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Abstract
Background. Inertial measurements (IMUs) facilitate the measurement of human motion outside
the motion laboratory. A commonly used open-source software for musculoskeletal simulation 
and analysis of human motion, OpenSim, includes a tool to enable kinematics analysis of IMU 
data. However, it only enables offline analysis, i.e., analysis after the data has been collected. 
Extending OpenSim's functionality to allow real-time kinematics analysis would allow real-time 
feedback for the subject during the measurement session and has uses in e.g. rehabilitation, 
robotics, and ergonomics.
Methods. We developed an open-source software library for real-time inverse kinematics (IK) 
analysis of IMU data using OpenSim. The software library reads data from IMUs and uses 
multithreading for concurrent calculation of IK. Its operation delays and throughputs were 
measured with a varying number of IMUs and parallel computing IK threads using two different 
musculoskeletal models, one a lower-body and torso model and the other a full-body model. We 
published the code under an open-source license on GitHub.
Results. A standard desktop computer calculated full-body inverse kinematics from treadmill 
walking at 1.5 m/s with data from 12 IMUs in real-time with a mean delay below 55 ms and 
reached a throughput of more than 90 samples per second. A laptop computer had similar delays 
and reached a throughput above 60 samples per second. with treadmill walking. Minimal 
walking kinematics, motion of lower extremities and torso, could bewere calculated from 
treadmill walking data in real-time with a throughput of 130 samples per second on the laptop 
and 180 samples per second on the desktop computer, with approximately half the delay of full-
body kinematics.
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Conclusions. The software library enables enabled real-time inverse kinematical analysis with 
different numbers of IMUs and customizable musculoskeletal models. The performance results 
show that subject-specific full-body motion analysis is feasible in real-time, while a laptop 
computer and IMUs allowed the use of the method outside the motion laboratory.

Introduction
Inertial measurement units (IMUs) are measurement devices that contain triaxial magnetometers,
gyroscopes, and accelerometers. IMUs used in biomechanics are usually packed into cases that 
fit on a human palm. They utilize sensor fusion algorithms such as Kalman filters to estimate the 
three-dimensional orientation of the IMUs in space (Paulich et al., 2018). This information can 
be used as an alternative to marker-based optical motion tracking systems to perform analysis of 
human movement. Compared with optical motion tracking systems, IMUs are cheaper, can be 
attached to the subject without the palpation of anatomical landmarks, do not suffer from line-of-
sight issues, are not limited to a specific target volume and can be used in field conditions. These 
advantages come at a small cost of accuracy compared with optical motion tracking systems, and
IMU-specific error sources such as drifting (Saber-Sheikh et al., 2010). In addition, IMUs can be
coupled with electromyography (EMG) electrodes to further enhances the versatility of these 
sensors for analyzing human movement in sports and clinical applications (e.g., Cometa Srl, 
Cometa Systems | Wireless EMG and IMU Solutions; Delsys Incorporated, Trigno Avanti 
Platform - Delsys; Noraxon USA, Ultium EMG | Noraxon USA). 

OpenSim (Delp et al., 2007) is an open-source software for analyzing the kinematics and 
dynamics of musculoskeletal systems. While its inverse kinematics (IK) algorithm originally 
utilized only marker-based motion capture data, since version 4.1 (Seth et al., 2018) it has been 
possible to utilize IMU orientations as input to the IK algorithm of OpenSim to solve skeletal 
motion (i.e., joint angles). The IMU orientation-based IK algorithm minimizes the sum of 
squares of the difference between experimental IMU orientations and joint angles of the model.

IK analyses are typically done offline after measurement and data collection.Analysis of 
kinematics of motion is typically done offline after measurement and data collection in a process 
called inverse kinematics (IK). Recent years have seen progress in some real-time IK (RTIK)
analysis solutions and systems, but these studies  (Bonnet et al., 2013; Borbély & Szolgay, 
2017; Falisse et al., 2018; Miezal et al., 2017; van den Bogert et al., 2013; Yi et al., 2021) have 
mostly focused on specific marker sets and models and their generalization to arbitrary 
measurement setups is difficult. For example, in real-time IMU-based applications, Bonnet 
et al. ((Bonnet et al., 2013) estimated the real-time inverse kinematics (RTIK) of the trunk 
and lower limbs using a single IMU located at the lower back. In another example, sensors 
containing IMUs and EMG electrodes, which were placed on surface musculaturemuscles, 
were used in a recent study (Yi et al., 2021) to calculate the real-time kinematics and 
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kinetics of the lower limb. However, these studies rely on complex computational methods, 
making it difficult for others to repeat and adapt the experiment without knowledge of 
sensor fusion or deep learning. The IMU-based RTIK solution by (Miezal et al., . (2017) 
does not allow easy switching between musculoskeletal models or quantify how real-time 
the solution is.

It has been shown that a full biomechanical analysis of joint and muscle function can be 
obtained in real-time with a C/C++ software library (van den Bogert et al., 2013). The 
software library was capable of reading marker data and performing IK and inverse 
dynamics on a full-body model at more than 120 samples per second. However, the 
software is commercial and relies on a single predefined model rather than a subject-
specific or user-defined musculoskeletal model, limiting its usefulness in research. 
Additionally, Falisse et al. ((Falisse et al., 2018) showed that comparing its outputs with 
those of another similar software (OpenSim 3.3) resulted in statistically significant 
differences in joint kinematics, kinetics, and muscle forces, highlighting the dependency of 
the output on the selected model. Hence, it is invaluable that the user can select or generate 
a model that best fits to the application or research question. OpenSimThe OpenSim 
software for analyzing the kinematics and dynamics of musculoskeletal systems (Delp et al., 
2007) offers a solution to the aforementioned issues because it is free and open source, it 
has a graphical user interface, and it works with customizable musculoskeletal models. 
While its IK algorithm originally utilized only marker-based motion capture data, since version 
4.1 (Seth et al., 2018) it has been possible to utilize IMU orientations as input to the IK 
algorithm of OpenSim to solve skeletal motion (i.e., joint angles). The IMU orientation-based IK
algorithm minimizes the sum of squares of the difference between experimental IMU 
orientations and corresponding segment orientations of the model. Other software with 
capabilities similar to OpenSim (Damsgaard et al., 2006) exist, but the fact that OpenSim is 
open-source makes it readily available to anyone, enables a variety of community-made 
modifications and add-ons, and enables the user to view the source code to better understand and 
troubleshoot the workings of the software. Its customizable models allow the creation of 
personalized bony geometry, e.g., from imaging data (Valente et al., 2017), and the inclusion of 
muscles in the models allows retrieval of muscle length and similar data that can be used in 
further analyses. Therefore, although other software may offer kinematics or kinetics based on 
biomechanical models, enabling real-time analysis with OpenSim has advantages in verifiable 
and customizable motion analysis and research. While OpenSim has been used for marker-based 
data to calculate inverse kinematics and inverse dynamics of human motion in real-time 
(Pizzolato et al., 2017), OpenSim-based real-time calculation of IMU-based kinematics with 
open-source code would enable others to adapt the solution for customizable motion analysis in 
portable settings.
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A software architecture developed by Pizzolato et al. for RTIK and inverse dynamics of human 
motion (Pizzolato et al., 2017) utilizes OpenSim to enable analysis with different marker 
placement schemes and musculoskeletal models. However, it is based on a now-outdated version
of the OpenSim application programming interface (API) and does not support IMU-based 
motion data. Consequently, reliance on optical motion tracking limits its applicability to 
laboratory settings. 

IMU-based RTIK solutions have alsothat utilize the OpenSim API been recently developed 
by Stanev et al. ((Stanev et al., 2021) and Slade et al. ((Slade et al., 2022). Slade et al. 
developed and tested an open-source IMU-based IK system for a microcontroller that can 
be carried on the subject. Their implementation uses the OpenSim API with a simplified 
musculoskeletal model and relaxed IK error tolerance to enable real-time IK with the 
limited computational power of the microcontroller. With the full computational capacity 
of the microcontroller (i.e., 4 threads), they could calculate full-body IK at a throughput of 
approximately 20 operations per second and at a delay of approximately 200 ms. Stanev et 
al. ((Stanev et al., 2021) have published an open-source software framework that allows 
kinematical and dynamical analysis of motion using the OpenSim API.. Their software 
performs the analysis in real-time and supports both IMU- and marker-based data.

The aim of this study was to develop a freely available software library that reads 
orientation data from IMUs and calculates the IK on a user-given musculoskeletal model in
real-time using OpenSim 4.1 API. The development of this work was done prior to the 
publication of works by Slade et al. (2022) and Stanev et al. (2021). Since release of the 
aforementioned software, our work is not novel but represents an alternative 
implementation to solve the same problem. The development occurred independently of 
these software and may therefore provide the community additional value to these previous
implementations. To assess the performance of our software we quantified the software’s 
IK execution time and throughput with different numbers of processor threads calculating 
the IK and different numbers of IMUs, and to determine if lowered input data frequency 
resulting from live visualization meaningfully affects calculated ranges of motion (ROMs).

Materials & Methods

Working principles of the software 

A software library for reading real-time IMU orientation data as quaternions and 
processing the data to calculate the IK of a musculoskeletal model was developed using C+
+ and published on GitHub (https://github.com/jerela/OpenSimLive  )  . The software utilizes 
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OpenSim 4.1 API to invoke methods that calibrate the musculoskeletal model and perform 
the IK to solve joint angles using quaternion-based orientation data from live 
measurements. 

For each time point, the IK algorithm of OpenSim uses orientation information from all 
IMUs to find the poses of individual bodies of the musculoskeletal model that, in the least 
squares sense, minimize the error between experimental IMU orientations and the 
orientations of the corresponding bodies. Because we did not modify the IK algorithm itself, 
we do not present it here. For information about the mathematics behind the IK algorithm, 
see (Delp et al., 2007), where it is explained for markers instead of IMUs; for IMUs, IMU 
orientation error is minimized instead of marker coordinate error. OpenSim’s IK algorithm 
for IMU data is briefly presented in supplementary materials, although we did not modify it.

The software library supports Xsens MTw Awinda™ (Xsens Technologies B.V., Enschede, 
Netherlands) and Delsys Trigno (Delsys Inc., Natick, Massachusetts, USA) IMUs. The 
open-source nature of the software library allows others to add support for other devices. 
IMU orientations are received wirelessly as quaternions using the Xsens Device API or 
individual quaternion elements are read from a byte stream via socket communication sent
by Trigno Control Utility. Information about which IMU corresponds to which body on the
musculoskeletal model is read from an XML file. Instead of reading orientation data from 
the actual IMUs, an option to generate randomized quaternion orientations for testing 
purposes without IMUs is available. 

The orientation information from IMUs is combined in a time series table that contains 
only one sample, i.e., time point. The time series table is given to OpenSim’s IK solver 
object, which solves the IK for that time point. The process is repeated for each sample. 
The resulting time series of joint angles can be saved in a text file in .mot format, which 
allows the output to be viewed using the OpenSim graphical user interface. The read 
quaternions, and also EMG time series in the case of Trigno Avanti sensors, can be saved in
a text file for later offline analysis. 

The working principle of the software library is straightforward. Producer-consumer 
thread synchronization is used to get orientation data from IMUs. A producer thread and a
consumer thread run concurrently. The producer reads orientation data as quaternions 
from the IMUs and saves it into a buffer that is shared between the threads. The consumer 
reads and removes data from the buffer and assigns an IK task to a thread in a thread pool.
This way there can be several concurrent IK calculations, improving the throughput of the 
program. The maximum number of concurrent IK threads is defined by the user. If that 
number is already active when the consumer thread starts another IK thread, the 
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consumer thread will wait for one of the IK threads in the thread pool to finish. A diagram 
illustrating the workflow is shown in Fig. 1. 

[FIGURE 1 GOES HERE] 
Fig. 1 A diagram illustrating the working principle of the inverse kinematics (IK) workflow
(Fig. 1). Orientation data of inertial measurement units (IMUs) is read as quaternions by 
the producer thread and saved to a buffer. Time values are saved to another buffer. The 
consumer thread reads data from both buffers and initiates new threads that calculate IK 
based on the data. IK threads output joint angle values for the model. Within an IK thread,
the IK output can be sent to a visualizer window. The visualization is based on the Simbody
(i.e., the physics engine used by OpenSim) API and not a part of our software library and 
hence not described here in more detail. When the program finishes, the IK output frames 
can be sorted in a time-ascending order and saved to file. 
 
The software library has been tested to work on 64-bit Windows 7 and Windows 10 
operating systems. The source code of the software library is available on GitHub at 
https://github.com/jerela/OpenSimLive.

Experimental data

Performance tests of the software library and error comparison of joint angles between 
real-time IK and offline IK were done for walking data of a single subject. The subject was 
of legal age and gave their written consent to participate in the study. A total of 12 IMUs 
(Xsens MTw Awinda, Enschede, Netherlands) were strapped on the subject’s upper arms, 
forearms, chest, pelvis, thighs, shanks, and feet, as shown in supplementary information. 
We recorded ten trials while the subject walked on an instrumented treadmill (Motek 
Medical B.V., Amsterdam, Netherlands) at a speed of 1.5 m/s (5.4km/h) and the IMUs 
transmitted their orientations at a sample rate of 60 Hz. Each trial contained 
approximately a minute of gait data. The subject was instructed to take the standard 
anatomical position at the beginning of each trial to calibrate the IMUs on the 
musculoskeletal model as per the standard IMU calibration procedure of OpenSim 
(elaborated in supplementary materials). When the subject was in the desired calibration 
pose, the user our software library pressed a key to calibrate the IMUs. No model scaling 
was done because we tracked only sensor orientations which are independent of model 
dimensions.

RTIK was calculated during the measurements. The Simbody visualization of RTIK was 
enabled, which reduced the throughput of RTIK from the 60 Hz sampling frequency of the 
IMUs to 45 Hz on average on the desktop computer. This RTIK output was saved to file at 
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the end of each trial. Additionally, the time series of received IMU orientations as 
quaternions were saved to a file at the full 60 Hz sampling frequency after each trial; the 
time series were used in calculating execution times and throughputs of the software 
library.

Performance tests

To quantify the performance of the software library, we conducted performance tests using
computer-generated IMU orientations and IMU orientations from recorded human 
walking (Table 1). Two performance measures were quantified: throughput and execution 
times of IK. The throughput describes how many IK operations are calculated per second 
on average when the communication between the producer and the consumer threads is 
included in the operation. The execution times describe the delays that the calculation of IK
for a single time frame takes, i.e., how long it takes after retrieving IMU orientations from 
one time point to retrieve the corresponding joint angles of the musculoskeletal model. 
Therefore, throughputs are increased by using multiple IK threads but execution times are 
not. To retrieve time points, the std::chrono::high_resolution_clock class was used in the C++ 
implementation.

Table 1: Conducted performance tests, the parameters that were varied in them, and their 
purposes.
[TABLE 1 GOES HERE]
IMU = inertial measurement unit; MS = musculoskeletal

The tests were conducted with two musculoskeletal models, the Gait2392 lower extremities 
and torso model (23 degrees of freedom, DOFs; referenced from here on as the lower body 
model) (Anderson & Pandy, 1999, 2001; Delp et al., 1990; Yamaguchi & Zajac, 1989) and the 
Hamner full-body model (29 DOFs, referenced from here on as the full-body model) 
(Hamner et al., 2010). In tests involving the lower body and torso model, data from 1 and 7 
IMUs were used; with the full-body model, data from 1, 7, and 12 IMUs were used (Table 
2). JointAll joint angles that were unlocked in the model by default were solved by the IK 
algorithm of OpenSim, but meaningful results were obtained only for joints connectingjoint 
angles defined by the available IMU data, such as joint angles between two segments that both 
had an attached IMU sensor. Finally, the tests were conducted with two computers, a 
laptop (HP EliteBook 8570w: Windows 10 Education 64-bit, Intel Core i7-3740QM 2.70 
GHz 8-CPU processor, 8192 MB RAM) and a desktop (Fujitsu Celsius W550 Power: 
Windows 10 Education 64-bit, Intel Core i7-6700 3.40 GHz 8-CPU processor, 32768 MB 
RAM). A laptop computer was used to examine if the software can perform sufficiently 
using portable devices that allow the measurements to be performed outside a laboratory 
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environment. A desktop computer was used to examine how large difference the increased 
computing power of a typical desktop compared to a typical laptop makes on the 
performance of the software.

Table 2: The MS model segments whose inverse kinematics were calculated during 
performance tests, presented by the number of IMUs whose data was utilized.
[TABLE 2 GOES HERE]
IMU: inertial measurement unit; MS = musculoskeletal

Execution times with computer-generated IMU orientations were measured with random 
unit quaternions. The quaternions represented random and sometimes unrealistic poses, 
which varied greatly between time frames and were time-consuming to calculate. 
Therefore, the measured execution times represent performance that is worse than in 
normal human motion, i.e., they were a benchmark of unrealistically poor performance. 
The execution times were measured with data from different numbers of IMUs (1 and 7 for
the lower body and torso model and 1, 7, and 12 for the full-body model). Each execution 
time measurement lasted until 10 000 IK operations were calculated. We report the mean, 
standard deviation (STD) and 95% confidence interval of the 10 000 execution times.

Finally, IMU orientations from real human walking were used to calculate throughputs 
and execution times. Performance was measured with pre-recorded quaternion 
orientations from ten one-minute walking trials. Although the throughputs and execution 
times were calculated after the walking trials had been recorded, the performance tests 
were designed to simulate real-time measurement by feeding the quaternion data into the 
test environment one data frame at a time. The use of pre-recorded quaternion orientations
enabled measuring throughputs above the sampling frequency of the IMUs; otherwise, the 
throughput would be limited to the sampling rate of the IMUs because IK operations could 
only be solved at the rate the IMU orientations are received. The tests were conducted with 
different numbers of IMUs (1 and 7 for the lower body and torso model and 1, 7, and 12 for 
the full-body model). Furthermore, different numbers of IK threads (1, 2, 4, 6, 8) were used
during throughput tests. The performance tests on real walking data allowed us to evaluate
performance during a common human motion measurement.

Error comparison of joint angles

Our software library includes an option to visualize motion like in OpenSim GUI by 
invoking methods from the Simbody API (namely, from the SimTK::Visualizer class), 
which OpenSim API is built upon. The use of the Simbody visualizer in a real-time IK 
thread slows the thread noticeably, and if the throughput drops below the sampling 
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frequency of the IMUs, the IK threads skip some orientation frames from the IMUs in a 
real-time measurement. This frame drop may negatively affect the accuracy of gait 
parameters derived from the IK solution. Although not a core feature of our software 
library, the Simbody visualization during RTIK may be of interest of some. Thus, we 
evaluated the effect of the frame drops on a kinematic variable that is often of interest and 
potentially affected by the frame drops, namely the ranges of motion (ROMs) of the joint 
angles. To this end we compared ROM between visualized RTIK (calculated in this case at 
approximately 45 Hz) and offline IK at the 60 Hz sample rate of the IMUs. Offline IK was 
calculated from IMU orientations that were stored after each of the ten walking trials; 
RTIK with Simbody visualization was calculated on the desktop computer during each 
walking trial. Orientations from all 12 IMUs were included, and the full-body model was 
used in the analysis. The measured motion exerted 26 of the model’s DOFs. For 
determining ROMs, the IK data was divided into periods based on the cyclical nature of 
the flexion-extension angle of the right knee. For each of the resulting 715 gait cycles (total 
from 10 walking trials), the difference between the highest and the lowest value of theeach 
joint angle was taken as theits ROM. The results were reported as the mean absolute error 
(MAE) and 95% confidence interval (95%CI) between offline IK and RTIK ROM. Note 
that we calculated errors to evaluate the effect of visualization on ranges of motion and to 
demonstrate how the software library works, not to validate IMU-based IK. For IMU-
based IK validation, see other studies such as (al Borno et al., preprint 20212022; Tagliapietra 
et al., 2018).

Results

Performance tests

Performance test results showed that increasing model complexity and the number of 
IMUs for orientation tracking increased execution times (Fig. 2) and decreased IK 
throughput (Fig. 3). Increasing the number of IK calculating threads increased throughput
(Fig. 3). The desktop computer always had lower execution times and higher throughput 
than the laptop computer in the same performance tests (Fig. 2 and Fig. 3). 

Using computer-generated random unit quaternions, the means and standard deviations of
execution times (operation delays) increased with increasing number of IMUs similarly on 
both the desktop and the laptop (Table 3, Fig. 4). With one IMU, the full-body model 
(Hamner) was 60-65% slower than the lower body model (Gait2392) and had more variation
in execution times. The mean execution times were approximately 25% longer on the 
laptop than on the desktop.  
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Table 3: Mean, standard deviation (STD) and 95% confidence interval (CI) of execution 
times of a single inverse kinematics (IK) operation. The values are calculated over 10 000 
IK operations for two different musculoskeletal models, two different computers and 1, 7 
or 12 inertial measurement units (IMUs). Randomly selected unit quaternions were used as
IMU orientations. 
[TABLE 3 GOES HERE]
CI = confidence interval; IK = inverse kinematics; IMU = inertial measurement unit; STD 
= standard deviation

Execution times calculated from human walking (Fig. 2) are shorter than the 
corresponding execution times from computer-generated data (Table 3, Fig. 4) and remain 
below 55 ms even with 12 IMUs and the full-body model. Performance with real walking 
data follows the same patterns as with computer-generated data. Execution times increase 
(Fig. 2) when the number of IMUs or model complexity (number of DOFs) is increased.

Execution times below 30 ms using the laptop and below 25 ms using the desktop were 
reached with the lower-body model and 7 IMUs (Fig. 2). Furthermore, even with the 
laptop, full body kinematics can be calculated with execution times below 60 ms, and 
provided at least four IK threads are used, with throughputs above 50 Hz (Fig. 3).

[FIGURE 2 GOES HERE]
Fig. 2 Execution times and standard deviations (shaded area) of a single inverse kinematics 
operation with respect to the number of inertial measurement units (IMUs), i.e., number of 
segments with measured orientation data. The execution times are presented as mean over 
ten trials for two different musculoskeletal models (lower body and torso model and full-
body model) using one, seven, or 12 IMUs. IMU quaternions orientations were retrieved 
from previously recorded walking trials.

Throughput tests show that on the laptop, human walking can be solved at more than 60 
IK operations per second when using eight IK threads, the full-body model and 12 IMUs 
(Fig. 3). The minimal IMU setup to record motion of all lower-body DOFs, 7 IMUs with the
lower-body model, reached a throughput of 130. with eight IK threads. On the desktop, the 
corresponding throughputs were 90 and 180, respectively.

[FIGURE 3 GOES HERE] 
Fig. 3 Inverse kinematics (IK) throughput with respect to the number of IK threads used, 
measured on a desktop computer (left) and a laptop computer (right). The throughputs are
presented as mean over ten trials. The measurements were repeated with two different 
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musculoskeletal models, and using one, seven or 12 inertial measurement units (IMUs). 
IMU quaternion orientations were retrieved from previously recorded walking trials.

[FIGURE 4 GOES HERE]
Fig. 4 Execution times and standard deviations (shaded area) of a single inverse kinematics 
operation with respect to the number of inertial measurement units (IMUs), i.e., number of 
segments with random orientation data. The values are calculated over 10 000 IK operations for 
two different musculoskeletal models, two different computers and 1, 7 or 12 inertial 
measurement units (IMUs). Randomly selected unit quaternions were used as IMU orientations. 

Error comparison of joint angles 
Enabling Simbody visualization during the measurement session reduced IK throughput 
but, compared to IK at full 60 Hz sampling frequency of the IMUs, caused only minimal 
differences in calculated ranges of motion (Fig. 45). The mean ROM error for all DOFs was
0.0675 degrees. The greatest MAE in ROM was observed in ankle joints (up to 360% of the
mean for all joints), followed by the left hip joint (Fig. 45). Pelvis and upper extremities had
the smallest ROM error. All MAEs remained below 0.3 degrees. 

[FIGURE 45 GOES HERE] 
Fig. 45 Mean absolute error (MAE) between real-time inverse kinematics and offline 
inverse kinematics ranges of motion (ROMs) of the exerted degrees of freedom of the 
musculoskeletal model and the 95% confidence interval of the error. Solid bars show 
MAEs of ROMs for each exerted degree of freedom. Confidence intervals are shown as 
error bars centered on the top of the MAE bars.

Discussion
We present an open-source software library for the real-time inverse kinematical analysis 
of IMU data with user-defined musculoskeletal models using OpenSim 4.1. Full-body IK 
can be calculated for random orientations in less than 100 ms; using real walking data, it 
can be done in less than 60 ms. On a desktop computer, the software library can solve 
RTIK at 180 samples per second while tracking the pelvis and lower extremities and at 90 
samples per second while tracking the full-body kinematics. On a laptop computer, the 
corresponding throughputs were 130 and 60 samples per second, respectively. Using 12 
IMUs to track walking and visualizing the results on a full-body running model, RTIK was 
solved at 45 samples per second on a desktop computer. The drop from the IMU output 
sampling rate of 60 Hz resulted in a minimal difference in calculated joint ROMs (<0.3 
degrees). The software library allows the use of RTIK virtually without limitations due to 
location or environment, which opens possibilities for a variety of applications including 
rehabilitation, ergonomics, and human-machine interfaces for controlling collaborative 
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robots. Observing the movement of interest in a natural environment is important because 
a laboratory setting may affect how a person moves (Friesen et al., 2020).  

Performance tests

We investigated the execution times and throughputs of the IMU-based IK to determine if 
the output can be considered real-time. Pizzolato et al. ((Pizzolato et al., 2017) used an 
execution time of 75 ms as the threshold for a real-time system. It was based on a study by 
Kannape and Blanke ((Kannape & Blanke, 2013) in which the subjects were able to identify 
the displayed motion as self-generated in real-time in over 80% of the cases if the delay in 
motion display was less than 75 ms. Even with a delay of 210 ms, subjects identified the 
visualized motion as self-generated in real-time in 50% of the cases. Borbély and Szolgay 
((Borbély & Szolgay, 2017) noted that the IK algorithm of OpenSim 3.3 had an execution 
time of about 145 ms, thus calculating IK at about 7 Hz and “falling behind the generally 
accepted practice in human movement recording of at least 50 Hz”. Therefore, a real-time 
application should achieve IK throughput of 50 operations per second with an execution 
time below 75 ms for any single operation. With our software library, we aimed to achieve 
this target by using multithreading and the IK algorithm of OpenSim 4.1. 

Another interesting finding by Kannape and Blanke ((Kannape & Blanke, 2013) was that 
subjects modulated their stride based on the delay between the motion and its visualization.
Therefore, it is important to minimize the delay when preparing a real-time measurement 
setup to prevent subjects from altering their gait characteristics based on delayed visual 
feedback. 

Live visualization is unnecessary in applications where IK is an intermediate output that is 
used to estimate contact forces, instruct a robot arm in rehabilitation applications or 
calculate gait parameters, to name a few examples. Thus, the performance tests were 
designed so that they evaluate only the performance of IK, which is the core feature of the 
software library. Although we adopt the visualization-based 75 ms criterion for real-time 
motion from Kannape and Blanke, our performance tests were conducted without 
visualization. Our software library relies on Simbody visualization and lacks an elegant 
visualization solution of its own, which is a limitation that should be acknowledged.

The performance tests show that IK throughput is more sensitive to the number of IMUs 
than the DOFs of the model, although model complexity also increases computational load. 
because joint angles with no experimental data to solve them are still considered in the IK 
algorithm. Execution times clearly increased with the number of IMUs, although model 
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complexity also affected them noticeably. Therefore, minimally enough IMUs and DOFs 
should be chosen to enable high throughput and short execution times in real-time.

The performance of the software library would benefit from improvements particularly in solving
IK and visualizing the results. Because a new quaternion time series table is created for a single 
IMU data point every time an IK frame needs to be solved, the software library is 
computationally much heavier than it would be if a single time series table could act as a 
permanent buffer that is updated with new IMU data points. This implementation was not 
possible using the OpenSim API during the development stage of our software library but 
appears to be supported in the latest version of the API. Furthermore, the data points in real-time 
IK may be solved in inconsistent order depending on how quickly each IK thread finishes. 
Expired IK frames may be omitted if the real-time IK is used as input in further real-time 
analyses but the missing data points may require interpolation or other consideration, e.g., if 
filtering the IK is required. Thus, future development of the software library could implement 
existing interpolation functionalities from the OpenSim API. Additionally, if the visualizer 
would be implemented in its own thread, it could be used without blocking the IK solving 
threads and it would enable greater IK throughput while visualization is enabled. This 
improvement would also enable the solving of joint angles at a high frame rate and visualizing 
them at a reduced frame rate for performance reasons.

Finally, it should be noted that the software library was only tested on the Windows 
operating system, and the performance tests were conducted on its operation as a whole. 
Thus, no proper profiling analysis was done to discover which parts of the software library 
have potential for performance optimization.

Execution times of the IK operation 

Real motion, such as walking, contains a combination of different orientations, most of 
which are within a typical model’s joint angle boundaries. Randomly generated unit 
quaternions used in execution time tests often result in unrealistic poses. As a result, the IK 
based on randomized unit quaternions is heavier to calculate than the average orientations 
during walking, or any typical human motion. Therefore, the execution times from 
computer-generated data can be interpreted as the worst performance when analyzing 
human motion without live visualization. Consequently, if the execution times with 
computer-generated data are sufficiently small for real-time analysis, then any realistic 
motion should be processed with smaller or equal execution times. On the other hand, we 
can assume that most human motions can be analyzed with execution times like those from 
real walking data because joints angles are likely to change at a similar rate and exert 
constraints similarly.
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For both models using computer-generated random unit quaternions, the standard 
deviations of the execution times are on the same scale as the mean execution times, 
implying that there is great variation in the execution time. The randomized nature of the 
used quaternion orientations is a likely contributor to the high standard deviation, because 
randomized orientations occasionally lead to strange segment orientation combinations 
that do not reflect valid human motion and take the IK algorithm a long time to solve. This 
is further supported by the much smaller standard deviation in real walking data (Fig. 2).

Before conclusions are drawn from the computer-generated random unit quaternion-based 
execution times, it should be acknowledged that the results varied somewhat on repeated 
runs with the same parameters. This implies that running the tests more than 10 000 
iterations could improve the precision of the results. However, because the purpose of the 
computer-generated random unit quaternions was to estimate worst-case performance for 
the hardware of the tested computers and the effects of differing the number of DOFs of 
the model and segments with IMU orientations, which they show well, we chose not to 
repeat the tests with more iterations.

For both computer-generated (Table 3) and real walking data (Fig. 2), with one and seven 
IMUs, the execution times are shorter and vary less for the lower body model (Gait2392) 
than for the full-body model (Hamner).. Both the mean execution times and the standard 
deviations are smaller on the desktop than on the laptop. However, the execution times 
vary less with 12 than with seven IMUs on the full-body model. 

Because execution times calculated on real walking data remained below 55 ms (Fig. 2), the
software library is capable of real-time inverse kinematics analysis of the full body even on 
a laptop. Using computer-generated random unit quaternions, the 95% confidence 
intervals of execution times are roughly 1% of the mean execution time in all cases, 
meaning that the execution times stay consistently below 75 ms except when 12 IMUs are 
used. In that case, the execution times stay consistently below 100 ms, which is still less than
half of the 210 ms delay that marks 50% confidence in perceiving motion as real-time 
(Kannape & Blanke, 2013). Therefore, while RTIK is clearly possible with normal walking, 
some complicated motions may result in longer execution times but could nonetheless be 
analyzed practically in real-time. Because the execution times represent the minimum delay
from the orientation data retrieval to the moment we can visualize or further analyze the 
IK output, the number of IMUs in a real-time measurement should be chosen considering 
the delays that are acceptable for the application.

Throughputs 
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Fig. 3 shows that increasing the number of concurrent processor threads increased the 
throughput until about eight threads, which was the maximum CPU core number for both 
computers. Increasing the number of IK threads further had no meaningful effect on the 
throughput, which was also observed in an earlier study on RTIK (Pizzolato et al., 2017). 
The throughput plateau resulted from CPU utilization of the computer reaching 100% and
is thus hardware dependent.

The increase in throughput by multithreading is especially large with a small number of 
threads and one IMU. For example, throughput increases from less than 25 to more than 
150 when the number of IK threads increases from one to two on the laptop. Doubled 
computational capacity alone cannot explain the increase in throughput. The effect is also 
present on the desktop. Furthermore, the relationship between the throughput and the 
number of IK threads is clearly nonlinear whereas an earlier RTIK study found it almost 
linear (Pizzolato et al., 2017). No explanation for this phenomenon was found, but it should 
be addressed in the future development of the software library. 

For 1 IMU and 4 or more concurrent threads, the lower body model with 23 DOFs had 
approximately 20% higher throughput than the full-body model with 29 DOFs. For 7 
IMUs, the lower body model throughput was 40% higher than that of the full-body model. 
Therefore, model selection has a noticeable effect on the performance of RTIK and the 
model with the smallest sufficient number of DOFs should be chosen to reach maximal 
RTIK performance. 

The software library is clearly capable of calculating IK at a higher rate than the lower 
limit of 50 Hz named by Borbély and Szolgay ((Borbély & Szolgay, 2017), but requires 
multithreading to reach it with complex musculoskeletal models. For portable real-time 
gait measurements, a laptop should be able to achieve sufficiently high IK throughput when
7 IMUs are used. We reached a throughput of 130 samples per second in such a scenario, 
although others’ results will vary depending on the hardware of the laptop. Nonetheless, a 
throughput of 130 samples per second should be sufficient for most gait analysis 
applications.

Error comparison  

Because loss of frequency may lead to reduced accuracy in measuring sharp peaks in joint 
angles, joints where motion direction changes fast are likely to have high ROM error (Fig. 
45). During walking, ankle flexion (ankle_angle_r and ankle_angle_l) undergoes fast 
changes, which explains why its ROM error stands out. However, because all ROM errors 
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remain consistently below 0.3 degrees, the effect of the drop in visualized IK from 60 to 45 
Hz on ROM is very small. 

The ROM error of left hip adduction stands out because it is visibly higher than that of the 
right hip. The error is caused by an artifact in IMU signal that caused the left leg to be 
violently jerked to the right after the left toe-off phase. The artifact is probably caused by 
the distortion of magnetic fields near the ferromagnetic laboratory hardware, which the 
left leg was closer to.

Comparison to other solutions for IMU-based RTIK using OpenSim

In the introduction, we briefly presented some existing solutions for real-time IMU-based 
IK. Two of them, OpenSenseRT (Slade et al., 2022) and the solution by Stanev et al. 
((Stanev et al., 2021), utilize the OpenSim API like our software library. OpenSenseRT had 
comparable execution times and throughputs but to optimize performance, they loosened 
IK solver tolerance and simplified their musculoskeletal model by removing muscles and 
locking unused joints. Therefore, the performance results are not easily comparable to 
ours., where many joints remained unlocked despite not having experimental IMU data to solve 
them uniquely and muscles of the model were left as they are (although muscles are not part of 
IK calculations, we made preliminary and unreported observations that OpenSim’s standard 
IMU-based IK throughput is slightly lower on a model with muscles compared with a model 
without muscles). OpenSenseRT is a good solution for IMU-based IK where the Raspberry 
Pi computing unit is carried with the subject, while our solution relies on a computer 
separate from the subject, limiting its applicability slightly but allowing higher 
performance due to numerous options of laptop hardware and requiring less work to use 
different musculoskeletal models. The solution by Stanev et al. allows the use of different 
musculoskeletal models easily. They support both marker-based and IMU-based IK and 
use lower-level API functions to calculate IK quickly. Furthermore, their solution goes 
beyond IK, enabling even real-time inverse dynamics and joint reaction force analysis. 
Their software architecture relies on two threads: one to collect orientation from IMUs or 
marker positions and then perform IK, and another to perform preprocessing and further 
musculoskeletal analysis in real-time. Our solution has one thread for collecting orientation
from IMUs and a user-defined number of threads for IK. Therefore, although the solution 
by Stanev et al. is superior to ours in terms of number of features, our solution may allow 
higher throughputs due to the variable number of IK threads that is only limited by 
computer hardware.

Conclusions
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An open-source software library that builds upon the widely used OpenSim software was 
developed and published for IMU-based RTIK. It allows the joint angles of any OpenSim-
compatible musculoskeletal model to be analyzed in real-time. While another real-time 
solution was concurrently and independently developed by Stanev et al. ((Stanev et al., 
2021), its IK calculation does not utilize multithreading, which may limit its throughput, 
although its IK calculation relies on lower-level API classes that are faster than those used 
by the software library developed in this study when a single thread is used. The authors 
encourage others to contribute to the open-source project. The development of the software
library will closely follow the development of OpenSim to utilize its built-in functionality 
for processing live data. The software library could be utilized in real-time estimation of 
joint moments, muscle forces, and joint contact forces based only on IMU data. Ground 
reaction forces and moments and kinematics are required for solving the equations of 
motion for the musculoskeletal model using inverse dynamics. It has been shown that 
ground reaction forces and moments can be predicted from IMU-derived kinematics 
(Karatsidis et al., 2017; Stanev et al., 2021). Moreover, estimation of muscle forces using 
optimization techniques uses kinematics and inverse dynamics estimates of joint moments 
as inputs and estimates of joint contact forces can be derived based on kinematics, inverse 
dynamics, and muscle forces. Hence, IMUs could be potentially used for the real-time 
estimation of musculoskeletal dynamics outside the laboratory and implemented in the 
software library in the future. Another interesting future application is the use of RTIK 
output together with EMG. Thus, combining IK output with EMG in real-time may 
provide interesting possibilities for estimating muscle forces and musculoskeletal loading 
using EMG driven musculoskeletal simulations (Sartori et al., 2011), for biofeedback to 
optimize rehabilitation or ergonomics or for biosignal-based operating systems.
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