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We examined 55 technical sequencing replicates of Glioblastoma multiforme (GBM) tumors
from The Cancer Genome Atlas (TCGA) to ascertain the degree of repeatability in calling
single-nucleotide variants (SNVs). We used the same mutation-calling pipeline on all pairs
of samples, and we measured the extent of the overlap between two repli- cates, that is,
how many specific point mutations were found in both replicates. We further tested
whether additional filtering increased or decreased the size of the overlap. We found that
about half of the putative mutations identified in one sequencing run of a given sample
were also identified in the second, and that this percentage remained steady throughout
orders of magnitude of variation in the total number of mutations identified (from 23 to
10,966). We further found that using filtering after SNV-calling removed the overlap
completely. We concluded that there is variation in the frequency of mutations in GBMs,
and that while some filtering approaches preferentially removed putative mutations found
in only one replicate, others removed a large fraction of putative mutations found in both.

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



Reproducibility of SNV-calling in multiple sequencing runs
from single tumors

Dakota Z. Derryberry∗1, Matthew C. Cowperthwaite2,3, and Claus O. Wilke1,4

1Cell & Molecular Biology, The University of Texas at Austin, Austin, TX USA
2St. David’s NeuroTexas Institute Research Foundation, Austin, TX, USA

3Center for Systems and Synthetic Biology, The University of Texas at Austin,
Austin TX, USA

4Integrative Biology, The University of Texas at Austin, Austin, TX, USA

November 13, 2015

Abstract

We examined 55 technical sequencing replicates of Glioblastoma multiforme (GBM) tu-
mors from The Cancer Genome Atlas (TCGA) to ascertain the degree of repeatability
in calling single-nucleotide variants (SNVs). We used the same mutation-calling pipeline
on all pairs of samples, and we measured the extent of the overlap between two repli-
cates, that is, how many specific point mutations were found in both replicates. We
further tested whether additional filtering increased or decreased the size of the overlap.
We found that about half of the putative mutations identified in one sequencing run of a
given sample were also identified in the second, and that this percentage remained steady
throughout orders of magnitude of variation in the total number of mutations identified
(from 23 to 10,966). We further found that using filtering after SNV-calling removed the
overlap completely. We concluded that there is variation in the frequency of mutations
in GBMs, and that while some filtering approaches preferentially removed putative mu-
tations found in only one replicate, others removed a large fraction of putative mutations
found in both.
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Introduction

Glioblastoma multiforme (GBM) is the most common and deadly primary brain tumor
with a median survival time of 14 months and a 5-year survival rate of 5%. Prognosis
for patients with this disease remains poor despite significant research investment, due to
the difficulty of surgical resection and the limited number of effective chemotherapeutics
(Wilson et al., 2014). Recently, research to improve treatments for patients with this
devastating disease has focused on the idea of precision medicine, that is using large-
scale genomics data to discover how the disease arises and progresses, and how to stop
it. The past six years have seen an explosion of data in cancer genomics, an effort led by
TCGA, an archive of publicly-available data that includes sequencing of paired tumor-
normal samples from individual patients for thousands of tumors (The Cancer Genome
Atlas Research Network, 2008; Brennan et al., 2013), including over 500 GBMs. While
these and other similar data (Parsons et al., 2008), researchers have discovered genes
and pathways mutated in GBM (Cerami et al., 2010), discover different GBM subtypes
(Verhaak et al., 2010), and develop a variety of computational models to find GBM
driver mutations (Gevaert and Plevritis, 2013). Despite widespread use of the data and
adoption of the methods, however, efforts to benchmark the data–to assess the quality
and repeatability of these and subsequent analyses–have lagged or been non-existent.
Here, our goal is to begin to develop robust methods for benchmarking next-generation
cancer sequencing data and analysis.

It is well known that sequencing and variant-calling pipelines are not error-free. For
example, different pipelines for calling single-nucleotide variants (SNVs) can return dif-
ferent results on the same data (Yu and Sun, 2013). Given the heterogeneity in cancer
genomes (Kumar et al., 2014; Friedmann-Morvinski, 2014), and the presence of func-
tional low-frequency variants in GBM (Nishikawa et al., 2004), the signal-to-noise ratio
in the TCGA dataset may be particularly low. Yet despite widespread use of this dataset,
and significant monetary investment in collecting and analyzing the data, we know little
about how to maximize the quality of the sequence data and SNV-calls. One way to ad-
dress this question would be to analyze technical replicates of sequencing data (Robasky
et al., 2014). Here, we addressed one aspect of this question, by asking whether the same
SNV-calling pipeline will return comparable results on two sequencing runs from the
same tissue. And further, we asked whether added filtering after SNV-calling increases
or decreases the degree of similarity among replicates.

We answered these questions using TCGA data from 55 GBM tumors that were sequenced
twice, once each with (i) the standard whole-genome sequencing (WGS) protocol, and
(ii) an additional amplification step before library prep, which we refer to as the whole-
genome amplification (WGA) protocol. For each of these 55 technical replicate pairs,
we compared the somatic variants found in the WGS and WGA replicates, before and
after analyzing the variants using various SNV-filtering approaches. We found significant
overlap (around 50%) between technical replicates, but also significant differences. As
expected, the additional amplification step in the WGA protocol versus the WGS protocol
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added some putative mutations to the sample, so that on average these replicates had (i)
more putative mutations, and (ii) a smaller percentage overlap between replicates. We
found that the number of mutations in the WGS replicates varied by orders of magnitude,
from 110 to 8,192. Contrary to expectations, the percentage overlap between technical
replicates did not decrease with increasing numbers of putative mutations, suggesting real
variation in mutation frequency (the absolute number of SNVs found in a tumor) between
samples from the same tumor. This result may be in part due to known mutational
hotspots in some tumors (Wang et al., 2008). Our attempt to use SNV filtering, either via
SomaticSniper (Larson et al., 2012) or via custom-built filters, to increase the similarity
between technical replicates was unsuccessful: Filtering removed almost the entirety of
the overlap between the replicates.

Methods

Data and back-end processing

All sequence data came from The Cancer Genome Atlas (TCGA) Research Network’s
Glioblastoma multiforme (GBM) data set (The Cancer Genome Atlas Research Network,
2008). We downloaded three BAM files for each of 55 patients using CGHub (University
of California Santa Cruz, 2014). For each patient, data consisted of one BAM file taken
from blood DNA, and two BAM files from tumor DNA, one for each technical replicate.
In each case, the only difference in data collection for the two sets of tumor DNA was
whether or not an amplification step was performed prior to building a library (The
Cancer Genome Atlas Research Network, 2008).

We created a pipeline for backend processing of all TCGA BAM files, summarized in Fig-
ure 1, with commands given in Table S1. The custom python code to connect the pipeline
is available in a public git repository (https://github.com/clauswilke/GBM_genomics).
Our pipeline first regenerated fastq files (original reads) from the TCGA BAM files, which
were aligned to hg18, using picard (Broad Institute, 2014). Next, we used BWA (Li and
Durbin, 2009) to align the fastq files to hg19, and samtools (Li et al., 2009) to sort,
index, and de-duplicate the new BAM file. We used GATK (McKenna et al., 2010) to
do indel realignment and base recalibration, according to the standard best practices for
genomics data (GATK Development Team, 2015). Finally, we predicted somatic variants
with SomaticSniper (Larson et al., 2012), with the output given in VCF format.

For all alignments, average read coverage was 30X, with a low of 5X and a high of 60X
(stdev=15.95898). The percentage of mapped reads in our alignments was universally
high (mean=98.03545, stdev=3.257872), with only two samples below 90% (68% and
74%), and only 15 samples below 98%. We found no correlation between the read coverage
or the percentage of mapped reads and the total number of SNVs called (Figures S2 and
S3).
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Filtering and data analysis

After generating a VCF file with all of the putative somatic variants for each replicate
of each sample, we used custom python code (available in public git repository) to list
the putative mutations in each VCF, and to calculate the overlap between technical
replicates. We then filtered the lists of putative SNVs according to the eight filters
described in Table 2, using a combination of command line options and custom python
code (available in a public git repository). Each of the eight filters was run independently
on the whole data set. The eight filters were enacted as follows:

GATK: The GATK quality score is automatically generated by GATK; GATK recom-
mends discarding all putative mutations with a quality score below 40, which we
did using the command line option -q 40 when we called SomaticSniper (for the
exact command, see Table 2). We did not at any point consider putative mutations
removed by this filter, and did not consider its individual action.

SS: The SomaticScore is a similar metric calculated by SomaticSniper. As recom-
mended, we removed from consideration all putative mutations with a SomaticScore
below 40 by using the command line option -Q 40 when we called SomaticSniper
(for the exact command, see Table 2). We did not at any point consider putative
mutations removed by this filter, and did not consider its individual action.

VAQ: The Variant Allele Quality (VAQ) score calculated by SomaticSniper is a third
measure of this type. SomaticSniper recommends discarding putative mutations
with a VAQ below 40, which we accomplished using a custom python script avail-
able in the public git repository. This recommendation is discussed in the Results
and Discussion.

LOH: It is general (but not universal) practice to disregard Loss of Heterozygosity (LOH)
in large scale genomics, because LOH to easily results from sequencing errors. We
excluded LOH variants using a custom python script available in the public git
repository. This recommendation is discussed in the Results and Discussion.

10bp-SNV: It is universal or near universal practice to exclude variants within 10 bp of
another putative somatic variant, because clusters of putative mutations often indi-
cate an error in reads or sequence alignment. We excluded 10bp-SNV variants using
a custom python script available in the public git repository. This recommendation
is discussed in the Results and Discussion.

10bp-INDEL: It is universal or near universal practice to exclude variants within 10
bp of a putative indel, because clusters of putative mutations often indicate an
error in reads or sequence alignment. We excluded 10bp-INDEL variants using a
custom python script available in the public git repository. This recommendation
is discussed in the Results and Discussion.

dbSNP: It is universal or near universal practice to exclude variants that overlap with
dbSNP, because the overlap often indicates an amplification error and not a true
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somatic variant. We excluded dbSNP variants using a custom python script avail-
able in the public git repository. This recommendation is discussed in the Results
and Discussion.

< 10%: It is universal or near universal practice to exclude variants when the alternate
allele coverage is less than 10%, because the low coverage of the alternate allele often
indicates sequencing error. We excluded < 10% variants using a custom python
script available in the public git repository. This recommendation is discussed in
the Results and Discussion.

We used the same or substantially similar python scripts to calculate and compare the
overlap between technical replicates before and after filtering. These scripts are also
available in the public git repository. We plotted all data and did all statistics with
standard plotting and statistics functions in R (R Core Team, 2014). This code is also
available in the public git repository.

Results

How similar are two replicate sequencing runs of the same tumor?

DNA sequencing is not error-free. Error is introduced by mis-called bases in sequenc-
ing runs and by mis-aligned bases during sequence analysis (Wall et al., 2014). Loss
of heterozygosity may be a real feature of the data, or an amplification artifact that
occurs when only one allele of a polymorphic site is amplified. Cancer DNA is highly
heterogenous, which makes for an additional source of error: A polymorphic mutation
is defined as a mutation that is not fixed and therefore is not present in all tumor cells.
Such mutations may or may not be represented at high enough frequency in a particular
tumor specimen to be identified with next-gen sequencing. Alternatively, a polymorphic
mutation may appear to be fixed when present at at very high frequency in a tumor
specimen. In general, we would like to know how often these sorts of errors occur. One
way of investigating this question would be to use an orthogonal technique such as PCR
to verify each individual mutation. However, this method is expensive and time con-
suming. A cheaper alternative would be to sequence the tumor multiple times and to
look at the similarity between replicates. Theoretically, any fixed mutation will appear
in all replicates, while errors due to (i) sequencing errors, (ii) amplification errors, or (iii)
alignment errors will not. (Polymorphic mutations would be present in some but not
all samples, so this method does not address the difficulty of calling low-frequency vari-
ants in tumors.) The multiple-sequencing approach is used in most biological sequencing
experiments, but not generally in cancer genomics, presumably due to unavailability of
additional pathology specimens and the expense of sequencing multiple replicates for
each of the hundreds of samples necessary for cancer genomics research. Nevertheless,
even if researchers cannot verify every mutation or sequence multiple replicates for each
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tumor, it would be useful to know what percentage of called mutations would be likely
to appear in additional sequencing replicates.

TCGA’s GBM data set includes 2 technical replicates for each of 55 tumors. In this
case, the technical replicates are not identical. One protocol included an additional
amplification step (The Cancer Genome Atlas Research Network, 2008), and we refer to
this replicate as the WGA (whole-genome amplification) replicate, and the other as the
WGS (whole-genome sequencing) replicate. Despite the difference in sequencing protocol,
we would theoretically expect any fixed mutation to appear in both replicates, while
polymorphic mutations and sequencing error might appear in only one. Consequently,
those putative mutations appearing in both replicates are more likely to be real somatic
variants than those found in only one replicate. We further hypothesized that the WGA
samples would have a greater number of amplification errors, and thus more putative
SNVs per sample, than the corresponding WGS samples.

For each patient (n=55), we called mutations in both technical replicates and in the pa-
tient’s blood sample, using the same computational pipeline (see Figure 1 and Methods):
We downloaded TCGA BAM files with CGHub (University of California Santa Cruz,
2014), re-generated fastq files with picard (Broad Institute, 2014), re-aligned the fastq
files to hg19 with bwa (Li and Durbin, 2009), performed indel re-alignment and base
recalibration with GATK (McKenna et al., 2010), and finally called somatic mutations
with SomaticSniper (Larson et al., 2012). We then compared the VCFs produced by
SomaticSniper for each of the two technical replicates, and calculated the number of so-
matic mutations called in each replicate and the number of individual somatic mutations
called in both replicates (hereafter, the overlap, see Figure 1). We further calculated
the percentage of mutations in each replicate that occurred in the overlap between the
two.

There were an average of 844 putative mutations in the WGS replicates and 1,531 pu-
tative mutations in the WGA replicates (Table 1). Across all samples, the number of
mutations in a given WGS replicate was correlated with the number of mutations in its
corresponding WGA replicate (Spearman ρ = 0.42, S = 16142, P = 0.002, Figure 2).
As expected, for each sample the WGA replicate (with the additional amplification step)
had slightly more mutations overall, with a slightly smaller percentage appearing in the
overlap (Figures 2 and 3). We found that the percent overlap between the two samples,
calculated as WGA∩WGS/WGS for WGS replicates and WGA∩WGS/WGA for WGA
replicates, varied widely, from 1%-74%, but was fairly evenly distributed around the av-
erage of 31% in WGA replicates and 44% in WGS replicates (Table 1). As expected, the
distribution of the percentage overlap was narrower and taller in the WGS replicates,
because on the whole the WGA samples had more amplification errors than the WGS
samples (Figure S1).

Although the numbers of putative mutations in WGS and WGA samples were correlated,
the exact number of putative mutations in each sample varied by orders of magnitude
(Table 1). It is known that different cancers mutate at different rates: Some pediatric
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cancers have very few mutations (Knudson, 1971; Chen et al., 2015), while some adult
tumors show a mutator phenotype leading to vastly increased numbers of mutations,
usually resulting from errors in DNA repair pathways (Loeb, 2011). GBM specifically
is thought to have a relatively low mutation rate (Parsons et al., 2008; Brennan et al.,
2013), and while some of our samples had low mutation frequencies in line with this
theory (29 out of 110 samples had a mutation frequency within a factor of 2 of the
reported 3 mutations per Mbp genome), several samples also had mutation frequencies
an order of magnitude greater (24 out of 110 samples had a mutation frequency greater
than 30 mutations per Mbp genome). One possible explanation is a degraded DNA
sample, significant alignment error, or otherwise bad data. If this were the case, we would
expect the percentage of the overlap between replicates (a measure of data quality) to
decrease with the overall number of putative mutations. However, we found no significant
correlation (Spearman ρ = 0.05, S = 29268, P = 0.68) between the number of putative
mutations in the WGS replicate and the percentage of those mutations that were in
the overlap between replicates (Figure 3). Thus, our data suggest that some samples
may simply have a higher mutation frequency than others, or indeed than is generally
supposed in GBM.

Does more sophisticated SNV filtering software increase or decrease the degree of
similarity between replicates?

As an additional computational validation step for somatic mutations, it is common
practice to employ computational algorithms that attempt to distinguish somatic muta-
tions from germ line mutations and sequencing errors (Larson et al., 2012; Alioto et al.,
2014). Software platforms to perform these tasks are plentiful, and each one typically
employs multiple methods to identify true positive mutations. The two platforms used
in this research, SomaticSniper (Larson et al., 2012) and GATK (McKenna et al., 2010),
calculate one or more quality scores based on features of the dataset and the individual
reads, and putative mutations with higher quality scores are considered to be more likely
true somatic mutations than those with low quality scores. In addition to considering
these quality scores, there are additional filtering steps that one can use to distinguish
true somatic mutations from errors of all sorts. Table 2 lists eight distinct SNV filters
we evaluated. The first three are based on the quality scores generated by GATK and
SomaticSniper. We simply remove from the dataset anything that fails to meet these
conventional quality-score thresholds. The other five are additional filters that we devel-
oped for this project. Each of these five filters represents an aspect of the data or the
putative mutation that is generally thought to indicate that a given SNV call is a false
positive.

We first asked whether filtering the data increases or decreases the percentage of the
sample that is overlapping between the two technical replicates. We expect that this
analysis informs us about whether filtering out putative somatic mutations with these
features affects the proportion of true somatic mutations in the remaining dataset. We
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found that, after removing putative mutations tagged by any one of the eight filters, the
number of putative mutations per replicate decreased from 23–10,966 to 0–14 (Table 1).
The size of the overlap between technical replicates decreased to 0–2 per sample, with
0 as the mode, i.e., the overall overlap percentage also decreased. We concluded that
running all the filters on the data, in the absence of any other verification method, was
counterproductive, because it removed all of the signal (as well as all the noise).

We next looked at the individual effects of six of eight filters. (We did not specifically
study the GATK and SS filters, since both are directly linked to read quality.) We ran
each filter independently on the whole dataset to see which putative SNVs it caught. We
first considered the total number of putative SNVs removed by each filter (Figure 4) on
each sample. We found that different filters removed different numbers of mutations, and
that the lion’s share of mutations were removed by the VAQ (Variant Allele Quality) and
LOH (Loss of Heterozygosity) filters, which removed on average 309 and 539 putative
SNVs, respectively (Table 1). Three other filters, those removing overlap with dbSNP
and mutations within a 10 bp window of indels or other SNVs, removed 16, 28, and 46
putative mutations per sample, respectively (Figure 4 and Table 1). The final filter, which
removed putative SNVs with less than 10% coverage of the alternate allele, removed 1
putative SNV on average.

We next looked at the individual effects the six of eight filters on the overlap between
replicates. We asked how many of the SNVs removed by each filter were SNVs present
in the overlap between technical replicates, and how many were in just one sample?
Put differently, what percentage of putative SNVs removed by a given filter was in the
category more likely to be true positives (overlap), versus the category more likely to be
false positives (only present in one replicate)? To answer this question, we plotted the
percent of the overlap (per sample) that was removed by each of the six filters (Figure 4).
We found that the three filters removing overlap with dbSNP and putative mutations
within 10bp of an indel or another SNV removed, on average, only 3%–4% of the overlap
(Table 1). By contrast, the VAQ filter (specific to SomaticSniper) and the LOH filter each
removed 53% and 51% of the overlap, respectively (Figure 4, Table 1). Thus, our evidence
suggests that the filters removing overlap with dbSNP and putative mutations near other
putative mutations are preferentially removing false positives, while the filters removing
low VAQ and LOH are less discriminatory and may be removing a large proportion of
the true positives.

We next looked at the individual effects of the six of eight filters on the difference between
replicates of each sample, those mutations found only in WGS or WGA, but not both. We
looked at the ratio, per sample per filter, of putative SNVs removed from the difference
versus the overlap of WGS and WGA (WGS4WGA/WGS ∩WGA), where a higher
ratio indicates that more mutations are removed from the difference than the overlap.
We first plotted this ratio for each sample for each filter (Figure 5, top left). To better
compare the filters to each other, we looked at the distribution of ratios across samples
for each filter (Figure 5, top right). We found that the LOH and VAQ filters scored
worst, followed by the 10bp-SNV, 10bp-INDEL, and dbSNP filters, in that order. (We
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did not look at the <10% filter for this analysis, because it did not catch enough data to
be meaningful.) Thus, those filters that remove the fewest putative SNVs in the overlap,
also remove the highest number of SNVs in the difference relative to the overlap.

We next looked at the similarity of WGS to WGA as a whole as measured by the
difference, normalized to 100, in the Jaccard similarity coefficient (WGS∩WGA/WGS∪
WGA) before and after filtering (Jaccard after-Jaccard before /Jaccard before). By this
measure, and in contrast to the previous two measures, we found that LOH and VAQ
performed the best by an order of magnitude, followed by 10bp-SNV, 10bp-INDEL,
and dbSP, in that order (Figure 5, below). We see this effect because these two filters
remove so much data: half or more of the overlap and as much or more of the difference.
Removing so much of the data makes the intersection much, much smaller, and thus
makes the Jaccard coefficient between samples much larger, mostly independently of the
size of the overlap.

Finally, we asked whether either the VAQ or the LOH filter, responsible between them for
removing most to all of the overlap, was more likely to remove overlap for samples that
showed a lot of overlap. We plotted the percent of the overlap filtered out by the LOH
filter (Figure 6) and the percent of the overlap filtered out by the VAQ filter (Figure 6)
against the number of putative mutations in the overlap, and we found that for samples
with overlap of . 100 there was no strong trend. Either filter was removing between
0 and 100% of the overlap for some samples. For samples with more overlap, however,
LOH was the primary filter removing overlap.

We found an additional trend that was initially unexpected: The LOH and VAQ graphs
(Figure 6) looked like exact inverses of each other. Further inspection showed that the
sum of the percent overlap removed by LOH and by VAQ was nearly, but not exactly,
100% in all cases. In hindsight, this result was somewhat expected, since (i) each of the
LOH and VAQ filters removes about half of the overlap, and (ii) all or almost all of the
overlap is removed every time.

Discussion

GBM is an evolutionary disease that develops when mutations arise in glial cell lines
and the mutated cells and their lineages subsequently co-opt the surrounding tissue and
systems to the detriment of the organism as a whole. Treatment for GBM is difficult
and has poor outcomes (Wilson et al., 2014), but may be improved by a more com-
plete understanding of the somatic mutations present in GBM. Large-scale sequencing
projects, like TCGA, make cancer sequencing data available to many researchers. These
data are of enormous potential value to the research community, but their accuracy and
reproducibility are unknown. Here, we have made a first step towards evaluating the
reliability of the TCGA data, by comparing 55 technical replicates in the TCGA GBM
dataset.

9

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



We found that, on average, about half of the putative mutations in the raw data for the
WGS replicate (no amplification before library preparation) and about a third of those in
the WGA replicate (with amplification before library preparation) were present in both
replicates. The number of mutations present in both replicates was anywhere between 20
and 5,000 putative mutations. We found further that the high number of putative somatic
mutations in some, but not all, of the patient samples was repeatable across technical
replicates. Moreover, samples with a higher frequency of putative mutations had equally
similar technical replicates to those samples with a lower frequency of putative mutations.
These results suggest the possibility that a higher mutation frequency could be a feature
of a subset of GBM tumors and not a data artifact.

Filtering the raw computational data using both quality scores from GATK and Somat-
icSniper, as well as five additional custom filters, eliminated more than half of the total
number of putative mutations in all 110 samples, including most or all of those present
in both replicates. To some extent, this result was unsurprising: These filters were de-
signed to be used on wild type genomes, where it is generally assumed that any observed
differences are more likely due to error than to the presence of true SNVs. For example,
LOH in this case is more likely to be an error than an actual mutation. When we do
cancer genomics, however, our goal is the opposite, to highlight changes. Therefore, it is
possible that we need entirely different filtering protocols. There are also more theoreti-
cal reasons to consider altering the filtering protocols for cancer genomes. For example,
multiple sources suggest that LOH mutations may be essential to cancer (Fujimoto et al.,
1989). This hypothesis, along with the data presented here, makes a strong argument
for retaining these mutations in functional analyses rather than excluding them.

Of the six filters whose individual effects we examined, only two, those that removed Loss
of Heterozygosity (LOH) mutations and putative mutations with low VAQ (calculated by
SomaticSniper), removed primarily mutations that we found in both technical replicates.
In combination, they removed most or all of those mutations present in both replicates,
since the two filters consistently removed nearly completely disjoint sets of putative
mutations. Of the remaining four filters, only three removed any appreciable number of
putative mutations from the sample, and each of these preferentially removed mutations
present in only one technical replicate. Two of these three filters, those removing putative
SNVs within a 10 bp window of putative indels or other putative SNVs, recognize a feature
(clustered mutations) that suggests a local problem with the reads or alignment. The
third removes overlap with dbGaP. Our analysis suggests that these three filters do clean
up the data in a meaningful way. By contrast, it may be more useful not to apply the
two filters that removed principally data from the overlap of the two replicates.

Several factors limit the conclusions we may draw from this analysis. First, in this anal-
ysis we used repeatability between technical replicates (being in the WGS and WGA
samples) as a measure of confidence in a putative SNV. This metric is potentially prob-
lematic for many reasons, including but not limited to: (i) cancer is highly heterogeneous,
and so a legitimate somatic SNV might show up in one replicate but not another; (ii)
if the DNA sample is degraded to some extent, due to surgery conditions or some other
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factor out of the hands of the sequencing center, the same errors may appear in both
replicates; (iii) the SNV calling process may enrich for artifacts such as germ line vari-
ants, which are nearly indistinguishable from somatic SNVs in computational analyses;
cross-referencing to gold standards such as dbSNP is the only way to identify germline
SNPs; (iv) a putative mutation that is present in both samples may be a somatic mu-
tation that arose before the tumor (Tomasettia et al., 2013). Although repeatability
across technical replicates cannot guarantee that a putative mutation is a true somatic
mutation, it does increase the likelihood. Having an independent measure of confidence
in SNV calls, even an imperfect one, can help us gauge the accuracy of other measures,
specifically of different filtering approaches.

Second, we studied only one particular SNV caller, SomaticSniper (Larson et al., 2012).
There are other, equally widely used SNV callers available (Cibulskis et al., 2013; Koboldt
et al., 2009; Saunders et al., 2012), which might do better or worse than the one we have
chosen here. Also, we did not even consider every possible quality metric available in the
SNV-caller we did choose. For example, we did not look at the effects of the SomaticScore
or the GATK quality score individually. In the future, it would be worthwhile to evaluate
other SNV-callers and other quality metrics.

We have shown that there is significant overlap between technical replicates of whole
exome sequencing in the TCGA GBM dataset, comprising about 50% of putative SNVs in
WGS samples and about 30% in WGA samples. The overlap exists even for samples with
a high number of putative SNVs, suggesting that some GBMs may have significantly more
somatic mutation than others. We acknowledge that the high rate of non-concordance
between replicates in our analyses indicates that even the best computational analyses
are insufficient to validate any single SNV; when the identity of a single SNV in a single
sample is important, validation by an orthogonal method (e.g. PCR, Sanger sequencing)
remains necessary. Nevertheless, when less fine-tuned methods are acceptable, or are the
only option available, one may wish to employ other methods of validation rather than
nothing, such as the six data filters that are commonly applied to validate SNVs that we
examined. We found that some of these filters remove principally those mutations found
in one sample or the other, while other filers remove primarily those in the overlap. We
suggest that when orthogonal validation is not an option, only the filters that removed
little overlap between samples should be used for computational SNV validation.

References

Alioto TS, Derdak S, Beck TA, Boutros PC, Bower L, Buchhalter I, Eldridge
MD, Harding NJ, Heisler LE, Hovig E, Jones DTW, Lynch AG, Nakken S,
Ribeca P, Sertier AS, Simpson JT, Spellman P, Tarpey P, Tonon L, Vodák
D, Yamaguchi TN, Agullo SB, Dabad M, Denroche RE, Ginsbach P, Heath
SC, Raineri E, Anderson CL, Brors B, Drews R, Eils R, Fujimoto A, Giner
FC, He M, Hennings-Yeomans P, Hutter B, Jäger N, Kabbe R, Kandoth

11

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



C, Lee S, Létourneau L, Ma S, Nakagawa H, Paramasivam N, Patch AM,
Peto M, Schlesner M, Seth S, Torrents D, Wheeler DA, Xi L, Zhang J,
Gerhard DS, Quesada V, Valdés-Mas R, Gut M, Campbell PJ, Hudson
TJ, McPherson JD, Puente XS, Gut IG. 2014. A comprehensive assessment of
somatic mutation calling in cancer genomes. bioRxiv doi:10.1101/012997.

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama
SR, Zheng S, Chakravarty D, Sanbom JZ, Berman SH, Beroukhim R,
Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou
L, Vegesna R, Shukla SA, Ciriello G, Yung W, Zhang W, Sougnez C,
Mikkelsen T, Aldape K, Binger DD, Meir EGV, Prados M, Sloan A, Black
KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Ia-
cocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucher-
lapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E,
Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S,
Laird PW, Haussler D, Getz G, Chin L, TCGA Research Network. 2013.
The somatic genomic landscape of glioblastoma. Cell 155:462–477.

Broad Institute. 2014. picard. URL http://broadinstitute.github.io/picard/.

Cerami E, Demir E, Schultz N, Taylor BS, Sander C. 2010. Automated network
analysis identifies core pathways in glioblastoma. PLoS One 5:e8918.

Chen X, Pappo A, Dyer MA. 2015. Pediatric solid tumor genomics and develop-
mental pliancy. Oncogene doi:10.1038/onc.2014.474.

Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C,
Gabriel S, Meyerson M, Lander ES, Getz G. 2013. Sensitive detection of
somatic point mutations in impure heterogenous cancer samples. Nature Biotechnology
31:213–219. doi:10.1038/nbt.2514.

Friedmann-Morvinski D. 2014. Glioblastoma heterogeneity and cancer cell plasticity.
Critical Reviews in Oncogenesis 19:327–336.

Fujimoto M, Fults DW, Thomas GA, Nakamura Y, Heilbrun M, White R,
Story JL, Naylor SL, Kagan-Hallet KS, Sheridan PJ. 1989. Loss of heterozy-
gosity on chromosome 10 in human glioblastoma multiforme. Genomics 4:210–214.

GATK Development Team. 2015. GATK Best Practices: Recommended workflows
for variant analysis with GATK. URL https://www.broadinstitute.org/gatk/
guide/best-practices.

Gevaert O, Plevritis S. 2013. Identifying master regulators of cancer and their down-
stream targets by integrating genomic and epigenomic features. Pacific Symposium on
Biocomputing 123–134.

Knudson A. 1971. Mutation and cancer: statistical study of retinoblastoma. Proceed-
ings of the National Academy of Sciences 68:820–823.

12

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, We-
instock GM, Wilson RK, Ding L. 2009. Varscan: variant detection in massively
parallel sequencing of individual and pooled samples. Bioinformatics 25:2283–2285.
doi:10.1093/bioinformatics/btp373.

Kumar A, Boyle EA, Tokita M, Mikheev AM, Sanger MC, Girard E, Silber
JR, Gonzalez-Cuyar LF, Hiatt JB, Adey A, Lee C, Kitzman JO, Born DE,
Silbergeld DL, Olson JM, Rostomily RC, Shendure J. 2014. Deep sequenc-
ing of multiple regions of glial tumors reveals spatial heterogeneity for mutations in
clinically relevant genes. Genome Biology 15:530–539.

Larson DE, Harris CC, Chan K, Koboldt DC, Abbott TE, Dooling DJ, Ley
TJ, Mardis ER, Wilson RK, Ding L. 2012. Somaticsniper: Identification of
somatic point mutaitons in whole genome sequencing data. Bioinformatics 28:311–
317.

Li H, Durbin R. 2009. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics 25:1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, Subgroup GPP. 2009. The sequence alignment/map
format and samtools. Bioinformatics 25:2078–2079.

Loeb LA. 2011. Human cancers express mutator phenotypes: origin, consequences and
targeting. Nature Reviews Cancer 11:450–457.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The
genome analysis toolkit: a mapreduce framework for analyzing next-generation dna
sequencing data. Genome Research 20:1297–1303.

Nishikawa R, Sugiyama T, Narita Y, Furnari F, Cavenee WK, Matsutani M.
2004. Immunohistochemical analysis of the mutant epidermal growth factor, δEGFR,
in glioblastoma. Brain Tumor Pathology 21:53–56.

Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, Mankoo
P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir
S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Jr LAD, Hartigan
J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins
GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B,
Velculescu VE, Kinzler KW. 2008. An integrated genomic analysis of human
glioblastoma multiforme. Science 321:1807–1812.

R Core Team. 2014. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.
org.

Robasky K, Lewis NE, Church GM. 2014. The role of replicates for error mit-

13

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



igation in next-generation sequencing. Nature Reviews Genetics 15:56–62. doi:
10.1038/nrg3655.

Saunders CT, Wong W, Swamy S, Becq J, Murray LJ, Cheetham RK. 2012.
Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample
pairs. Bioinformatics 28:1811–1817. doi:10.1093/bioinformatics/bts271.

The Cancer Genome Atlas Research Network. 2008. Comprehensive genomic
characterization defines human glioblastoma genes and core pathways. Nature
455:1061–1068.

Tomasettia C, Vogelstein B, Parmigiania G. 2013. Half or more of the somatic
mutations in cancers of self-renewing tissues originate prior to tumor initiation. Pro-
ceedings of the National Academy of Sciences 110:1999–2004.

University of California Santa Cruz. 2014. CGHub User Guide, Release 4.2.1.
University of California, Santa Cruz, Santa Cruz, California. URL https://cghub.
ucsc.edu.

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller
CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M,
Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler
HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman
PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM,
Hayes DN, Network TCGAR. 2010. Integrated genomic analysis identifies clini-
cally relevant subtypes of glioblastoma characterized by abnormalities in pdgfra, idh1,
egfr, and nf1. Cancer Cell 17:98—–110.

Wall JD, Tang LF, Zerbe B, Kvale MN, Kwok PY, Schaefer C, Risch N.
2014. Estimating genotype error rates from high-coverage next-generation sequence
data. Genome Research 24:1734–1739.

Wang G, Carbajal S, Vijg J, DiGiovanni J, Vasquez KM. 2008. Dna structure-
induced genomic instability in vivo. Journal of the National Cancer Institute 100:1815–
1817.

Wilson TA, Karajannis MA, Harter DH. 2014. Glioblastoma multiforme: State
of the art and future therapeutics. Surgical Neurology International 5. doi:10.4103/
2152-7806.132138.

Yu X, Sun S. 2013. Comparing a few snp calling algorithms using low-coverage se-
quencing data. BMC Bioinformatics 14. doi:10.1186/1471-2105-14-274.

14

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



Tables and Figures

15

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



T
ab

le
1:

S
u
m
m
ar
y
S
ta
ti
st
ic
s.

T
hi
s
ta
bl
e
de

sc
ri
be

s
th
e
re
su
lt
s
of

ou
r
da

ta
pr
oc
es
si
ng

pi
pe

lin
e
ac
ro
ss

sa
m
pl
es

an
d
pa

ir
s
of

re
pl
ic
at
es
,i
n
te
rm

s
of

th
e
nu

m
be

r
of

pu
ta
ti
ve

m
ut
at
io
ns

fo
un

d,
le
ng

th
of

th
e
ov
er
la
p
be

tw
ee
n
re
pl
ic
at
es
,n

um
be

r
of

m
ut
at
io
ns

re
m
ov
ed

(p
er

sa
m
pl
e)

by
ea
ch

fil
te
r,

an
d
pe

rc
en
t
of

th
e
ov
er
la
p
re
m
ov
ed

(p
er

pa
ir

of
re
pl
ic
at
es
)
by

ea
ch

fil
te
r.

Q
ua

nt
it
y

av
er
ag

e
m
ed

ia
n

m
in

m
ax

st
de

v
N
o.

m
ut
at
io
ns
,W

G
S

84
4

32
8

11
0

8,
19

2
1,
30
6

N
o.

m
ut
at
io
ns
,W

G
A

1,
53

1
69

4
23

10
,9
66

2,
23
0

%
m
ut
at
io
ns

in
ov
er
la
p,

W
G
S

31
%

31
%

1%
74

%
20
%

%
m
ut
at
io
ns

in
ov
er
la
p,

W
G
A

44
%

45
%

3%
71

%
13
%

N
o.

pu
ta
ti
ve

m
ut
at
io
ns

re
m
ov
ed

,V
A
Q

30
9

16
4

17
11
,4
39

1,
37
2

N
o.

pu
ta
ti
ve

m
ut
at
io
ns

re
m
ov
ed

,L
O
H

53
9

16
9

3
8,
53

8
1,
05
1

N
o.

pu
ta
ti
ve

m
ut
at
io
ns

re
m
ov
ed

,1
0b

p-
SN

V
46

19
0

1,
51

5
11
5

N
o.

pu
ta
ti
ve

m
ut
at
io
ns

re
m
ov
ed

,1
0b

p-
IN

D
E
L

28
16

0
53

5
45

N
o.

pu
ta
ti
ve

m
ut
at
io
ns

re
m
ov
ed

,d
bS

N
P

16
8

0
34

8
33

N
o.

pu
ta
ti
ve

m
ut
at
io
ns

re
m
ov
ed

,<
10

%
1

1
1

36
3

%
ov
er
la
p
re
m
ov
ed

,V
A
Q

53
%

57
%

0%
10

0%
28
%

%
ov
er
la
p
re
m
ov
ed

,L
O
H

51
%

52
%

0%
99

%
29
%

%
ov
er
la
p
re
m
ov
ed

,1
0b

p-
SN

V
3%

2%
0%

20
%

3%
%

ov
er
la
p
re
m
ov
ed

,1
0b

p-
IN

D
E
L

4%
4%

0%
22

%
4%

%
ov
er
la
p
re
m
ov
ed

,d
bS

N
P

3%
2%

0%
47

%
7%

16

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



T
ab

le
2:

S
N
V

p
re
d
ic
ti
on

fi
lt
er
s.

T
hi
s
ta
bl
e
sh
ow

s
th
e
va
ri
ou

s
m
et
ho

ds
(fi
lt
er
s)

us
ed

to
pr
ed

ic
t
w
hi
ch

di
ffe

re
nc

es
fo
un

d
in

tu
m
or

al
ig
nm

en
ts

re
la
ti
ve

to
bl
oo

d
al
ig
nm

en
ts

ar
e
re
al

so
m
at
ic

va
ri
an

ts
,a

s
op

po
se
d
to

se
qu

en
ci
ng

er
ro
rs

or
ot
he

r
va
ri
an

ts
.

fil
te
r

so
ft
w
ar
e

pu
rp
os
e

G
A
T
K

G
A
T
K

R
em

ov
es

pu
ta
ti
ve

SN
V
s
w
it
h
G
A
T
K

qu
al
it
y
sc
or
es

le
ss

th
an

40
(a
s
pa

rt
of

th
e
G
A
T
K

pr
oc
es
si
ng

,w
it
h
in
de

lr
ea
lig

nm
en
t
an

d
ba

se
re
ca
lib

ra
ti
on

)
SS

So
m
at
ic
Sn

ip
er

R
em

ov
es

pu
ta
ti
ve

SN
V
s
w
it
h
a
So

m
at
ic
Sc

or
e
le
ss

th
an

40
V
A
Q

So
m
at
ic
Sn

ip
er

R
em

ov
es

pu
ta
ti
ve

SN
V
s
w
it
h
So

m
at
ic
Sn

ip
er

V
ar
ai
nt

A
lle

le
Q
ua

lit
y
sc
or
es

le
ss

th
an

20
LO

H
So

m
at
ic
Sn

ip
er
,p

yt
ho

n
R
em

ov
es

pu
ta
ti
ve

SN
V
s
th
at

ar
e
id
en
ti
fie

d
as

lo
ss

of
he

te
ro
zy
go

si
ty

10
bp

-S
N
V

py
th
on

R
em

ov
es

pu
ta
ti
ve

SN
V
s
lo
ca
te
d
w
it
hi
n
a
10

bp
w
in
do

w
of

an
y
ot
he

r
pu

ta
ti
ve

SN
V

10
bp

-I
N
D
E
L

py
th
on

R
em

ov
es

pu
ta
ti
ve

SN
V
s
lo
ca
te
d
w
it
hi
n
a
10

bp
w
in
do

w
of

in
de

ls
db

SN
P

py
th
on

R
em

ov
es

pu
ta
ti
ve

SN
V
s
th
at

ov
er
la
p
w
it
h
db

SN
P

co
ve
ra
ge

<
10

%
py

th
on

R
em

ov
es

pu
ta
ti
ve

SN
V
s
if,

in
th
e
tu
m
or

da
ta
,
th
e
pe

rc
en
ta
ge

of
re
ad

s
co
ve
ri
ng

th
e

si
te

w
it
h
th
e
al
te
rn
at
e
al
le
le

is
le
ss

th
an

10
%

17

PeerJ reviewing PDF | (2015:06:5295:1:1:NEW 14 Nov 2015)

Manuscript to be reviewed



Figure 1: Data processing pipeline. For each of 55 patients, we began with a C484
tumor BAM file (WGS), a C282 tumor BAM file (WGA), and a normal BAM file, all
aligned to hg18. For each BAM file, we used picard to regenerate fastq files, bwa to realign
the fastq files to hg19, and GATK to recalibrate bases and indels. We used SomaticSniper
to call somatic mutations (differences between the tumor and normal sequences) for each
replicate. When we had a VCF for each replicate, we calculated the overlap between the
two lists as the number of individual mutations which appeared in both replicates.

Figure 2: Number of putative SNVs in WGS versus WGA, as called by So-
maticSniper before filtering. Each point represents data for a single patient. The
line is y = x, so points falling below the line agree with the hypothesis that an additional
amplification step produces more sequencing errors in a sample. The number of muta-
tions found in one replicate correlates with the number of mutations found in the other
replicate (Spearman ρ = 0.42, S = 16142, P = 0.002).

Figure 3: Number of putative SNVs per sample does not correlate with the
number of putative SNVs recoverable in both replicates. The percentage of pu-
tative SNVs in a given sample that are in the overlap between replicates is not correlated
to the number of mutations in that sample (Spearman ρ = 0.05, S = 29268, P = 0.68).
We calculated the percent overlap in two ways: with reference to the total number of
putative SNVs in the WGS sample (red) and with reference to the total number of pu-
tative SNVs in the WGA sample (black). The correlation was calculated with respect to
WGA.

Figure 4: Independent performance of the individual filters of the overlap
between replicates. The x-axis gives the name of each filter (detail on Table 1), and
the y-axis gives (above) the number of mutations removed by a given filter in a given
sample on a log scale, and (below) the percentage of the WGS–WGA overlap removed
by the filter, per sample. The LOH and VAQ filters removed a large number of putative
SNVs and portion of the overlap. The <10% filter removed very few putative SNVs and
almost none of the overlap. The 10bp-SNV, 10bp-INDEL, and dbSNP filters removed
an intermediate number of putative SNVs ( 100), but only a very small portion of the
overlap, making them the best performers on the overlap data.

Figure 5: Independent performance of individual filters of the difference be-
tween replicates. (top left) A scatter plot of the ratio, per sample per filter, of
putative SNVs removed from the difference versus the overlap of WGS and WGA
(WGS4WGA/WGS ∩ WGA). (top right) Boxplot of the same data, divided by fil-
ter on the x-axis. (below) Plot of the percentage difference in the Jaccard(WGS, WGA)
before and after the action of each filter (each filter was run on the whole data set
independently).
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Figure 6: Replicate SNVs filtered out by LOH and VAQ are almost completely
non-overlapping and cover most of the sample. As the length of the overlap
between WGS and WGA increases (x-axis), (above) the percentage of the overlap filtered
out by LOH increases, and (below) the percentage of the overlap filtered out by VAQ
decreases. The two are almost (but not quite) perfect inverses; putative SNPs filtered by
LOH and VAQ cover almost the entire overlap, and together sum to nearly 100% of the
overlap.
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Table 1(on next page)

Summary Statistics.

This table describes the results of our data processing pipeline across samples and pairs of

replicates, in terms of the number of putative mutations found, length of the overlap

between replicates, number of mutations removed (per sample) by each filter, and percent of

the overlap removed (per pair of replicates) by each filter.
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Quantity average median min max stdev
No. mutations, WGS 844 328 110 8,192 1,306
No. mutations, WGA 1,531 694 23 10,966 2,230
% mutations in overlap,
WGS

31% 31% 1% 74% 20%

% mutations in overlap,
WGA

44% 45% 3% 71% 13%

No. putative mutations
removed, VAQ

309 164 17 11,439 1,372

No. putative mutations
removed, LOH

539 169 3 8,538 1,051

No. putative mutations
removed, 10bp-SNV

46 19 0 1,515 115

No. putative mutations
removed, 10bp-INDEL

28 16 0 535 45

No. putative mutations
removed, dbSNP

16 8 0 348 33

No. putative mutations
removed, <10%

1 1 1 36 3

% overlap removed,
VAQ

53% 57% 0% 100% 28%

% overlap removed,
LOH

51% 52% 0% 99% 29%

% overlap removed,
10bp-SNV

3% 2% 0% 20% 3%

% overlap removed,
10bp-INDEL

4% 4% 0% 22% 4%

% overlap removed, db-
SNP

3% 2% 0% 47% 7%

1
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Table 2(on next page)

SNV prediction filters.

This table shows the various methods (filters) used to predict which differences found in

tumor alignments relative to blood alignments are real somatic variants, as opposed to

sequencing errors or other variants.
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filter software purpose
GATK GATK Removes putative SNVs with GATK qual-

ity scores less than 40 (as part of the
GATK processing, with indel realignment
and base recalibration)

SS SomaticSniper Removes putative SNVs with a Somatic-
Score less than 40

VAQ SomaticSniper Removes putative SNVs with Somatic-
Sniper Varaint Allele Quality scores less
than 20

LOH SomaticSniper, python Removes putative SNVs that are identified
as loss of heterozygosity

10bp-SNV python Removes putative SNVs located within a
10 bp window of any other putative SNV

10bp-INDEL python Removes putative SNVs located within a
10 bp window of indels

dbSNP python Removes putative SNVs that overlap with
dbSNP coverage

<10% python Removes putative SNVs if, in the tumor
data, the percentage of reads covering the
site with the alternate allele is less than
10%

1
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Figure 1(on next page)

Data processing pipeline.

For each of 55 patients, we began with a C484 tumor BAM file (WGS), a C282 tumor BAM file

(WGA), and a normal BAM file, all aligned to hg18. For each BAM file, we used picard to

regenerate fastq files, bwa to realign the fastq files to hg19, and GATK to recalibrate bases

and indels. We used SomaticSniper to call somatic mutations (differences between the tumor

and normal sequences) for each replicate. When we had a VCF for each replicate, we

calculated the overlap between the two lists as the number of individual mutations which

appeared in both replicates.
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Figure 2(on next page)

Number of putative SNVs in WGS versus WGA, as called by SomaticSniper before
filtering.

Each point represents data for a single patient. The line is y=x, so points falling below the

line agree with the hypothesis that an additional amplification step produces more

sequencing errors in a sample. The number of mutations found in one replicate correlates

with the number of mutations found in the other replicate (Spearman ⍴=0.42, S=16142,

P=0.002).
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Figure 3(on next page)

Number of putative SNVs per sample does not correlate with the number of putative
SNVs recoverable in both replicates.

The percentage of putative SNVs in a given sample that are in the overlap between replicates

is not correlated to the number of mutations in that sample (Spearman ⍴=0.05, S=29268,

P=0.68). We calculated the percent overlap in two ways: with reference to the total number

of putative SNVs in the WGS sample (red) and with reference to the total number of putative

SNVs in the WGA sample (black). The correlation was calculated with respect to WGA.
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Figure 4(on next page)

Independent performance of the individual filters of the overlap between replicates.

The x-axis gives the name of each filter (detail on Table 1), and the y-axis gives (above) the

number of mutations removed by a given filter in a given sample on a log scale, and (below)

the percentage of the WGS--WGA overlap removed by the filter, per sample. The LOH and

VAQ filters removed a large number of putative SNVs and portion of the overlap. The <10%

filter removed very few putative SNVs and almost none of the overlap. The 10bp-SNV, 10bp-

INDEL, and dbSNP filters removed an intermediate number of putative SNVs (~100), but only

a very small portion of the overlap, making them the best performers on the overlap data.
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Table 3(on next page)

Independent performance of individual filters of the difference between replicates.

(top left) A scatter plot of the ratio, per sample per filter, of putative SNVs removed from the

difference versus the overlap of WGS and WGA (WGS △ WGA / WGS ∩ WGA). (top right)

Boxplot of the same data, divided by filter on the x-axis. (below) Plot of the percentage

difference in the Jaccard(WGS, WGA) before and after the action of each filter (each filter was

run on the whole data set independently).
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Figure 5(on next page)

Replicate SNVs filtered out by LOH and VAQ are almost completely non-overlapping and
cover most of the sample.

As the length of the overlap between WGS and WGA increases (x-axis), (above) the

percentage of the overlap filtered out by LOH increases, and (below) the percentage of the

overlap filtered out by VAQ decreases. The two are almost (but not quite) perfect inverses;

putative SNPs filtered by LOH and VAQ cover almost the entire overlap, and together sum to

nearly 100% of the overlap.
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