
Open-source software library for real-time inertial
measurement unit data-based inverse kinematics using
OpenSim

Jere Lavikainen1, Paavo Vartiainen1, Lauri Stenroth1, Pasi A. Karjalainen1

1 Department of AppliedTechnical Physics, University of Eastern Finland, Kuopio, Finland

Corresponding Author:
Jere Lavikainen1

Yliopistonranta 1 F (Melania), 70210 Kuopio, Finland
Email address: jere.lavikainen@uef.fi

Abstract
Background. Inertial measurements (IMUs) facilitate the measurement of human motion outside
the motion laboratory. A commonly used open-source software for musculoskeletal simulation
and analysis of human motion, OpenSim, includes a tool to enable kinematics analysis of IMU
data. However, it only enables offline analysis, i.e., analysis after the data has been collected.
Extending OpenSim's functionality to allow real-time kinematics analysis would allow real-time
feedback for the subject during the measurement session and has uses in e.g. rehabilitation,
robotics, and ergonomics.
Methods. We developed an open-source software library for real-time inverse kinematics (IK)
analysis of IMU data using OpenSim. The software library reads data from IMUs and uses
multithreading for concurrent calculation of IK. Its operation delays and throughputs were
measured with a varying number of IMUs and parallel computing IK threads using two different
musculoskeletal models, one a lower-body and torso model and the other a full-body model. We
published the code under an open-source license on GitHub.
Results. A standard desktop computer calculated full-body inverse kinematics from treadmill
walking at 1.5 m/s with data from 12 IMUs in real-time with a mean delay below 55 ms and
reached a throughput of more than 90 samples per second. A laptop computer had similar delays
and reached a throughput above 60 samples per second. with treadmill walking. Minimal
walking kinematics, motion of lower extremities and torso, could bewere calculated from
treadmill walking data in real-time with a throughput of 130 samples per second on the laptop
and 180 samples per second on the desktop computer, with approximately half the delay of full-
body kinematics.

1

2

3

4

5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Conclusions. The software library enables enabled real-time inverse kinematical analysis with
different numbers of IMUs and customizable musculoskeletal models. The performance results
show that subject-specific full-body motion analysis is feasible in real-time, while a laptop
computer and IMUs allowed the use of the method outside the motion laboratory.

Introduction
Inertial measurement units (IMUs) are measurement devices that contain triaxial magnetometers,
gyroscopes, and accelerometers. IMUs used in biomechanics are usually packed into cases that
fit on a human palm. They utilize sensor fusion algorithms such as Kalman filters to estimate the
three-dimensional orientation of the IMUs in space (Paulich et al., 2018). This information can
be used as an alternative to marker-based optical motion tracking systems to perform analysis of
human movement. Compared with optical motion tracking systems, IMUs are cheaper, can be
attached to the subject without the palpation of anatomical landmarks, do not suffer from line-of-
sight issues, are not limited to a specific target volume and can be used in field conditions. These
advantages come at a small cost of accuracy compared with optical motion tracking systems, and
IMU-specific error sources such as drifting (Saber-Sheikh et al., 2010). In addition, IMUs can be
coupled with electromyography (EMG) electrodes to further enhances the versatility of these
sensors for analyzing human movement in sports and clinical applications (e.g., Cometa Srl,
Cometa Systems | Wireless EMG and IMU Solutions; Delsys Incorporated, Trigno Avanti
Platform - Delsys; Noraxon USA, Ultium EMG | Noraxon USA).

OpenSim (Delp et al., 2007) is an open-source software for analyzing the kinematics and
dynamics of musculoskeletal systems. While its inverse kinematics (IK) algorithm originally
utilized only marker-based motion capture data, since version 4.1 (Seth et al., 2018) it has been
possible to utilize IMU orientations as input to the IK algorithm of OpenSim to solve skeletal
motion (i.e., joint angles). The IMU orientation-based IK algorithm minimizes the sum of
squares of the difference between experimental IMU orientations and joint angles of the model.

IK analyses are typically done offline after measurement and data collection.Analysis of
kinematics of motion is typically done offline after measurement and data collection in a process
called inverse kinematics (IK). Recent years have seen progress in some real-time IK (RTIK)
analysis solutions and systems, but these studies (Bonnet et al., 2013; Borbély & Szolgay,
2017; Falisse et al., 2018; Miezal et al., 2017; van den Bogert et al., 2013; Yi et al., 2021) have
mostly focused on specific marker sets and models and their generalization to arbitrary
measurement setups is difficult. For example, in real-time IMU-based applications, Bonnet
et al. ((Bonnet et al., 2013) estimated the real-time inverse kinematics (RTIK) of the trunk
and lower limbs using a single IMU located at the lower back. In another example, sensors
containing IMUs and EMG electrodes, which were placed on surface musculaturemuscles,
were used in a recent study (Yi et al., 2021) to calculate the real-time kinematics and

38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Section Editor, 02/17/23,
How small of a cost of accuracy? Perhaps list range in parentheses

kinetics of the lower limb. However, these studies rely on complex computational methods,
making it difficult for others to repeat and adapt the experiment without knowledge of
sensor fusion or deep learning. The IMU-based RTIK solution by (Miezal et al., . (2017)
does not allow easy switching between musculoskeletal models or quantify how real-time
the solution is.

It has been shown that a full biomechanical analysis of joint and muscle function can be
obtained in real-time with a C/C++ software library (van den Bogert et al., 2013). The
software library was capable of reading marker data and performing IK and inverse
dynamics on a full-body model at more than 120 samples per second. However, the
software is commercial and relies on a single predefined model rather than a subject-
specific or user-defined musculoskeletal model, limiting its usefulness in research.
Additionally, Falisse et al. ((Falisse et al., 2018) showed that comparing its outputs with
those of another similar software (OpenSim 3.3) resulted in statistically significant
differences in joint kinematics, kinetics, and muscle forces, highlighting the dependency of
the output on the selected model. Hence, it is invaluable that the user can select or generate
a model that best fits to the application or research question. OpenSimThe OpenSim
software for analyzing the kinematics and dynamics of musculoskeletal systems (Delp et al.,
2007) offers a solution to the aforementioned issues because it is free and open source, it
has a graphical user interface, and it works with customizable musculoskeletal models.
While its IK algorithm originally utilized only marker-based motion capture data, since version
4.1 (Seth et al., 2018) it has been possible to utilize IMU orientations as input to the IK
algorithm of OpenSim to solve skeletal motion (i.e., joint angles). The IMU orientation-based IK
algorithm minimizes the sum of squares of the difference between experimental IMU
orientations and corresponding segment orientations of the model. Other software with
capabilities similar to OpenSim (Damsgaard et al., 2006) exist, but the fact that OpenSim is
open-source makes it readily available to anyone, enables a variety of community-made
modifications and add-ons, and enables the user to view the source code to better understand and
troubleshoot the workings of the software. Its customizable models allow the creation of
personalized bony geometry, e.g., from imaging data (Valente et al., 2017), and the inclusion of
muscles in the models allows retrieval of muscle length and similar data that can be used in
further analyses. Therefore, although other software may offer kinematics or kinetics based on
biomechanical models, enabling real-time analysis with OpenSim has advantages in verifiable
and customizable motion analysis and research. While OpenSim has been used for marker-based
data to calculate inverse kinematics and inverse dynamics of human motion in real-time
(Pizzolato et al., 2017), OpenSim-based real-time calculation of IMU-based kinematics with
open-source code would enable others to adapt the solution for customizable motion analysis in
portable settings.

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

A software architecture developed by Pizzolato et al. for RTIK and inverse dynamics of human
motion (Pizzolato et al., 2017) utilizes OpenSim to enable analysis with different marker
placement schemes and musculoskeletal models. However, it is based on a now-outdated version
of the OpenSim application programming interface (API) and does not support IMU-based
motion data. Consequently, reliance on optical motion tracking limits its applicability to
laboratory settings.

IMU-based RTIK solutions have alsothat utilize the OpenSim API been recently developed
by Stanev et al. ((Stanev et al., 2021) and Slade et al. ((Slade et al., 2022). Slade et al.
developed and tested an open-source IMU-based IK system for a microcontroller that can
be carried on the subject. Their implementation uses the OpenSim API with a simplified
musculoskeletal model and relaxed IK error tolerance to enable real-time IK with the
limited computational power of the microcontroller. With the full computational capacity
of the microcontroller (i.e., 4 threads), they could calculate full-body IK at a throughput of
approximately 20 operations per second and at a delay of approximately 200 ms. Stanev et
al. ((Stanev et al., 2021) have published an open-source software framework that allows
kinematical and dynamical analysis of motion using the OpenSim API.. Their software
performs the analysis in real-time and supports both IMU- and marker-based data.

The aim of this study was to develop a freely available software library that reads
orientation data from IMUs and calculates the IK on a user-given musculoskeletal model in
real-time using OpenSim 4.1 API. The development of this work was done prior to the
publication of works by Slade et al. (2022) and Stanev et al. (2021). Since release of the
aforementioned software, our work is not novel but represents an alternative
implementation to solve the same problem. The development occurred independently of
these software and may therefore provide the community additional value to these previous
implementations. To assess the performance of our software we quantified the software’s
IK execution time and throughput with different numbers of processor threads calculating
the IK and different numbers of IMUs, and to determine if lowered input data frequency
resulting from live visualization meaningfully affects calculated ranges of motion (ROMs).

Materials & Methods

Working principles of the software

A software library for reading real-time IMU orientation data as quaternions and
processing the data to calculate the IK of a musculoskeletal model was developed using C+
+ and published on GitHub (https://github.com/jerela/OpenSimLive) . The software utilizes

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148

149
150
151
152
153

https://github.com/jerela/OpenSimLive

OpenSim 4.1 API to invoke methods that calibrate the musculoskeletal model and perform
the IK to solve joint angles using quaternion-based orientation data from live
measurements.

For each time point, the IK algorithm of OpenSim uses orientation information from all
IMUs to find the poses of individual bodies of the musculoskeletal model that, in the least
squares sense, minimize the error between experimental IMU orientations and the
orientations of the corresponding bodies. Because we did not modify the IK algorithm itself,
we do not present it here. For information about the mathematics behind the IK algorithm,
see (Delp et al., 2007), where it is explained for markers instead of IMUs; for IMUs, IMU
orientation error is minimized instead of marker coordinate error. OpenSim’s IK algorithm
for IMU data is briefly presented in supplementary materials, although we did not modify it.

The software library supports Xsens MTw Awinda™ (Xsens Technologies B.V., Enschede,
Netherlands) and Delsys Trigno (Delsys Inc., Natick, Massachusetts, USA) IMUs. The
open-source nature of the software library allows others to add support for other devices.
IMU orientations are received wirelessly as quaternions using the Xsens Device API or
individual quaternion elements are read from a byte stream via socket communication sent
by Trigno Control Utility. Information about which IMU corresponds to which body on the
musculoskeletal model is read from an XML file. Instead of reading orientation data from
the actual IMUs, an option to generate randomized quaternion orientations for testing
purposes without IMUs is available.

The orientation information from IMUs is combined in a time series table that contains
only one sample, i.e., time point. The time series table is given to OpenSim’s IK solver
object, which solves the IK for that time point. The process is repeated for each sample.
The resulting time series of joint angles can be saved in a text file in .mot format, which
allows the output to be viewed using the OpenSim graphical user interface. The read
quaternions, and also EMG time series in the case of Trigno Avanti sensors, can be saved in
a text file for later offline analysis.

The working principle of the software library is straightforward. Producer-consumer
thread synchronization is used to get orientation data from IMUs. A producer thread and a
consumer thread run concurrently. The producer reads orientation data as quaternions
from the IMUs and saves it into a buffer that is shared between the threads. The consumer
reads and removes data from the buffer and assigns an IK task to a thread in a thread pool.
This way there can be several concurrent IK calculations, improving the throughput of the
program. The maximum number of concurrent IK threads is defined by the user. If that
number is already active when the consumer thread starts another IK thread, the

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

consumer thread will wait for one of the IK threads in the thread pool to finish. A diagram
illustrating the workflow is shown in Fig. 1.

[FIGURE 1 GOES HERE]
Fig. 1 A diagram illustrating the working principle of the inverse kinematics (IK) workflow
(Fig. 1). Orientation data of inertial measurement units (IMUs) is read as quaternions by
the producer thread and saved to a buffer. Time values are saved to another buffer. The
consumer thread reads data from both buffers and initiates new threads that calculate IK
based on the data. IK threads output joint angle values for the model. Within an IK thread,
the IK output can be sent to a visualizer window. The visualization is based on the Simbody
(i.e., the physics engine used by OpenSim) API and not a part of our software library and
hence not described here in more detail. When the program finishes, the IK output frames
can be sorted in a time-ascending order and saved to file.

The software library has been tested to work on 64-bit Windows 7 and Windows 10
operating systems. The source code of the software library is available on GitHub at
https://github.com/jerela/OpenSimLive.

Experimental data

Performance tests of the software library and error comparison of joint angles between
real-time IK and offline IK were done for walking data of a single subject. The subject was
of legal age and gave their written consent to participate in the study. A total of 12 IMUs
(Xsens MTw Awinda, Enschede, Netherlands) were strapped on the subject’s upper arms,
forearms, chest, pelvis, thighs, shanks, and feet, as shown in supplementary information.
We recorded ten trials while the subject walked on an instrumented treadmill (Motek
Medical B.V., Amsterdam, Netherlands) at a speed of 1.5 m/s (5.4km/h) and the IMUs
transmitted their orientations at a sample rate of 60 Hz. Each trial contained
approximately a minute of gait data. The subject was instructed to take the standard
anatomical position at the beginning of each trial to calibrate the IMUs on the
musculoskeletal model as per the standard IMU calibration procedure of OpenSim
(elaborated in supplementary materials). When the subject was in the desired calibration
pose, the user our software library pressed a key to calibrate the IMUs. No model scaling
was done because we tracked only sensor orientations which are independent of model
dimensions.

RTIK was calculated during the measurements. The Simbody visualization of RTIK was
enabled, which reduced the throughput of RTIK from the 60 Hz sampling frequency of the
IMUs to 45 Hz on average on the desktop computer. This RTIK output was saved to file at

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Section Editor, 02/17/23,
Wording? Please correct or re-word

Section Editor, 02/17/23,
Additional information on the participant would be helpful. Any musculoskeletal disorders which would alter gain, leg length discrepancy, ect?

https://github.com/jerela/OpenSimLive

the end of each trial. Additionally, the time series of received IMU orientations as
quaternions were saved to a file at the full 60 Hz sampling frequency after each trial; the
time series were used in calculating execution times and throughputs of the software
library.

Performance tests

To quantify the performance of the software library, we conducted performance tests using
computer-generated IMU orientations and IMU orientations from recorded human
walking (Table 1). Two performance measures were quantified: throughput and execution
times of IK. The throughput describes how many IK operations are calculated per second
on average when the communication between the producer and the consumer threads is
included in the operation. The execution times describe the delays that the calculation of IK
for a single time frame takes, i.e., how long it takes after retrieving IMU orientations from
one time point to retrieve the corresponding joint angles of the musculoskeletal model.
Therefore, throughputs are increased by using multiple IK threads but execution times are
not. To retrieve time points, the std::chrono::high_resolution_clock class was used in the C++
implementation.

Table 1: Conducted performance tests, the parameters that were varied in them, and their
purposes.
[TABLE 1 GOES HERE]
IMU = inertial measurement unit; MS = musculoskeletal

The tests were conducted with two musculoskeletal models, the Gait2392 lower extremities
and torso model (23 degrees of freedom, DOFs; referenced from here on as the lower body
model) (Anderson & Pandy, 1999, 2001; Delp et al., 1990; Yamaguchi & Zajac, 1989) and the
Hamner full-body model (29 DOFs, referenced from here on as the full-body model)
(Hamner et al., 2010). In tests involving the lower body and torso model, data from 1 and 7
IMUs were used; with the full-body model, data from 1, 7, and 12 IMUs were used (Table
2). JointAll joint angles that were unlocked in the model by default were solved by the IK
algorithm of OpenSim, but meaningful results were obtained only for joints connectingjoint
angles defined by the available IMU data, such as joint angles between two segments that both
had an attached IMU sensor. Finally, the tests were conducted with two computers, a
laptop (HP EliteBook 8570w: Windows 10 Education 64-bit, Intel Core i7-3740QM 2.70
GHz 8-CPU processor, 8192 MB RAM) and a desktop (Fujitsu Celsius W550 Power:
Windows 10 Education 64-bit, Intel Core i7-6700 3.40 GHz 8-CPU processor, 32768 MB
RAM). A laptop computer was used to examine if the software can perform sufficiently
using portable devices that allow the measurements to be performed outside a laboratory

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

Section Editor, 02/17/23,
Include the processor specifics of this laptop

Section Editor, 02/17/23,
You have 2 different fonts in this paragraph, please correct

environment. A desktop computer was used to examine how large difference the increased
computing power of a typical desktop compared to a typical laptop makes on the
performance of the software.

Table 2: The MS model segments whose inverse kinematics were calculated during
performance tests, presented by the number of IMUs whose data was utilized.
[TABLE 2 GOES HERE]
IMU: inertial measurement unit; MS = musculoskeletal

Execution times with computer-generated IMU orientations were measured with random
unit quaternions. The quaternions represented random and sometimes unrealistic poses,
which varied greatly between time frames and were time-consuming to calculate.
Therefore, the measured execution times represent performance that is worse than in
normal human motion, i.e., they were a benchmark of unrealistically poor performance.
The execution times were measured with data from different numbers of IMUs (1 and 7 for
the lower body and torso model and 1, 7, and 12 for the full-body model). Each execution
time measurement lasted until 10 000 IK operations were calculated. We report the mean,
standard deviation (STD) and 95% confidence interval of the 10 000 execution times.

Finally, IMU orientations from real human walking were used to calculate throughputs
and execution times. Performance was measured with pre-recorded quaternion
orientations from ten one-minute walking trials. Although the throughputs and execution
times were calculated after the walking trials had been recorded, the performance tests
were designed to simulate real-time measurement by feeding the quaternion data into the
test environment one data frame at a time. The use of pre-recorded quaternion orientations
enabled measuring throughputs above the sampling frequency of the IMUs; otherwise, the
throughput would be limited to the sampling rate of the IMUs because IK operations could
only be solved at the rate the IMU orientations are received. The tests were conducted with
different numbers of IMUs (1 and 7 for the lower body and torso model and 1, 7, and 12 for
the full-body model). Furthermore, different numbers of IK threads (1, 2, 4, 6, 8) were used
during throughput tests. The performance tests on real walking data allowed us to evaluate
performance during a common human motion measurement.

Error comparison of joint angles

Our software library includes an option to visualize motion like in OpenSim GUI by
invoking methods from the Simbody API (namely, from the SimTK::Visualizer class),
which OpenSim API is built upon. The use of the Simbody visualizer in a real-time IK
thread slows the thread noticeably, and if the throughput drops below the sampling

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

Section Editor, 02/17/23,
Include the processor specifics of this desktop

frequency of the IMUs, the IK threads skip some orientation frames from the IMUs in a
real-time measurement. This frame drop may negatively affect the accuracy of gait
parameters derived from the IK solution. Although not a core feature of our software
library, the Simbody visualization during RTIK may be of interest of some. Thus, we
evaluated the effect of the frame drops on a kinematic variable that is often of interest and
potentially affected by the frame drops, namely the ranges of motion (ROMs) of the joint
angles. To this end we compared ROM between visualized RTIK (calculated in this case at
approximately 45 Hz) and offline IK at the 60 Hz sample rate of the IMUs. Offline IK was
calculated from IMU orientations that were stored after each of the ten walking trials;
RTIK with Simbody visualization was calculated on the desktop computer during each
walking trial. Orientations from all 12 IMUs were included, and the full-body model was
used in the analysis. The measured motion exerted 26 of the model’s DOFs. For
determining ROMs, the IK data was divided into periods based on the cyclical nature of
the flexion-extension angle of the right knee. For each of the resulting 715 gait cycles (total
from 10 walking trials), the difference between the highest and the lowest value of theeach
joint angle was taken as theits ROM. The results were reported as the mean absolute error
(MAE) and 95% confidence interval (95%CI) between offline IK and RTIK ROM. Note
that we calculated errors to evaluate the effect of visualization on ranges of motion and to
demonstrate how the software library works, not to validate IMU-based IK. For IMU-
based IK validation, see other studies such as (al Borno et al., preprint 20212022; Tagliapietra
et al., 2018).

Results

Performance tests

Performance test results showed that increasing model complexity and the number of
IMUs for orientation tracking increased execution times (Fig. 2) and decreased IK
throughput (Fig. 3). Increasing the number of IK calculating threads increased throughput
(Fig. 3). The desktop computer always had lower execution times and higher throughput
than the laptop computer in the same performance tests (Fig. 2 and Fig. 3).

Using computer-generated random unit quaternions, the means and standard deviations of
execution times (operation delays) increased with increasing number of IMUs similarly on
both the desktop and the laptop (Table 3, Fig. 4). With one IMU, the full-body model
(Hamner) was 60-65% slower than the lower body model (Gait2392) and had more variation
in execution times. The mean execution times were approximately 25% longer on the
laptop than on the desktop.

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

332
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347

Table 3: Mean, standard deviation (STD) and 95% confidence interval (CI) of execution
times of a single inverse kinematics (IK) operation. The values are calculated over 10 000
IK operations for two different musculoskeletal models, two different computers and 1, 7
or 12 inertial measurement units (IMUs). Randomly selected unit quaternions were used as
IMU orientations.
[TABLE 3 GOES HERE]
CI = confidence interval; IK = inverse kinematics; IMU = inertial measurement unit; STD
= standard deviation

Execution times calculated from human walking (Fig. 2) are shorter than the
corresponding execution times from computer-generated data (Table 3, Fig. 4) and remain
below 55 ms even with 12 IMUs and the full-body model. Performance with real walking
data follows the same patterns as with computer-generated data. Execution times increase
(Fig. 2) when the number of IMUs or model complexity (number of DOFs) is increased.

Execution times below 30 ms using the laptop and below 25 ms using the desktop were
reached with the lower-body model and 7 IMUs (Fig. 2). Furthermore, even with the
laptop, full body kinematics can be calculated with execution times below 60 ms, and
provided at least four IK threads are used, with throughputs above 50 Hz (Fig. 3).

[FIGURE 2 GOES HERE]
Fig. 2 Execution times and standard deviations (shaded area) of a single inverse kinematics
operation with respect to the number of inertial measurement units (IMUs), i.e., number of
segments with measured orientation data. The execution times are presented as mean over
ten trials for two different musculoskeletal models (lower body and torso model and full-
body model) using one, seven, or 12 IMUs. IMU quaternions orientations were retrieved
from previously recorded walking trials.

Throughput tests show that on the laptop, human walking can be solved at more than 60
IK operations per second when using eight IK threads, the full-body model and 12 IMUs
(Fig. 3). The minimal IMU setup to record motion of all lower-body DOFs, 7 IMUs with the
lower-body model, reached a throughput of 130. with eight IK threads. On the desktop, the
corresponding throughputs were 90 and 180, respectively.

[FIGURE 3 GOES HERE]
Fig. 3 Inverse kinematics (IK) throughput with respect to the number of IK threads used,
measured on a desktop computer (left) and a laptop computer (right). The throughputs are
presented as mean over ten trials. The measurements were repeated with two different

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

musculoskeletal models, and using one, seven or 12 inertial measurement units (IMUs).
IMU quaternion orientations were retrieved from previously recorded walking trials.

[FIGURE 4 GOES HERE]
Fig. 4 Execution times and standard deviations (shaded area) of a single inverse kinematics
operation with respect to the number of inertial measurement units (IMUs), i.e., number of
segments with random orientation data. The values are calculated over 10 000 IK operations for
two different musculoskeletal models, two different computers and 1, 7 or 12 inertial
measurement units (IMUs). Randomly selected unit quaternions were used as IMU orientations.

Error comparison of joint angles
Enabling Simbody visualization during the measurement session reduced IK throughput
but, compared to IK at full 60 Hz sampling frequency of the IMUs, caused only minimal
differences in calculated ranges of motion (Fig. 45). The mean ROM error for all DOFs was
0.0675 degrees. The greatest MAE in ROM was observed in ankle joints (up to 360% of the
mean for all joints), followed by the left hip joint (Fig. 45). Pelvis and upper extremities had
the smallest ROM error. All MAEs remained below 0.3 degrees.

[FIGURE 45 GOES HERE]
Fig. 45 Mean absolute error (MAE) between real-time inverse kinematics and offline
inverse kinematics ranges of motion (ROMs) of the exerted degrees of freedom of the
musculoskeletal model and the 95% confidence interval of the error. Solid bars show
MAEs of ROMs for each exerted degree of freedom. Confidence intervals are shown as
error bars centered on the top of the MAE bars.

Discussion
We present an open-source software library for the real-time inverse kinematical analysis
of IMU data with user-defined musculoskeletal models using OpenSim 4.1. Full-body IK
can be calculated for random orientations in less than 100 ms; using real walking data, it
can be done in less than 60 ms. On a desktop computer, the software library can solve
RTIK at 180 samples per second while tracking the pelvis and lower extremities and at 90
samples per second while tracking the full-body kinematics. On a laptop computer, the
corresponding throughputs were 130 and 60 samples per second, respectively. Using 12
IMUs to track walking and visualizing the results on a full-body running model, RTIK was
solved at 45 samples per second on a desktop computer. The drop from the IMU output
sampling rate of 60 Hz resulted in a minimal difference in calculated joint ROMs (<0.3
degrees). The software library allows the use of RTIK virtually without limitations due to
location or environment, which opens possibilities for a variety of applications including
rehabilitation, ergonomics, and human-machine interfaces for controlling collaborative

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421
422
423
424
425

robots. Observing the movement of interest in a natural environment is important because
a laboratory setting may affect how a person moves (Friesen et al., 2020).

Performance tests

We investigated the execution times and throughputs of the IMU-based IK to determine if
the output can be considered real-time. Pizzolato et al. ((Pizzolato et al., 2017) used an
execution time of 75 ms as the threshold for a real-time system. It was based on a study by
Kannape and Blanke ((Kannape & Blanke, 2013) in which the subjects were able to identify
the displayed motion as self-generated in real-time in over 80% of the cases if the delay in
motion display was less than 75 ms. Even with a delay of 210 ms, subjects identified the
visualized motion as self-generated in real-time in 50% of the cases. Borbély and Szolgay
((Borbély & Szolgay, 2017) noted that the IK algorithm of OpenSim 3.3 had an execution
time of about 145 ms, thus calculating IK at about 7 Hz and “falling behind the generally
accepted practice in human movement recording of at least 50 Hz”. Therefore, a real-time
application should achieve IK throughput of 50 operations per second with an execution
time below 75 ms for any single operation. With our software library, we aimed to achieve
this target by using multithreading and the IK algorithm of OpenSim 4.1.

Another interesting finding by Kannape and Blanke ((Kannape & Blanke, 2013) was that
subjects modulated their stride based on the delay between the motion and its visualization.
Therefore, it is important to minimize the delay when preparing a real-time measurement
setup to prevent subjects from altering their gait characteristics based on delayed visual
feedback.

Live visualization is unnecessary in applications where IK is an intermediate output that is
used to estimate contact forces, instruct a robot arm in rehabilitation applications or
calculate gait parameters, to name a few examples. Thus, the performance tests were
designed so that they evaluate only the performance of IK, which is the core feature of the
software library. Although we adopt the visualization-based 75 ms criterion for real-time
motion from Kannape and Blanke, our performance tests were conducted without
visualization. Our software library relies on Simbody visualization and lacks an elegant
visualization solution of its own, which is a limitation that should be acknowledged.

The performance tests show that IK throughput is more sensitive to the number of IMUs
than the DOFs of the model, although model complexity also increases computational load.
because joint angles with no experimental data to solve them are still considered in the IK
algorithm. Execution times clearly increased with the number of IMUs, although model

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

complexity also affected them noticeably. Therefore, minimally enough IMUs and DOFs
should be chosen to enable high throughput and short execution times in real-time.

The performance of the software library would benefit from improvements particularly in solving
IK and visualizing the results. Because a new quaternion time series table is created for a single
IMU data point every time an IK frame needs to be solved, the software library is
computationally much heavier than it would be if a single time series table could act as a
permanent buffer that is updated with new IMU data points. This implementation was not
possible using the OpenSim API during the development stage of our software library but
appears to be supported in the latest version of the API. Furthermore, the data points in real-time
IK may be solved in inconsistent order depending on how quickly each IK thread finishes.
Expired IK frames may be omitted if the real-time IK is used as input in further real-time
analyses but the missing data points may require interpolation or other consideration, e.g., if
filtering the IK is required. Thus, future development of the software library could implement
existing interpolation functionalities from the OpenSim API. Additionally, if the visualizer
would be implemented in its own thread, it could be used without blocking the IK solving
threads and it would enable greater IK throughput while visualization is enabled. This
improvement would also enable the solving of joint angles at a high frame rate and visualizing
them at a reduced frame rate for performance reasons.

Finally, it should be noted that the software library was only tested on the Windows
operating system, and the performance tests were conducted on its operation as a whole.
Thus, no proper profiling analysis was done to discover which parts of the software library
have potential for performance optimization.

Execution times of the IK operation

Real motion, such as walking, contains a combination of different orientations, most of
which are within a typical model’s joint angle boundaries. Randomly generated unit
quaternions used in execution time tests often result in unrealistic poses. As a result, the IK
based on randomized unit quaternions is heavier to calculate than the average orientations
during walking, or any typical human motion. Therefore, the execution times from
computer-generated data can be interpreted as the worst performance when analyzing
human motion without live visualization. Consequently, if the execution times with
computer-generated data are sufficiently small for real-time analysis, then any realistic
motion should be processed with smaller or equal execution times. On the other hand, we
can assume that most human motions can be analyzed with execution times like those from
real walking data because joints angles are likely to change at a similar rate and exert
constraints similarly.

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

For both models using computer-generated random unit quaternions, the standard
deviations of the execution times are on the same scale as the mean execution times,
implying that there is great variation in the execution time. The randomized nature of the
used quaternion orientations is a likely contributor to the high standard deviation, because
randomized orientations occasionally lead to strange segment orientation combinations
that do not reflect valid human motion and take the IK algorithm a long time to solve. This
is further supported by the much smaller standard deviation in real walking data (Fig. 2).

Before conclusions are drawn from the computer-generated random unit quaternion-based
execution times, it should be acknowledged that the results varied somewhat on repeated
runs with the same parameters. This implies that running the tests more than 10 000
iterations could improve the precision of the results. However, because the purpose of the
computer-generated random unit quaternions was to estimate worst-case performance for
the hardware of the tested computers and the effects of differing the number of DOFs of
the model and segments with IMU orientations, which they show well, we chose not to
repeat the tests with more iterations.

For both computer-generated (Table 3) and real walking data (Fig. 2), with one and seven
IMUs, the execution times are shorter and vary less for the lower body model (Gait2392)
than for the full-body model (Hamner).. Both the mean execution times and the standard
deviations are smaller on the desktop than on the laptop. However, the execution times
vary less with 12 than with seven IMUs on the full-body model.

Because execution times calculated on real walking data remained below 55 ms (Fig. 2), the
software library is capable of real-time inverse kinematics analysis of the full body even on
a laptop. Using computer-generated random unit quaternions, the 95% confidence
intervals of execution times are roughly 1% of the mean execution time in all cases,
meaning that the execution times stay consistently below 75 ms except when 12 IMUs are
used. In that case, the execution times stay consistently below 100 ms, which is still less than
half of the 210 ms delay that marks 50% confidence in perceiving motion as real-time
(Kannape & Blanke, 2013). Therefore, while RTIK is clearly possible with normal walking,
some complicated motions may result in longer execution times but could nonetheless be
analyzed practically in real-time. Because the execution times represent the minimum delay
from the orientation data retrieval to the moment we can visualize or further analyze the
IK output, the number of IMUs in a real-time measurement should be chosen considering
the delays that are acceptable for the application.

Throughputs

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

Fig. 3 shows that increasing the number of concurrent processor threads increased the
throughput until about eight threads, which was the maximum CPU core number for both
computers. Increasing the number of IK threads further had no meaningful effect on the
throughput, which was also observed in an earlier study on RTIK (Pizzolato et al., 2017).
The throughput plateau resulted from CPU utilization of the computer reaching 100% and
is thus hardware dependent.

The increase in throughput by multithreading is especially large with a small number of
threads and one IMU. For example, throughput increases from less than 25 to more than
150 when the number of IK threads increases from one to two on the laptop. Doubled
computational capacity alone cannot explain the increase in throughput. The effect is also
present on the desktop. Furthermore, the relationship between the throughput and the
number of IK threads is clearly nonlinear whereas an earlier RTIK study found it almost
linear (Pizzolato et al., 2017). No explanation for this phenomenon was found, but it should
be addressed in the future development of the software library.

For 1 IMU and 4 or more concurrent threads, the lower body model with 23 DOFs had
approximately 20% higher throughput than the full-body model with 29 DOFs. For 7
IMUs, the lower body model throughput was 40% higher than that of the full-body model.
Therefore, model selection has a noticeable effect on the performance of RTIK and the
model with the smallest sufficient number of DOFs should be chosen to reach maximal
RTIK performance.

The software library is clearly capable of calculating IK at a higher rate than the lower
limit of 50 Hz named by Borbély and Szolgay ((Borbély & Szolgay, 2017), but requires
multithreading to reach it with complex musculoskeletal models. For portable real-time
gait measurements, a laptop should be able to achieve sufficiently high IK throughput when
7 IMUs are used. We reached a throughput of 130 samples per second in such a scenario,
although others’ results will vary depending on the hardware of the laptop. Nonetheless, a
throughput of 130 samples per second should be sufficient for most gait analysis
applications.

Error comparison

Because loss of frequency may lead to reduced accuracy in measuring sharp peaks in joint
angles, joints where motion direction changes fast are likely to have high ROM error (Fig.
45). During walking, ankle flexion (ankle_angle_r and ankle_angle_l) undergoes fast
changes, which explains why its ROM error stands out. However, because all ROM errors

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

remain consistently below 0.3 degrees, the effect of the drop in visualized IK from 60 to 45
Hz on ROM is very small.

The ROM error of left hip adduction stands out because it is visibly higher than that of the
right hip. The error is caused by an artifact in IMU signal that caused the left leg to be
violently jerked to the right after the left toe-off phase. The artifact is probably caused by
the distortion of magnetic fields near the ferromagnetic laboratory hardware, which the
left leg was closer to.

Comparison to other solutions for IMU-based RTIK using OpenSim

In the introduction, we briefly presented some existing solutions for real-time IMU-based
IK. Two of them, OpenSenseRT (Slade et al., 2022) and the solution by Stanev et al.
((Stanev et al., 2021), utilize the OpenSim API like our software library. OpenSenseRT had
comparable execution times and throughputs but to optimize performance, they loosened
IK solver tolerance and simplified their musculoskeletal model by removing muscles and
locking unused joints. Therefore, the performance results are not easily comparable to
ours., where many joints remained unlocked despite not having experimental IMU data to solve
them uniquely and muscles of the model were left as they are (although muscles are not part of
IK calculations, we made preliminary and unreported observations that OpenSim’s standard
IMU-based IK throughput is slightly lower on a model with muscles compared with a model
without muscles). OpenSenseRT is a good solution for IMU-based IK where the Raspberry
Pi computing unit is carried with the subject, while our solution relies on a computer
separate from the subject, limiting its applicability slightly but allowing higher
performance due to numerous options of laptop hardware and requiring less work to use
different musculoskeletal models. The solution by Stanev et al. allows the use of different
musculoskeletal models easily. They support both marker-based and IMU-based IK and
use lower-level API functions to calculate IK quickly. Furthermore, their solution goes
beyond IK, enabling even real-time inverse dynamics and joint reaction force analysis.
Their software architecture relies on two threads: one to collect orientation from IMUs or
marker positions and then perform IK, and another to perform preprocessing and further
musculoskeletal analysis in real-time. Our solution has one thread for collecting orientation
from IMUs and a user-defined number of threads for IK. Therefore, although the solution
by Stanev et al. is superior to ours in terms of number of features, our solution may allow
higher throughputs due to the variable number of IK threads that is only limited by
computer hardware.

Conclusions

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

618

An open-source software library that builds upon the widely used OpenSim software was
developed and published for IMU-based RTIK. It allows the joint angles of any OpenSim-
compatible musculoskeletal model to be analyzed in real-time. While another real-time
solution was concurrently and independently developed by Stanev et al. ((Stanev et al.,
2021), its IK calculation does not utilize multithreading, which may limit its throughput,
although its IK calculation relies on lower-level API classes that are faster than those used
by the software library developed in this study when a single thread is used. The authors
encourage others to contribute to the open-source project. The development of the software
library will closely follow the development of OpenSim to utilize its built-in functionality
for processing live data. The software library could be utilized in real-time estimation of
joint moments, muscle forces, and joint contact forces based only on IMU data. Ground
reaction forces and moments and kinematics are required for solving the equations of
motion for the musculoskeletal model using inverse dynamics. It has been shown that
ground reaction forces and moments can be predicted from IMU-derived kinematics
(Karatsidis et al., 2017; Stanev et al., 2021). Moreover, estimation of muscle forces using
optimization techniques uses kinematics and inverse dynamics estimates of joint moments
as inputs and estimates of joint contact forces can be derived based on kinematics, inverse
dynamics, and muscle forces. Hence, IMUs could be potentially used for the real-time
estimation of musculoskeletal dynamics outside the laboratory and implemented in the
software library in the future. Another interesting future application is the use of RTIK
output together with EMG. Thus, combining IK output with EMG in real-time may
provide interesting possibilities for estimating muscle forces and musculoskeletal loading
using EMG driven musculoskeletal simulations (Sartori et al., 2011), for biofeedback to
optimize rehabilitation or ergonomics or for biosignal-based operating systems.

References
al Borno, M., O’dayO’Day, J., Ibarra, V., Dunne, J., Seth, A., Habib, A., Ong, C., Hicks, J.,

Uhlrich, S., & Delp, S. (n.d.). Title:(2022). OpenSense: An open-source toolbox for
Inertial-Measurement-Unitinertial-measurement-unit-based measurement of lower
extremity kinematics over long durations. Journal of NeuroEngineering and
Rehabilitation, 19(1). https://doi.org/10.1101/2021.07.01.4507881186/s12984-022-
01001-x

Anderson, F. C., & Pandy, M. G. (1999). A dynamic optimization solution for vertical
jumping in three dimensions. Computer Methods in Biomechanics and
Biomedical Engineering, 2(3), 201–231.
https://doi.org/10.1080/10255849908907988

Anderson, F. C., & Pandy, M. G. (2001). Dynamic optimization of human walking.
Journal of Biomechanical Engineering, 123(5), 381–390.
https://doi.org/10.1115/1.1392310

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658

Bonnet, V., Mazza, C., Fraisse, P., & Cappozzo, A. (2013). Real-time estimate of body
kinematics during a planar squat task using a single inertial measurement unit.
IEEE Transactions on Biomedical Engineering, 60(7), 1920–1926.
https://doi.org/10.1109/TBME.2013.2245131

Borbély, B. J., & Szolgay, P. (2017). Real-time inverse kinematics for the upper limb:
A model-based algorithm using segment orientations. BioMedical Engineering
Online, 16(1). https://doi.org/10.1186/s12938-016-0291-x

Cometa. (n.d.). Cometa Srl, Cometa Systems | Wireless EMG and IMU solutions.
Retrieved February 10, 2021, from https://www.cometasystems.com/

Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E., & de Zee, M. (2006). Analysis of
musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice
and Theory, 14(8), 1100–1111. https://doi.org/10.1016/j.simpat.2006.09.001
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T.,

Guendelman, E., & Thelen, D. G. (2007). OpenSim: Open-source software to
create and analyze dynamic simulations of movement. IEEE Transactions on
Biomedical Engineering, 54(11), 1940–1950.
https://doi.org/10.1109/TBME.2007.901024

Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., & Rosen, J. M. (1990). An
Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic
Surgical Procedures. IEEE Transactions on Biomedical Engineering, 37(8), 757–
767. https://doi.org/10.1109/10.102791

Delsys. (n.d.). Delsys Incorporated, TrignoTM Avanti Platform - Delsys. Retrieved
February 10, 2021, from https://www.delsys.com/trigno/

Falisse, A., van Rossom, S., Gijsbers, J., Steenbrink, F., van Basten, B. J. H.,
Jonkers, I., van den Bogert, A. J., & de Groote, F. (2018). OpenSim versus
human body model: A comparison study for the lower limbs during gait.
Journal of Applied Biomechanics, 34(6), 496–502.
https://doi.org/10.1123/jab.2017-0156

Friesen, K. B., Zhang, Z., Monaghan, P. G., Oliver, G. D., & Roper, J. A. (2020). All
eyes on you: how researcher presence changes the way you walk. Scientific
Reports, 10(1). https://doi.org/10.1038/s41598-020-73734-5

Hamner, S. R., Seth, A., & Delp, S. L. (2010). Muscle contributions to propulsion and
support during running. Journal of Biomechanics, 43(14), 2709–2716.
https://doi.org/10.1016/j.jbiomech.2010.06.025

Kannape, O. A., & Blanke, O. (2013). Self in motion: Sensorimotor and cognitive
mechanisms in gait agency. Journal of Neurophysiology, 110(8), 1837–1847.
https://doi.org/10.1152/jn.01042.2012

Karatsidis, A., Bellusci, G., Schepers, H. M., de Zee, M., Andersen, M. S., & Veltink, P.
H. (2017). Estimation of ground reaction forces and moments during gait using
only inertial motion capture. Sensors (Switzerland), 17(1).
https://doi.org/10.3390/s17010075

Miezal, M., Taetz, B., & Bleser, G. (2017). Real-time inertial lower body kinematics
and ground contact estimation at anatomical foot points for agile human

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

locomotion. Proceedings - IEEE International Conference on Robotics and
Automation, 3256–3263. https://doi.org/10.1109/ICRA.2017.7989371

Noraxon. (n.d.). Noraxon USA, Ultium EMG | Noraxon USA. Retrieved February 10,
2021, from https://www.noraxon.com/our-products/ultium-emg/

Paulich, M., Schepers, M., Rudigkeit, N., & Bellusci, G. (2018). Xsens MTw Awinda:
Miniature Wireless Inertial Motion Tracker for Highly Accurate 3D Kinematic
Applications. In Xsens Technologies (Issue May).

Pizzolato, C., Reggiani, M., Modenese, L., & Lloyd, D. G. (2017). Real-time inverse
kinematics and inverse dynamics for lower limb applications using OpenSim.
Computer Methods in Biomechanics and Biomedical Engineering, 20(4), 436–
445. https://doi.org/10.1080/10255842.2016.1240789

Saber-Sheikh, K., Bryant, E. C., Glazzard, C., Hamel, A., & Lee, R. Y. W. (2010).
Feasibility of using inertial sensors to assess human movement. Manual
Therapy, 15(1), 122–125. https://doi.org/10.1016/j.math.2009.05.009

Sartori, M., Reggiani, M., Lloyd, D. G., & Pagello, E. (2011). A neuromusculoskeletal
model of the human lower limb: Towards EMG-driven actuation of multiple
joints in powered orthoses. IEEE International Conference on Rehabilitation
Robotics. https://doi.org/10.1109/ICORR.2011.5975441

Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne, J. J., Ong, C. F.,
DeMers, M. S., Rajagopal, A., Millard, M., Hamner, S. R., Arnold, E. M., Yong, J.
R., Lakshmikanth, S. K., Sherman, M. A., Ku, J. P., & Delp, S. L. (2018). OpenSim:
Simulating musculoskeletal dynamics and neuromuscular control to study
human and animal movement. PLoS Computational Biology, 14(7).
https://doi.org/10.1371/journal.pcbi.1006223

Slade, P., Habib, A., Hicks, J. L., & Delp, S. L. (2022). An Open-Source and Wearable
System for Measuring 3D Human Motion in Real-Time. IEEE Transactions on
Biomedical Engineering, 69(2), 678–688.
https://doi.org/10.1109/TBME.2021.3103201

Stanev, D., Filip, K., Bitzas, D., Zouras, S., Giarmatzis, G., Tsaopoulos, D., &
Moustakas, K. (2021). Real-time musculoskeletal kinematics and dynamics
analysis using marker-and imu-based solutions in rehabilitation. Sensors, 21(5),
1–20. https://doi.org/10.3390/s21051804

Tagliapietra, L., Modenese, L., Ceseracciu, E., Mazzà, C., & Reggiani, M. (2018).
Validation of a model-based inverse kinematics approach based on wearable
inertial sensors. Computer Methods in Biomechanics and Biomedical
Engineering, 21(16), 834–844. https://doi.org/10.1080/10255842.2018.1522532

Valente, G., Crimi, G., Vanella, N., Schileo, E., & Taddei, F. (2017). NMSBUILDER: Freeware to
create subject-specific musculoskeletal models for OpenSim. Computer Methods and
Programs in Biomedicine, 152, 85–92. https://doi.org/10.1016/j.cmpb.2017.09.012
van den Bogert, A. J., Geijtenbeek, T., Even-Zohar, O., Steenbrink, F., & Hardin, E. C.

(2013). A real-time system for biomechanical analysis of human movement and
muscle function. Medical and Biological Engineering and Computing, 51(10),
1069–1077. https://doi.org/10.1007/s11517-013-1076-z

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

Yamaguchi, G. T., & Zajac, F. E. (1989). A planar model of the knee joint to
characterize the knee extensor mechanism. Journal of Biomechanics, 22(1), 1–
10. https://doi.org/10.1016/0021-9290(89)90179-6

Yi, C., Jiang, F., Bhuiyan, M. Z. A., Yang, C., Gao, X., Guo, H., Ma, J., & Su, S. (2021).
Smart healthcare-oriented online prediction of lower-limb kinematics and
kinetics based on data-driven neural signal decoding. Future Generation
Computer Systems, 114, 96–105. https://doi.org/10.1016/j.future.2020.06.015

745
746
747
748
749
750
751
752
753

