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ABSTRACT
Background. Skeletal muscle is not only an important tissue involved in exercise
and metabolism, but also an important part of livestock and poultry meat products.
Its growth and development determines the output and quality of meat to a certain
extent, and has an important impact on the economic benefits of animal husbandry.
Skeletalmuscle development is a complex regulatory network process, and itsmolecular
mechanism needs to be further studied.
Method. We used a weighted co-expression network (WGCNA) and single gene set
enrichment analysis (GSEA) to study the RNA-seq data set of bovine tissue differential
expression analysis, and the core genes and functional enrichment pathways closely
related tomuscle tissue development were screened. Finally, the accuracy of the analysis
results was verified by tissue expression profile detection and bovine skeletal muscle
satellite cell differentiation model in vitro (BSMSCs).
Results. In this study, Atp2a1, Tmod4, Lmod3, Ryr1 and Mybpc2 were identified as
marker genes inmuscle tissue, which aremainly involved in glycolysis/gluconeogenesis,
AMPKpathway and insulin pathway. The assay results showed that these five geneswere
highly expressed in muscle tissue and positively correlated with the differentiation of
bovine BSMSCs.
Conclusions. In this study, several muscle tissue characteristic genes were excavated,
which may play an important role in muscle development and provide new insights for
bovine molecular genetic breeding.

Subjects Bioinformatics, Cell Biology, Molecular Biology
Keywords BSMSCs, Muscle, WGCNA, GSEA, Breeding

INTRODUCTION
The skeletal muscle of livestock and poultry is the main source of meat products, providing
human beings with high-quality animal protein and nutrients. With the booming of the
livestock industry, the muscle yield and quality of livestock and poultry are gaining more
and more attention and importance. However, the regulatory process of skeletal muscle
growth and development involves the activation or silencing of numerous genes and
their associated pathways, and is an extremely complex multi-level regulatory network.
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Therefore, revealing the process of skeletal muscle development and its regulatory factors
will help to provide ideas for the improvement of livestock and poultry meat quality.

At present, a large number of public transcriptome data appear with the development of
high-throughput sequencing technology, which provides valuable resources for screening
biomarkers related to livestock and poultry development (Rao et al., 2021). The weighted
co-expression network (WGCNA) is a systems biology method that can analyze microarray
data to explore the correlation between genes (Langfelder & Horvath, 2008). It can
distinguish the associations between different gene sets and between trait phenotypes
and gene sets, and gather highly related genes into the same module (Sheng et al., 2022).
The genes in the module can be organized by connectivity. Gene-to-gene interactions
are revealed at the systematic level, which will help researchers to further understand the
mechanisms behind gene interactions and to identify candidate biomarkers or therapeutic
targets (Talukdar et al., 2016). In fact, the use of WGCNA has played an important role in
revealing the effects of meat traits and related metabolism (Ponsuksili et al., 2012), as well
as genetic variation in the study of cellular functions and diseases (Farber & Lusis, 2009;
Calabrese et al., 2012).

In this study, we used WGCNA to analyze the GSE137943 dataset and successfully
screened five hub genes associated with bovine muscle tissue by constructing gene co-
expression networks from transcript data of multiple tissues and analyzing the main
functions of trait-related module genes. Finally, we used tissue samples and bovine
BSMSCs to detect the expression pattern of hub gene, preliminarily analyzed the function
of hub gene, and verified the reliability of the analysis results. We hope that the results
of this study will contribute to the study of the regulatory mechanism of bovine muscle
development.

MATERIAL AND METHODS
Ethics statement
Animal experiments were conducted according to the guidelines of the Regulations for
the Administration of Affairs Concerning Experimental Animals (Ministry of Science and
Technology, China, 2004). With the approval of the AnimalWelfare Committee of Ningxia
University (license no. NXUC20211058), we first injected a premature calf with a sedative,
and when the calf entered a quiet state, we injected an excessive amunt of barbiturate
(100 mg/kg) intravenously, making every effort to relieve the pain of the animal. Then
the muscle tissue of calves was collected and the primary bovine BSMSCs was isolated,
cultured and differentiated immediately. meanwhile, tissue samples of kidney, liver, heart,
muscle, rumen, adipose, spleen and lung of calves were collected, and these tissue samples
were stored in liquid nitrogen for subsequent experimental verification. In addition, the
pregnant cow was not sampled, and after a period of rest and recuperation, it was still
raised in the Fumin farm in Guyuan (Yinchuan, China).

Data collection
GSE137943 transcriptome data were mainly used to analyze the differences of gene
expression among different tissues of cattle, which were provided by GEO database
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(https://www.ncbi.nlm.nih.gov/geoprofiles) (Fang et al., 2020). We analyzed the expression
profile data of 37 samples from eight tissues (adipose, heart, kidney, muscle, liver, lung,
rumen and spleen) of cattle in this data set. All RNA-seq data sets are preprocessed using the
robust multichip average (RMA) for background correction and normalization (Irizarry et
al., 2003).

Construction of co-expression network
The gene co-expression network was constructed by using WGCNA software package
in R (Pan et al., 2022). First, a similarity matrix was constructed by calculating Pearson
correlation coefficients. Then, a scale-free topological network is constructed by using
PickSoftThreshold function and selecting appropriate soft threshold parameter β (Chen
et al., 2018). The adjacency matrix is then transformed into a topological overlap matrix
(TOM), which is capable of computing the network connectivity of genes for network
generation (Botia et al., 2017). We chose the soft threshold power (8) corresponding to a
correlation coefficient threshold of 0.8 to construct a scale-free co-expression network,
defined 0.25 as the threshold for dividing the modules, and set the minimum number of
genes in the modules to 30.

Identify module of interest and functional annotation
The WGCNA algorithm took the two significant parameters module eigengene (ME)
and module significance (MS) to evaluate the modules related to muscle tissue. ME is
defined as the main parameter of principal component analysis, which can transform the
expression of genes in specific modules into characteristic expression profiles (David &
Jacobs, 2014). MS was defined as the mean value of gene significance (GS) in the module,
where the module with the highest absolute value of MS was considered to be the most
associated with muscle tissue. Functional enrichment analysis of genes in muscle tissue
related modules was performed using the clusterprofiler package in R (Yu et al., 2012).
When the P < 0.01, it was considered significantly enriched in GO-BP process and KEGG
pathway.

Hub genes identification
Modulemembers (MM) aremainly used to analyze the correlation between gene expression
profile and ME, and gene significance (GS) can reflect the correlation between phenotype
and gene expression value (Liu et al., 2019). We used GS ≥ 0.79 and MM ≥ 0.80 as
criteria to screen candidate hub genes in the co-expression network. The STRING website
(https://string-db.org/) was used to construct a network of PPI interactions associated with
muscle tissue, and the CytoHubba plug-in for Cytoscape software was used to identify
central genes in the PPI network (Chin et al., 2014; Szklarczyk et al., 2017). Finally, the
common genes identified by co-expression network and PPI network are defined as ‘‘real’’
Hub genes (Li, Pu & Wu, 2019; Lu et al., 2020).

Single-gene gene set enrichment analysis
Gene set enrichment analysis (GSEA) is a computational method that analyzes the form
of gene expression in a specific functional gene set and whether this expression form is
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statistically significant (Subramanian et al., 2005). We used the GSEABase package in R to
analyze the expression matrix of the samples, using intergenic correlation as a criterion for
grouping (Merico et al., 2010).

Cell isolation and culture
According to the results of previous studies, bovine hind limb muscle tissue was collected,
cut into small pieces and bovine BSMSCs were isolated using the type II collagenase
(Gibco, USA) and trypsin (Gibco, Waltham, MA, USA) method (Dai et al., 2016). Then,
the isolated cells were inoculated into a cell petri dish containing proliferation medium
(20% FBS + 80%DMEM) for culture. Until the confluence approximately reaches 70%, the
differentiationmedium (2% FBS + 98%DMEM)was replaced to induce cell differentiation
(Zhang et al., 2020).

RNA isolation and qRT-PCR
Tissue samples of newborn calves and 2.5-year-old calves (heart, liver, spleen, lung, kidney,
muscle, fat and rumen epithelium) were provided by the Key Laboratory of Ruminant
Molecular Cell breeding of Ningxia University. Trizol reagent (Invitrogen, Waltham,
MA, USA) was used to extract the total RNA of bovine BSMSCs from different tissue
samples and different culture periods (GM: proliferation phase; DM1∼5: 1–5 days of
differentiation). Total RNA was reverse transcribed using the PrimeScript II 1st Strand
cDNA Synthesis Kit (Takara, Dalian, China), and real-time quantitative real-time PCR
(qRT-PCR) experiments using reverse transcribed products were performed to measure
the mRNA expression levels of target genes (Chen et al., 2021). The primer information is
shown in Table S8. The qRT-PCR program is added in the Table S9.

Immunofluorescence assay
After washing the cells with PBS, the cells were first fixed with 4% paraformaldehyde for
30 min, then treated with PBS containing 0.1%TritonX-100, then blocked with 5% bovine
serum albumin (BSA) at room temperature for 30 min, and finally diluted anti-MyHC
antibody (1:100, Abcam, Cambridge, MA, USA) was added overnight treatment at 4 ◦C.
On the second day, the cells were washed with PBS for 3 times and incubated with FITC-
conjugated goat anti-rabbit IgG-labeled secondary antibody for 1 h at room temperature
and in the absence of light. The cells were washed with PBS three times, and then stained
for 5 min with 4,6-diamino-2-phenylindole (DAPI). Finally, the cells were observed and
photographed under an inverted fluorescence microscope.

Expression analysis of hub genes
The differential expression level of hub gene in GSE137943 data set was analyzed, and
the analysis results were verified by GSE116775 data set (Sun et al., 2021). In addition, the
mRNA level of hub gene in bovine BSMSCs from different tissue samples and different
culture periods was also detected.

Statistical analysis
All experimental results were calculated as mean± SEM of three independent experiments.
Double-tailed t -test or chi-square test was used to compare between groups, and the
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expression level of GAPDHwas used as endogenous control, andwas considered statistically
significant when the P < 0.05 (*P < 0.05 and **P < 0.01).

RESULTS
Construction of co-expression network
In this study, WGCNA analysis was performed based on expression profiles from the
GSE137943 dataset (Table S1) to detect the gene clusters most relevant to muscle tissue.
The results of sample cluster analysis show that the same tissue samples will be divided
into the same cluster, indicating that the tissue type is the main reason for the differences
between samples (Fig. 1). In this study, the soft threshold parameters corresponding to a
correlation coefficient threshold of 0.8 were chosen to ensure a scale-free network (Fig. 2A).
In the GSE137943 dataset, 23 co-expression modules were constructed, and the module
with the most genes was turquoise module (982), followed by yellow module (854) and
green module (622) (Fig. 2B). The characteristic neighbourhood heat map represented in
Fig. 2C shows the relationships between genes in different modules in the dataset, with
genes in the samemodule being strongly correlated with each other, while genes in different
modules are almost independent of each other.

Analysis of muscle tissue related modules
We obtain the module-feature heat map by calculating the correlation coefficient between
the module and the feature of the data set. According to the GS algorithm, we found
that the correlation between magenta module and muscle tissue (r = 0.93, p = 8E−11)
in GSE137943 data set was the most significant (Fig. 3A), and there were 223 genes in
magenta module (Table S3). Analysis of the genes in the magenta module is important
for the study of bovine muscle tissue and the highest expression levels of genes associated
with muscle tissue were found in this module (Figs. 3A, 3B). Bioinformatics studies have
shown that these muscle tissue-associated genes are enriched in biological processes such
as muscle contraction and muscle structure development, and are involved in signaling
pathways such as cGMP-PKG and cAMP signaling pathways (Fig. 4). All enrichment terms
and explanations can be found in Table S4.

Excavation of the hub gene
We screened 20 co-expressed hub genes in the magenta module using GS ≥ 0.79 and MM
≥ 0.80 as criteria, and these genes have close interrelationships with each other (Fig. 5A;
Table S5). Meanwhile, the PPI network was constructed for the genes in the magenta
module, and the 20 genes with the highest connectivity in the network were selected (Fig.
5B; Table S6). Finally, the intersection was taken for the 40 genes and five common genes
(Tmod4, Ryr1,Mybpc2, Lmod3 and Atp2a1) were defined as the ‘‘real’’ hub genes (Fig. 5C).

Gene set enrichment analysis
To analyze the potential functions of Atp2a1, Tmod4, Lmod3, Mybpc2 and Ryr1 genes, we
performed GSEA analysis. The results showed that the genes positively correlated with hub
gene in GSE137943 dataset were mainly concentrated in insulin signal pathway, calcium
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Figure 1 Sample dendrogram of GSE137943 dataset.
Full-size DOI: 10.7717/peerj.15093/fig-1

signal pathway, AMPK signal pathway, MAPK signal pathway, oxidative phosphorylation
and glycolysis/gluconeogenesis (Fig. 6; Table S7).

Validation of the hub genes
We analyzed the differential expression levels of hub genes in GSE137943 data sets
and found that these genes were highly expressed in muscle tissue (Fig. 7). Meanwhile,
the expression levels of the five hub genes mentioned above were examined using the
GSE116775 dataset (Table S2). As shown in Fig. 8, in the GSE116775 data set, the expression
levels of Atp2a1 (Fig. 8A), Tmod4 (Fig. 8B), Lmod3 (Fig. 8C), Mybpc2 (Fig. 8D) and Ryr1
(Fig. 8E) in muscle tissue were significantly higher than those in other tissues. In addition,
we used tissue samples from newborn calves and adult cattle collected in the laboratory to
detect the expression level of hub gene, and found that the results were consistent with the
expression trend of GSE137943 data set and GSE116775 data set (Figs. 9 and 10).

Bovine BSMSCs differentiation culture
Myosin heavy chain (MyHC) and Myogenin (MyoG) are the differentiation markers
of bovine BSMSCs. We used real-time fluorescence quantitative PCR reaction to detect
the expression level of marker genes during cell differentiation. The results showed that
the mRNA expression levels of MyoG and MyHC in differentiated bovine BSMSCs were
significantly higher than those before differentiation. Meanwhile, immunofluorescence
staining analysis of bovine BSMSCs from GM, DM3 and DM5 was carried out. The
results showed that no myotubes were observed before the differentiation of bovine
BSMSCs, and the fluorescence signal intensity of MyHC was weak. However, after induced
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Figure 2 Gene co expression network was constructed by GSE137943 dataset. Analysis of the scale-free
fit index for soft-thresholding powers (left) and the mean connectivity for various soft-thresholding pow-
ers (right); (B) Gene expression clustering tree and recognition module in co-expression network; (C) net-
work heatmap plot in the co-expression modules.

Full-size DOI: 10.7717/peerj.15093/fig-2

differentiation, bovine BSMSCs fused and formed muscle tubes, and the expression level of
MyHC increased significantly (Fig. 11). The above results indicate that a model of induced
differentiation of bovine BSMSCs was successfully constructed.

Detection of hub gene expression in Bovine BSMSCs
QRT-PCR was used to detect the expression changes of hub gene during the induction and
differentiation of bovine BSMSCs. The results showed that the expression level of hub gene
in DM phase cells was significantly higher than that in GM phase cells, indicating that the
identified hub gene played a role in myogenic differentiation of bovine BSMSCs, and they
played an important role in the study of the molecular mechanism of muscle development
(Fig. 12).

DISCUSSION
The growth and development of skeletal muscle is of great significance to improve meat
production performance and product quality. In addition, the analysis of the structural
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Figure 3 Module-trait correlations analysis in muscle tissue (GSE137943). (A) Heat map of correlation
between GSE137943 data set module and muscle tissue; (B) Significance of genes related to muscle tissue
in the magenta module (each dot represents a gene in the magenta module); (C) Module eigengene (y-
axis) across samples (x-axis) from the magenta module (associated to muscle tissue).

Full-size DOI: 10.7717/peerj.15093/fig-3

Figure 4 GO and KEGG analysis. The visualization results of (A) partial GO biological function analysis
and (B) partial KEGG analysis of magenta module gene. The first 10 important enrichment pathways are
shown.

Full-size DOI: 10.7717/peerj.15093/fig-4

characteristics and growth rules of bovine skeletal muscle and the factors regulating the
growth and development of bovine skeletal muscle tissue have important implications
for beef cattle breeding and production. Therefore, to better understand the genetic and
molecular influences behind economic traits of muscle tissue, we used RNA sequencing
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Figure 5 Identification of Hub gene. (A) Correlation of the top 20 genes with high MM and GS in the
magenta module; (B) the top 20 genes with the highest connection degree in magenta module were iden-
tified by Cytoscape software; (C) identify the common genes in the co-expression network and PPI net-
work.

Full-size DOI: 10.7717/peerj.15093/fig-5

data and WGCNA tools to construct co-expressed gene networks and identify possible
candidate genes and metabolic pathways regulating muscle tissue traits.

Because WGCNA analysis focuses on mining the relationship between target features
and co-expression modules, the results have good reliability and biological significance
(Chou et al., 2014). Therefore, we analysed 37 samples from the GSE137943 dataset using
WGCNA and found that the magenta module was significantly associated with muscle
tissue (Fig. 3A). The KEGG analysis of genes in magenta module showed that these genes
were mainly enriched in cGMP-PKG, cAMP, Calcium signaling pathway and other signal
pathways (Fig. 4A), and were closely related to biological processes such as muscle system
process, muscle structure development, skeletal muscle tissue development and muscle
contraction (Fig. 4B). Then, five real hub genes were identified by intersecting the hub
genes identified in the GSE137943 data set co-expression network and the PPI network
(Fig. 5). GSEA of hub genes showed that genes positively associated with hub genes
were mainly involved in insulin, calcium, AMPK, MAPK, oxidative phosphorylation and
glycolysis/gluconeogenesis pathways (Fig. 6). Studies have show that when the body takes
in energy through diet, the pancreas β cells synthesize and secrete insulin (Sharma, Garber
& Farmer, 2008). Insulin is essential for maintaining the body’s glucose homeostasis and
acts primarily by inhibiting hepatic glucose production and stimulating glucose uptake
by muscle and fat (Zhang & Liu, 2014). Skeletal muscle is the main target tissue of insulin
action, and 75% of insulin-mediated glucose uptake occurs in skeletal muscle. Glucose
is transported to muscle cells and converted into glycogen. Glycogen synthesis depends
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Figure 6 The gene set enrichment analysis results of hub gene. Pathway enrichment analysis of genes
positively associated with (A) Atp2a1, (B) Tmod4, (C) Lmod3, (D)Mybpc2 and (E) Ryr1 in the GSE137943
dataset.

Full-size DOI: 10.7717/peerj.15093/fig-6

on glycogen synthase activity and glucose uptake, and insulin signal pathway can affect
glycogen synthase activity by regulatingGSK-3β. Therefore, insulin signaling pathway plays
an important role in stabilizing the physiological state of skeletal muscle and maintaining
energy balance (Kampmann et al., 2011). Calcium signaling pathway can regulate muscle
contraction, exocytosis, cell division to gene expression and other cellular functions, which
is of great significance for skeletal muscle development, dynamic balance and regeneration
(Tu et al., 2016). AMPK signal can fuse with PI3K and ERK signals in growth regulation,
and with insulin and cAMP dependent pathways in metabolism. It is the main coordinator
of cell growth, metabolism and final cell fate (Mihaylova & Shaw, 2011). MAPK signal
pathway is a kind of phosphorylated signal pathway, which can regulate cell processes
such as cell division, differentiation and the release of inflammatory mediators (Davis,
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Figure 7 Expression of hub genes in dataset GSE137943. (A–E) Expression levels of (A) Atp2a1, (B)
Tmod4, (C) Lmod3, (D)Mybpc2, and (E) Ryr1 were significantly increased in muscle tissue.

Full-size DOI: 10.7717/peerj.15093/fig-7

Figure 8 Expression of hub genes in dataset GSE116775. (A–E) Expression levels of (A) Atp2a1, (B)
Tmod4, (C) Lmod3, (D)Mybpc2, and (E) Ryr1 were significantly increased in muscle tissue.

Full-size DOI: 10.7717/peerj.15093/fig-8

2000; Wagner & Nebreda, 2009). Both glycolysis and oxidative phosphorylation play an
important role in steady-state ATP synthesis, providing energy for muscle contraction
and movement (Conley, Kemper & Crowther, 2001). In addition, the hub gene Atp2a1 is
mainly involved in pathways such as muscle contraction and calcium ion transmembrane
transport (Fig. 13).

With regard to the identified hub genes, the function of Atp2a1, Tmod4, Lmod3, Ryr1
andMybpc2 in muscle development have been reported. Calcium is the second messenger
necessary for cell growth and development, maintenance of intracellular homeostasis
and muscle cells to perform special functions (Lechleiter, John & Camacho, 1998;

Zhang et al. (2023), PeerJ, DOI 10.7717/peerj.15093 11/21

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137943
https://doi.org/10.7717/peerj.15093/fig-7
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116775
https://doi.org/10.7717/peerj.15093/fig-8
http://dx.doi.org/10.7717/peerj.15093


Figure 9 The expression level of hub gene in newborn calf tissue samples was detected. (A–E) Com-
pared with other tissues, the expression levels of (A) Atp2a1, (B) Tmod4, (C) Lmod3, (D)Mybpc2, and (E)
Ryr1 in muscle tissue were significantly increased.

Full-size DOI: 10.7717/peerj.15093/fig-9

Figure 10 Expression levels of hub genes were examined in tissue samples from 2.5 year old cattle. (A–
E) Compared with other tissues, the expression levels of (A) Atp2a1, (B) Tmod4, (C) Lmod3, (D)Mybpc2,
and (E) Ryr1 in muscle tissue were significantly increased.

Full-size DOI: 10.7717/peerj.15093/fig-10

Lipskaia, Hulot & Lompre, 2009). The sarcoplasmic/endoplasmic reticulum Ca2+ ATPases
(ATP2As/SERCAs) is the main Ca2+ pump of myotube and young muscle fibers, which
reduces the level of intracellular Ca2+ by accumulatingCa2+ into sarcoplasmic reticulum. In
human related studies, Atp2a1/Serca1 was found to be highly expressed in fast contracting
skeletal muscle; Atp2a2/Serca2 in slow contracting skeletal muscle, vascular myocytes and
cardiac myocytes; while Atp2a3/Serca3 was expressed in platelets, lymphocytes, fibroblasts,
epithelial cells and endothelial cells (Periasamy & Kalyanasundaram, 2007; Lipskaia, Hulot
& Lompre, 2009). In addition, the study on mouse C2C12 myoblasts showed that the
expression of Atp2a1/Serca1b was closely related to the expression of Stim1, Csq and
calcineurin, which was necessary for myoblast proliferation and secondary myotube
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Figure 11 To induce myogenic differentiation of bovine skeletal muscle satellite cells. (A) Cell state
map of bovine BSMSCs in different culture periods; GM: Proliferative phase, DM1-5: Cell differentiation
day 1 to day 5; (B–C) The mRNA expression levels ofMyOG andMyHC in different culture periods were
detected; (D) The bovine BSMSCs differentiated for 0 (D0), 3 (D3) and 5 days (D5) were analyzed by im-
munofluorescence staining (x200). Compared with the control, two asterisks (**) means extremely signifi-
cant difference (P < 0.01).

Full-size DOI: 10.7717/peerj.15093/fig-11

formation (Toth et al., 2015). Tmod4, a member of the Tmod family, is highly expressed in
skeletal muscle and adipose tissue. Genome-wide comparison of copy number variation
between Wannan black pigs (WBP) and Wannan black pigs (AWB) was carried out using
genome-wide resequencing data. The results showed that genes such as Ndn, Tmod3, Sfrp1
and Smyd3 were related to muscle development (Zhang et al., 2022). It can up-regulate
the expression of adipogenic factors, moderately delay muscle development, promote
adipogenesis, and play an important role in microfilament length regulation and myofibril
assembly (Zhao et al., 2013). The functional study of Lmod3 showed that overexpression
of Lmod3 in C2C12 cells could activate AKT and ERK signaling pathways and promote
myoblast proliferation and differentiation, while knocking down the expression of Lmod3
gene would inhibit cell proliferation and promote cell apoptosis (Lin et al., 2020). In
addition, it was found that Lmod1-3 is structurally related to Tmod1-4, and these two
genes are also located at the tip of actin filaments. The loss of expression of Tmod4 or Lmod3
will lead to serious damage to sarcomere assembly and damage to embryonic movement,
indicating that appropriate levels of Tmod4 and Lmod3 are needed for embryonic muscle
fiber formation (Nworu et al., 2015). In the skeletal muscle study of mammals from birth
to adulthood, it was found that the expression of Ryr1 was always at a high level, and
it was found that the relative protein content of Ryr1 in the hindlimb muscle of adult
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Figure 12 Expression levels of hub genes in bovine skeletal muscle satellite cells at different culture pe-
riods. (A–E) Compared with that before differentiation, the expression levels of (A) Atp2a1, (B) Tmod4,
(C) Lmod3, (D)Mybpc2, and (E) Ryr1 were significantly increased after induction.

Full-size DOI: 10.7717/peerj.15093/fig-12

Figure 13 Circos plot to indicate the relationship between hub genes and KEGG pathways.
Full-size DOI: 10.7717/peerj.15093/fig-13

mice was 1.5 times higher than that of 5-day-old mice (Yuan, Arnold & Jorgensen, 1991;
Brillantes, Bezprozvannaya & Marks, 1994;Kyselovic et al., 1994; Rosemblit et al., 1999; Rossi
et al., 2007). Myosin binding protein C (Mybpc) located on the sarcomere mainly includes
three subtypes: skeletal slow type (Mybpc1), skeletal fast type (Mybpc2) and cardiac type
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(Mybpc3), which can interact with a variety of contractile and structural protein (Bennett,
Furst & Gautel, 1999;Winegrad, 1999). Studies have shown that lack of Mybpc2 expression
can lead to severe skeletal myopathy, increased apoptosis, up-regulated expression of
factors related to muscle protein degradation, accompanied by structural changes and
muscle weakness (Li et al., 2016). LncFAM is a new muscle-specific lncRNA, which can
recruit RNA-binding protein HNRNPL into the Mybpc2 promoter, thus increasing
Mybpc2 mRNA transcription and myogenic protein Mybpc2 production, and ultimately
promoting the differentiation of human myoblasts into myotubes (Chang et al., 2022).
The above studies suggest that these five hub genes may play an important role in muscle
growth and development, and the molecular mechanism needs further study.

CONCLUSION
We constructed a gene co-expression network using WGCNA, measured the relationship
between genes and modules, and explored the relationship between modules and clinical
features.We also screened for modules associated withmuscle tissue and identified five hub
genes, including Atp2a1, Tmod4, Lmod3, Ryr1 andMybpc2, which are involved in signaling
pathways such as regulation of muscle contraction and muscle structure development. In
addition, we used qRT-PCR to detect the expression level of hub gene in bovine BSMSCs in
different tissues and different culture periods. It was found that the expression of these hub
genes was the highest in muscle tissue and highly expressed in induced and differentiated
bovine BSMSCs. Therefore, we believe that these five hub genes are closely related to
muscle tissue, and the key genes and pathways identified in this study can provide guidance
for further exploration of skeletal muscle development and its physiological regulation
mechanism.
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