population health. Furthermore, the
methods used in this study may be applied by other researchers and public health officials
in other states to investigate the distribution and determinants of diabetes, or of other
chronic conditions.

Spatial patterns and clusters of diabetes prevalence

Our recent study demonstrated the application of FSSS for the identification of significant
spatial clusters, and investigated temporal changes and determinants of pre-diabetes
prevalence within Florida during the same time period. In that study, persistent geographic
disparities were identified, as were temporal increases in the prevalence of pre-diabetes,
indicating that a similar investigation was thus warranted for diabetes (Lord, Roberson &
Odoi, 2021). The results of the current study indicate that geographic disparities in diabetes
prevalence also continue to exist in Florida, with high-prevalence clusters being identified
in 2013 and again in 2016. These findings demonstrate the value of Tango’s flexible
spatial scan statistic (FSSS), which improves upon some weaknesses of methods used in
other previous studies that have investigated the geographic distribution of diabetes. In
addition to eliminating the problem of multiple comparisons, spatial scan statistics avoid
pre-selection bias, since the exact location and/or size of suspected clusters are not specified
prior to analysis (Kulldorff, 2001). In addition, using Tango’s FSSS enables the detection
of irregularly shaped clusters (Tango ¢ Takahashi, 2005). This approach is highly useful
for the detection of geographic hotspots, and can be applied to various health outcomes of
interest as well as in other states. Counties within the high-prevalence clusters identified
in the current study should be prioritized for resource allocation and intervention efforts
to mitigate the impacts of diabetes in the population. Continuous monitoring using
robust epidemiological techniques is also useful for evaluating the impact of control and
intervention programs.

Predictors of diabetes prevalence

The observed association between diabetes prevalence and the proportion of non-Hispanic
Black residents in a county suggests that racial disparities in diabetes prevalence contribute
to the observed geographic disparities in the burden of the condition. Racial disparities
in diabetes prevalence have been consistently documented in the United States, and
the degree of association between race and diabetes is reportedly affected by contextual
factors, including socioeconomic conditions (Gaskin et al., 2014; LaVeist et al., 2009; Link
& McKinlay, 2009). The proportion of the non-Hispanic Black population was significantly
higher in the high-prevalence counties within the diabetes belt in the southeastern US in
comparison to other counties, which is consistent with the positive association observed
in the current study (Shrestha et al., 2012). This relationship did not exhibit significant
spatial variability, consistent with the findings of another study that investigated predictors
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of diabetes prevalence in counties within and outside of the diabetes belt and found that
the percentage of African American residents was a significant determinant regardless of
geographic location (Myers et al., 2017).

The association between diabetes prevalence and access to healthy foods observed in
this study is also consistent with previous reports that have documented associations
between diabetes and characteristics of the food environment (Ahern, Brown ¢ Dukas,
2011; Cunningham et al., 2018). At the individual level, dietary intake is associated with
Type 2 diabetes risk (Hu, Van Dam ¢ Liu, 2001; Parillo ¢ Riccardi, 2004), and evidence-
based intervention programs such as the Diabetes Prevention Program, which focuses on
individual dietary modification and physical activity, have been successful in preventing the
progression from pre-diabetes to diabetes (Diabetes Prevention Program Research Group,
2002). Results of the current study provide evidence in support of a relationship between
the availability of local food resources and diabetes risk at the county level. The GWR
analysis in this study identified spatial non-stationarity in the association between diabetes
prevalence and access to healthy foods, suggesting that geographic location influences the
relationship between the food environment and diabetes risk. These findings suggest that
policies aimed at improving food access could be particularly impactful in counties with
relatively high diabetes prevalence in southern Florida, where the relationship between
food access and diabetes risk was strongest.

In the current study, levels of unemployment, physical inactivity, and diagnosed
arthritis at the county level were positively associated with county-level diabetes prevalence.
Notably, however, fitness and recreational facility density, which had significant univariable
associations with levels of unemployment (p < 0.0001), physical inactivity (p = 0.0001),
and arthritis (p = 0.0037), had a confounding effect on their associations with diabetes
prevalence. Inclusion of fitness and recreational facility density in the global model
reduced the strengths of these associations, and in the local GWR model, substantially
reduced the number of counties where the associations were statistically significant. These
findings suggest that the availability of health-promoting community resources may, at
least in part, explain the observed relationships between diabetes prevalence and levels of
unemployment, physical activity, and arthritis.

Diabetes risk appears to be impacted by the economic context of the living environment
in addition to individual economic stability (Andersen et al., 2008; Ludwig et al., 2011).
Previous studies in the US have reported that counties with higher unemployment rates
tend to have a higher burden of diabetes (Cunningham et al., 2018; Myers et al., 2017).
County-level unemployment rates are used to reflect socioeconomic disadvantage and the
built environment. Areas with higher levels of unemployment may be characterized by
fewer resources that enable health-promoting behaviors such as exercise. Socioeconomic
circumstances and characteristics of the built environment may impact diabetes risk
by presenting barriers to engaging in recommended physical activity (Booth et al., 2013;
Deshpande et al., 2005; Komar-Samardzija et al., 2012). Indeed, our findings suggest that
the lack of community resources (in particular, fitness and recreational facilities) may
contribute to the diabetes burden in counties with higher unemployment rates, and may
also account for geographic disparities in levels of physical inactivity to some extent.

Lord et al. (2023), PeerdJ, DOI 10.7717/peerj.15107 19/26


https://peerj.com
http://dx.doi.org/10.7717/peerj.15107

Peer

The geographically varying strength of the association between diabetes prevalence and
physical inactivity exhibited a pattern similar to that of access to healthy foods, with the
strongest associations in southern Florida, and no statistically significant relationships in
the northern part of the state where several counties are part of the diabetes belt. A previous
report identified slightly weaker associations between diabetes status and modifiable risk
factors (sedentary lifestyle and obesity) among adults living within diabetes belt counties
compared to those living in the rest of the United States (Barker et al., 2011), which was
consistent with our findings.

While findings of the global model suggested that the proportion of the population
with diagnosed arthritis was a significant determinant of county-level diabetes prevalence,
local associations were not statistically significant in any of the individual counties when
accounting for the confounding variable, fitness and recreational facility density. At the
individual level, arthritis is a common comorbid condition among those with diabetes,
and along with obesity, can be a barrier to engaging in physical activity (Booth et al., 2013;
Centers for Disease Control and Prevention, 2008; Cheng et al., 2012). The age-standardized
prevalence of diagnosed arthritis in the US is higher among adults with lower incomes,
overweight or obesity, and those who report physical inactivity (Theis et al., 2021). Thus,
while the exact reasons for the findings from our study are not clear, they could reflect
associations between built environment resources and proximal risk factors shared by the
two conditions.

Changes in diabetes prevalence between 2013 and 2016

Diabetes prevalence increased both over time and across geographic areas. Since the
prevalence estimates were based on self-reports of diagnosed diabetes, it is possible that
some of the observed increases may be due to improvements in diagnostic and reporting
practices. Indeed, it is worth noting that an increase in total diabetes prevalence in the
United States was observed between 1988—1994 and 2005-2010, with a decrease in the
proportion of total cases that were undiagnosed (Selvin et al., 2014).

It is possible that the observed changes in some of the county characteristics during
the study period contributed to the observed changes in diabetes prevalence. For instance,
many of the counties with statistically significant increases in physical inactivity also
had increases in diabetes prevalence, suggesting that the observed temporal changes in
diabetes prevalence may be attributable to changes in modifiable risk factors in some areas.
However, there were some discrepancies in the observed spatial patterns.

The finding that temporal changes in prevalence were observed in many counties
indicates that continued monitoring of diabetes and its predictors is warranted to identify
sustained changes that could be indicative of emerging trends, in order to guide health
programs. While the causes of the observed changes cannot be determined based upon the
findings of this study, the fact that county characteristics associated with diabetes prevalence
exhibited variable changes across the state highlights the importance of considering local
contextual factors when developing public health programming and policies.
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Strengths and limitations

This study was not without limitations. It was conducted retrospectively, using BRFSS
survey data, and diabetes status of respondents was self-reported. Thus, diabetes prevalence
estimates in this study do not include undiagnosed cases of diabetes and could, to some
extent, reflect access to healthcare. Moreover, the BRESS data used in this study do not
distinguish between Type 1 and Type 2 diabetes. However, Type 2 diabetes represents the
majority (90-95%) of diabetes cases in the United States (Centers for Disease Control and
Prevention, 2017). The above limitations notwithstanding, the present study used robust
statistical approaches, applying flexible scan statistics, which are able to identify irregularly
shaped clusters and overcome limitations of other cluster detection methods, including
problems of multiple testing and pre-selection bias, and local GWR models to investigate
geographic disparities and spatially variable determinants of diabetes in Florida. In order
to guide targeted health planning and program implementation, ongoing epidemiologic
monitoring is essential.

CONCLUSIONS

The findings of this study showed a state-wide increase in diabetes prevalence, as well as
increases in many counties in Florida. Geographic disparities in the burden of the condition
continue to exist in the state, as evidenced by the identified high-prevalence clusters. These
findings are useful for guiding resource allocation geared toward reducing disease burden
and reducing disparities. In addition, this study highlights the value of GWR as a tool for
understanding the differences in importance of different determinants based on geographic
location. The occurrence of spatially varying associations between diabetes prevalence and
risk factors implies that a one-size-fits-all approach to disease control is not practical.
Thus, needs-based, locally-focused approaches to health planning and service provision
are necessary to address disparities and improve population health. Continued monitoring
is important for understanding the epidemiology of diabetes and guiding evidence-based
control and intervention programs.
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