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ABSTRACT
Hyperosmolality-gated calcium-permeable channels (OSCA) are Ca2+ nonselective
cation channels that contain the calcium-dependent DUF221 domain, which plays an
important role in plant response to stress and growth. However, the OSCA gene has
not been fully identified and analyzed in sunflowers. In this study, we comprehensively
analyzed the number, structure, collinearity, and phylogeny of the OSCA gene family
in the sunflower, six Compositae species (Arctium lappa, Chrysanthemum morifolium,
Cichorium endivia, Cichorium intybus, Lactuca sativa var. Angustata, and Carthamus
tinctorius), and six other plants (soybean, Arabidopsis thaliana, rice, grape, and maize).
The expression of the sunflower OSCA gene in nine different tissues, six different
hormones, and NaCl stress conditions were analyzed based on transcriptome data
and qRT–PCR. A total of 15 OSCA proteins, distributed on 10 chromosomes, were
identified in the sunflower, and all of them were located in the endoplasmic reticulum.
Using the phylogenetic tree, collinearity, gene structure, and motif analysis of the six
Compositae species and six other plants, we found that the sunflower OSCA protein
had only three subfamilies and lacked the Group 4 subfamily, which is conserved in
the evolution of Compositae and subject to purification selection. The OSCA gene
structure and motif analysis of the sunflower and six Compositae showed that there
was a positive correlation between the number of motifs of most genes and the length
of the gene, different subfamilies had different motifs, and the Group 4 subfamily had
the smallest number of genes and the simplest gene structure. RNA-seq and qRT–PCR
analysis showed that the expression levels ofmostOSCA genes in the sunflower changed
to varying degrees under salt stress, and HaOSCA2.6 and HaOSCA3.1 were the most
important in the sunflower’s response to salt stress. The coexpression network of the
sunflower genes under salt stress was constructed based onweighted gene co-expression
network analysis (WGCNA). In conclusion, our findings suggest that the OSCA gene
family is conserved during the sunflower’s evolution and plays an important role in salt
tolerance. These results will deepen our understanding of the evolutionary relationship
of the sunflower OSCA gene family and provide a basis for their functional studies
under salt stress.
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INTRODUCTION
The sunflower (Helianthus annuus L.) belongs to the Compositae family of annual herbs,
which are divided into edible the sunflower and oil sunflower (Keeley, Cantley & Gallaher,
2021). Sunflower oil is one of the world’s four major oil crops (Rele & Mohile, 2003). The
main uses of edible sunflower are ingestion and food addition (Cao et al., 2018). Because
they have the advantages of simple cultivation and salt and drought tolerance, sunflowers
are known as a pioneer crop in saline-alkali land (Keeley, Cantley & Gallaher, 2021; Rele &
Mohile, 2003). Planting sunflowers on saline-alkali land has economic benefits as well as
ecological benefits, such as the desalination of the soil (Keeley, Cantley & Gallaher, 2021;
Rele & Mohile, 2003). Acting as a second messenger, calcium ions play an important role
in the growth and development of plant cells (Klimecka & Muszyńska, 2007). When a plant
is stimulated by the external environment, the Ca2+ concentration changes in the cell are
regulated through transport systems such as Ca2+ channels. Corresponding signals are
generated, including changes in ion transport, hormones, and protective enzyme systems,
which then regulate the pore size, root hair development, and absorption of water and
nutrients in plant guard cells (Shukla et al., 2014). Both abiotic and biotic stresses can
induce plant stress resistance by activating the plant calcium ion pathway (Shukla et al.,
2014; Ju et al., 2021). The calcium ion pathway is very important for the transduction of
calcium signals, so the study of the calcium ion pathway has far-reaching significance when
exploring the mechanism of plant resistance regulation (Liu & Zhu, 1998; Xu et al., 2006;
Xue et al., 2019).

Calcium ion channels are mainly divided into hypotonic and hypertonic calcium
ion channels, OSCA belonging to the latter (Murthy et al., 2018). OSCA is a kind of
hyperosmotic stress sensor (also called a sensor protein) in Arabidopsis thaliana, as
well as a Ca2+-selective cation channel (Zhang et al., 2018). Other common calcium
channel proteins (such as depolarization-activated Ca2+-permeable channels (DACCs),
hyperpolarization-activated Ca2+-permeable channels (HACCs), and inositol 1,4,5-
trisphosphate receptor (IP3R)) have been systematically studied in plants, but there
have been few studies on OSCA (Swarbreck, Colaço & Davies, 2013; Gao et al., 2021).
Using protein-conserved domain analysis, it was found that OSCA gene family proteins
contained three conserved functional domains: late exocytosis (pfam13967), cytosolic
domain of 10TM putative phosphate transporter (pfam14703), and calcium-dependent
channel (pfam02714) (Swarbreck, Colaço & Davies, 2013; Gao et al., 2021). In crops such
as Arabidopsis thaliana and rice, the OSCA gene family was divided into four subfamilies,
all of which contained the DUF221 domain (Yuan et al., 2014; Li et al., 2015). The DUF221
domain is essential, representative, and decisive for both the OSCA gene family and
represents the seven transmembrane domain regions of calcium-dependent channels
that function as calcium channels in osmotic sensing (Kiyosue, Yamaguchi-Shinozaki &
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Shinozaki, 1994). Previous studies used forward genetics to screenAtOSCA1 as an unknown
hyperosmotic calcium ion permeability channel (Yuan et al., 2014). The results of this
study indicated that OSCA1may be an osmotic sensor in Arabidopsis thaliana (Yuan et al.,
2014; Zhang et al., 2020). In rice, osmotic-related abiotic stresses (ABA, NaCl, and PEG)
differentially induced the expression of 10 OsOSCA genes, of which OsOSCA−3.1 was the
identified OsERD4 (early drought response) gene (Li et al., 2015). A drought-tolerant gene
(TaOSCA1.4) was cloned in wheat that belongs to the same gene family as AtOSCA1.8 and
OsOSCA1.4 and is related to grain number per ear and yield (Zhai et al., 2020). Thirteen
GmOSCA genes in soybean (Glycine max (Linn.) Merr) were associated with drought
and alkali stress responses (Yin et al., 2021). A membrane-integral protein (AtOSCA1.2)
was obtained in Arabidopsis thaliana (Liu, Wang & Sun, 2018). This gene can increase the
concentration of intracellular calcium ions under hyperosmotic stress and increase the
permeability of the cell membrane to K+ and Na+. It has also been shown that AtOSCA1.2
is an inherently mechanosensitive pore-forming ion channel that may be necessary for
osmotic sensing, and AtOSCA1.1 and AtOSCA3.1 (also known as the ERD4 gene) are
mechanosensitive channels (Liu, Wang & Sun, 2018; Zhang et al., 2018).

OSCA family genes have been studied in a variety of plants and found to play potential
roles in plant stress resistance (Li et al., 2015; Yin et al., 2021; Tong et al., 2021; Miao et al.,
2022). Following the publication of the genomes of the sunflower and other Compositae
plants, the evolution of this gene family in Compositae has not been systematically studied.
In this study, the number, structure, collinearity, and phylogeny of the OSCA gene family
were comprehensively analyzed using genomic data from the sunflower and six Compositae
species. RNA-sequencing (RNA-seq) and qRT−PCRwere used to analyze the expression of
the sunflower OSCA gene in nine different tissues, six different hormones, and under NaCl
stress conditions. The coexpression network of OSCA under salt stress was constructed
using WGCNA. These results will further broaden our understanding of the evolutionary
relationship of the sunflower OSCA gene family and provide a basis for its functional study
under salt stress.

MATERIAL AND METHODS
Plant material
The sunflower salt-tolerant inbred line 19S05 (bred by Bayannur Institute of Agricultural
and Animal Sciences) was selected for this study. This material had a plant height of
200 cm, number of leaves was approximately 30, leaves were green, without branches, and
the inclination of the disc was 4. The diameter of the disc was 20 cm, yellow flowers were
ligulated, and the weight of 100 seeds was 16 g. The grains were narrow oval, 2.00 cm long
and 0.95 cm wide, with brown white edges, no streaks, and strong salt tolerance. Selected
and full 19S05 seeds were washed with water, surface sterilized with 3% H2O2 for 10 min,
and then placed in plastic pots filled with sterilized soil. After culturing four true leaves, a
200 mMNaCl stress treatment was performed. Root samples were taken at 0 h of treatment
and then at 1 h, 3 h, 6 h, 12 h, and 24 h after treatment. Samples were then snap-frozen
in liquid nitrogen (three biological replicates for each treatment) and stored in a −80 ◦C
refrigerator.
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Identification and cioinformatics analysis of OSCA genes
Helianthus annuus, Lactuca sativa var. Angustata, Gossypium hirsutum, Glycine max
(Linn.) Merr, Arabidopsis thaliana, Oryza sativa, Vitis vinifera, and Zea mays genomic
and proteomic data were downloaded from the Ensembl Plants database (http:
//plants.ensembl.org/index.html) (Bolser et al., 2016). Arctium lappa, Cichorium endivia,
and Cichorium intybus genomic and proteomic data were downloaded from the
NCBI database (https://www.ncbi.nlm.nih.gov/). Chrysanthemum morifolium genomic
and proteomic data were downloaded from the Chrysanthemum genome database
(http://www.amwayabrc.com/zh-cn/). Carthamus tinctorius L. genomic and proteomic
data were downloaded from the NGINX database (http://118.24.202.236:11010/filedown/).
Additionally, we used the OSCA gene domain Hidden Markov model (PF02714) and
HMMER software (http://hmmer.org/) to identify protein sequences validated in the
NCBI-CDD (https://www.ncbi.nlm.nih.gov/cdd/) database (Mistry et al., 2021). ExPASy
software (http://cn.expasy.org/tools) was used on the physicochemical data to calculate the
protein, and EuLoc software performed subcellular localization prediction (Wilkins et al.,
1999; Chang et al., 2013).

Phylogenetic and collinear analysis of the OSCA gene family
The OSCA protein sequences from Helianthus annuus, Arctium lappa , Chrysanthe-
mum morifolium, Cichorium endivia, Cichorium intybus, Lactuca sativa var. Angustata,
Carthamus tinctorius, Gossypium hirsutum, Glycine max (Linn.) Merr, Arabidopsis thaliana,
Oryza sativa, Vitis vinifera, and Zea mays were used for multiple sequence alignment. A
phylogenetic tree was then constructed using the neighbor-joining method (the bootstrap
method value was set to 1,000 and the remaining parameters were set to default values)
(Hall, 2013). The nwk file was obtained using MEGA11 software, and a phylogenetic tree
of the OSCA gene was made. The related collinearity map was constructed using the circle
gene view function in TBtools (Chen et al., 2020; Wang et al., 2012).

Chromosomal location, gene structure, and motif analysis
The chromosomal location information for the members of the sunflower OSCA gene
family was extracted using TBtools software, and the chromosomal location map was
drawn using Mapchart software (Chen et al., 2020; Voorrips, 2002). A phylogenetic tree
of Helianthus annuus, Arctium lappa L., Chrysanthemum morifolium, Cichorium endivia,
Cichorium intybus, Lactuca sativa var. Angustata, and Carthamus tinctorius L. OSCA
sequences was constructed using MEGA11 software (Wang et al., 2012). OSCA motif types
were analyzed using Multiple Expectation maximizations for Motif Elicitation (MEME:
http://meme-suite.org/) (Bailey et al., 2009). Based on the mRNA sequence of the OSCA
gene, the intron-exon structure was analyzed. Graphs were made using TBtools software
(Chen et al., 2020).

Analysis of cis-acting elements of the sunflower OSCA gene
The upstream 2,000 bp sequence of the sunflower OSCA gene was extracted, and
the possible cis-acting elements were predicted using the PlantCARE database
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(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). After screening, the TBtools
software was used to map (Chen et al., 2020).

RNA-seq analysis
Transcriptome sequencing of different tissues of sunflower under different hormone and
salt stress conditions was downloaded from NCBI (SRP092742 and PRJNA866668). Fastp
software was used for filtering, removing adapters, and quality control of the raw data.
Hisat2 software aligned the filtered data to the sunflower reference gene, and StringTie
software was used for expression quantification (Kim et al., 2019; Pertea et al., 2015). Gene
expression was assessed using the FPKMmethod, and the expression data were normalized
to log10 (FPKM+1). Then, the expression heatmap was drawn with TBtools software (Chen
et al., 2018).

qRT −PCR
Primers were designed in specific regions of the sunflower OSCA gene sequence using
Primer 6.0 software. The HaActin gene was chosen as the reference gene for qRT-PCR
analysis (Table S1; Li & Brownley, 2010). Root tissue cDNA was used as the template to
detect the expression of candidate genes by qRT −PCR, and each sample was repeated
three times. The total reaction system was 20 µl, qRT−PCR program: 94 ◦C for 30 s; 94 ◦C
for 5 s, 60 ◦C for 15 s, 72 ◦C for 10 s for 38 cycles; and 4 ◦C for the end. Each group of
data was replicated three times, and the 2−11Ct method was used for relative quantitative
analysis (Tanino et al., 2017).

WGCNA
The DEseq2 software package was used to identify differential genes under salt stress for
WGCNA analysis. We selected β = 6 to process the original relation matrix in order to
get a non-proportional adjacency matrix. The adjacency matrix was further transformed
into a topological overlap matrix (TOM). The minimum number of genes in a module
was 30, the threshold for merging similar modules was 0.25 (cutHeight =0.25), and the
network type was ‘‘signed’’ (type=‘‘signed’’ or networkType=‘‘signed’’). Cytoscape−3.8.2
software was used for visualization (Shannon et al., 2003). We performed Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses using the cluster
Profiler software package in R language.

RESULT
Identification of the OSCA gene family
We systematically studied the changes in the copy number of the OSCA gene
family during the sunflower’s evolution. First, using HMMsearch the OSCA gene
was comprehensively searched from seven Compositae species (Helianthus annuus,
Arctium lappa, Chrysanthemum morifolium, Cichorium endivia, Cichorium intybus,
Lactuca sativa, and Carthamus tinctorius). The search results were validated against the
NCBI-CDD database. Helianthus annuus, Arctium lappa, Chrysanthemum morifolium,
Cichorium endivia, Cichorium intybus, Lactuca sativa, and Carthamus tinctorius contained
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15, 17, 20, 19, 19, 21, and 14 OSCA sequences, respectively. We named them
HaOSCA1.1∼HaOSCA3.1 according to the 15 sunflower sequences and the phylogenetic
tree of 12 other plants. The protein encoded by sunflower OSCA family genes contained
648-838 amino acid residues, the length of the open reading frame (ORF) was 1,947–2,517
bp, the theoretical isoelectric point was 7.61−9.94, and the relative molecular weight was
73.42–96.62 kDa. The protein subcellular localization showed that HaOSCA was localized
to the endoplasmic reticulum, vacuole, chloroplast, golgi apparatus. and mitochondrion
(Table 1).

Fifteen HaOSCA genes were distributed on 10 sunflower chromosomes (Chr03, Chr04,
Chr05, Chr06, Chr07, Chr09, Chr12, Chr15, Chr16, and Chr17) (Fig. 1). Among these,
Chr07 and Chr16 staining contained the most (three) OSCA genes. Except for Chr10,
which contained two OSCA genes, the other chromosomes contained only one OSCA
gene.

Evolutionary analysis of the OSCA gene family
To better understand the evolutionary relationship of the sunflower OSCA family genes,
we constructed a phylogenetic tree of the full-length OSCA protein sequences ofHelianthus
annuus, Gossypium hirsutum, Glycine max (Linn.) Merr, Arabidopsis thaliana, Oryza sativa,
Vitis vinifera, and Zea mays (Fig. 2A). According to the results, the evolutionary tree was
divided into four groups. Compared with Gossypium hirsutum, Glycine max (Linn.) Merr,
Arabidopsis thaliana, Oryza sativa, Vitis vinifera, and Zea mays, there was no sunflower
OSCA protein in Group 4 (Fig. 2), which may have been caused by the loss of genes in
the sunflower during the evolution process. The number of OSCA proteins in Group 1
and Group 2 subgroups was consistent both in the sunflower and in Gossypium hirsutum,
Glycine max (Linn.) Merr, Arabidopsis thaliana, Oryza sativa, Vitis vinifera, and Zea mays
(Fig. 2B). The number of OSCA genes in sunflower, Arabidopsis thaliana, and Glycine max
(Linn.) Merr was basically the same, and the sunflower genes of the same branch were
more closely related to those in Arabidopsis thaliana and Glycine max (Linn.) Merr. Except
for soybean and cotton, the other crops in Group 3 all contained an OSCA sequence, which
also indicated that the Group 3 subgroup of the OSCA gene family was more conserved
during the plant’s evolution. Although Group 3 and Group 4 had relatively few members,
they were retained in the evolution of plants, suggesting that they may play important roles
in biological processes. However, the loss of members of sunflower Group 4 may have also
been caused by functional redundancy of genes, which requires further study.
To further explore the evolutionary relationship of the sunflower OSCA gene family, we

selected the sunflower OSCA gene as the core and constructed a colinear relationship
between sunflower and Gossypium hirsutum, Glycine max (Linn.) Merr, Arabidopsis
thaliana, Oryza sativa, Vitis vinifera, and Zea mays OSCA genes (Fig. 3). We found that the
sunflower OSCA had 18 collinear gene pairs with Arabidopsis thaliana, 36 with Gossypium
hirsutum, 12 with Glycine max (Linn.) Merr, eight with Oryza sativa, and 10 with Vitis
vinifera. There were 11 collinear gene pairs with Zea mays (Fig. 3). The greatest collinearity
between sunflower OSCA and cotton may have been related to cotton having a larger
genome and the largest number of OSCA genes. In addition to cotton, the sunflower OSCA

Shan et al. (2023), PeerJ, DOI 10.7717/peerj.15089 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.15089


Table 1 Sunflower OSCA gene family member information.

Gene name Gene ID Open reading
frame/bp

Protein
length/aa

Relative
molecular
weight
(r)/kDa

Theoretical
isoelectric
point (pI)

Subcellular
localization

HaOSCA1.1 HannXRQ_Chr17g0558291 2,097 698 79.86 8.07 Vacuole, Endoplasmic reticulum
HaOSCA1.2 HannXRQ_Chr16g0516941 2,322 773 88.43 9.13 Endoplasmic reticulum
HaOSCA1.3 HannXRQ_Chr05g0129321 2,274 757 86.85 9.73 Endoplasmic reticulum
HaOSCA1.4 HannXRQ_Chr16g0506581 2,319 772 88.63 8.96 Endoplasmic reticulum
HaOSCA1.5 HannXRQ_Chr06g0164031 2,310 769 87.77 9.36 Vacuole, Endoplasmic reticulum
HaOSCA1.6 HannXRQ_Chr04g0118011 2,313 770 87.71 9.69 Vacuole, Endoplasmic reticulum
HaOSCA1.7 HannXRQ_Chr07g0194331 2,340 779 89.00 9.94 Vacuole, Endoplasmic reticulum
HaOSCA1.8 HannXRQ_Chr03g0081691 2,517 838 96.62 9.09 Chloroplast, Endoplasmic reticulum
HaOSCA2.1 HannXRQ_Chr17g0563981 1,947 648 73.42 8.54 Chloroplast, Endoplasmic reticulum
HaOSCA2.2 HannXRQ_Chr16g0525101 1,947 648 73.60 9.03 Chloroplast, Endoplasmic reticulum
HaOSCA2.3 HannXRQ_Chr07g0205641 2,172 723 82.82 8.75 Golgi apparatus, Vacuole, Endoplasmic reticulum
HaOSCA2.4 HannXRQ_Chr07g0188761 2,223 740 83.76 7.61 Chloroplast, Endoplasmic reticulum
HaOSCA2.5 HannXRQ_Chr09g0264291 2,133 710 80.64 9.1 Golgi apparatus, Vacuole, Endoplasmic reticulum
HaOSCA2.6 HannXRQ_Chr12g0379201 2,094 697 79.44 9.93 Mitochondrion, Vacuole, Endoplasmic reticulum
HaOSCA3.1 HannXRQ_Chr15g0481591 2,145 714 80.99 9.29 Vacuole, Endoplasmic reticulum
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Figure 1 Chromosomal location of the sunflower OSCA gene.
Full-size DOI: 10.7717/peerj.15089/fig-1

had greater collinearity with Arabidopsis thaliana and Glycine max (Linn.) Merr, which was
consistent with the results of the phylogenetic tree analysis.

To further study the evolutionary relationship of the sunflower OSCA gene family, we
constructed a phylogenetic tree based on the OSCA protein sequences of six Compositae
species (Arctium lappa L., Chrysanthemum morifolium, Cichorium endivia, Cichorium
intybus, Lactuca sativa var. Angustata, and Carthamus tinctorius L.) and Helianthus annuus
(Fig. 4A). Except for Helianthus annuus and Carthamus tinctorius L., which lacked the
Group 4 subgroup, all Asteraceae contained four subgroups (Fig. 4A). The Cichorium
endivia and Lactuca sativa var. Angustata Group 4 subgroups contained three and four
OSCA genes, respectively, while Arctium lappa L., Chrysanthemum morifolium, Cichorium
endivia, and Carthamus tinctorius L all contained one, which was consistent with the results
from Arabidopsis thaliana, Glycine max (Linn.) Merr, Oryza sativa, and Zea mays (Figs. 2B
and 4B). Except for Chrysanthemum morifolium Group 3, which contained four sequences,
there was no difference in the subgroups of Group 1, Group 2, and Group 3 based on
Compositae.

We also constructed the collinear relationships for the OSCA of seven species of
Compositae and found that there were three pairs of HaOSCA (HaOSCA1.1 and
HaOSCA2.1, HaOSCA1.2 and HaOSCA2.2, HaOSCA1.3 and HaOSCA1.5) with tandem
repeats in sunflower genes (Fig. 5A), indicating that these three gene pairs may have been
derived from tandem repeats. At the same time, five pairs of HaOSCA (HaOSCA1.5 and
HaOSCA1.6,HaOSCA2.2 andHaOSCA2.1,HaOSCA1.2 andHaOSCA1.1,HaOSCA1.8 and
HaOSCA1.7, HaOSCA1.3 and HaOSCA1.1) showed very high identities (over 84.77%),
implying that they may have arisen from segments or whole genes (Fig. 5A). Additionally,
the ratio of non-synonymous to synonymous (Ka/Ks) between duplicate gene pairs was
calculated, and the Ka/Ks values of all gene pairs were less than 1, indicating that these
gene pairs may have undergone purifying selection (Table S2). Helianthus annuus had 32
collinear gene pairs with Arctium lappa L., 32 with Chrysanthemum morifolium, 29 with
Cichorium endivia, 31 with Cichorium intybus, and 39 with Lactuca sativa var. Angustata,
and 18 collinear gene pairs with Carthamus tinctorius L.. In addition to having lower
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grape, andmaize OSCA gene evolutionary tree. The number of genes in each group.
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Figure 3 Collinear relationship of OSCA genes in sunflower, cotton, soybean, Arabidopsis thaliana,
rice, grape, andmaize. The different colors represent a collinear relationship between different plants.

Full-size DOI: 10.7717/peerj.15089/fig-3

collinearity with Carthamus tinctorius, Helianthus annuus OSCA had more collinearity
with other Compositae species, which indicates that the OSCA gene family was conserved
in the evolution of Compositae. Moreover, Helianthus annuus and Lactuca sativa var.
Angustata had the most collinear gene pairs and were also close to Lactuca sativa var.
Angustata OSCA in the evolutionary tree, which indicates that the OSCA of Helianthus
annuus and Lactuca sativa var. Angustata may have the same biological function.

Gene structure and motif analysis of the OSCA gene of Compositae
To further understand the composition of the sunflower OSCA gene, we compared the
OSCA gene structure of seven Compositae species. All OSCA genes, except Group 4,
contained introns (Fig. 6). Members of the same subfamily had similar conserved motifs,
and Group 4 had the simplest gene structure and least number of motifs (Fig. 6). The Pfam
website (http://pfam.xfam.org/family/pf02714#tabview=tab0) showed that the RSN1_7TM
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domain generally contained seven transmembrane domains. In this article, motif 2, motif
3, motif 4, motif 6, motif 7, motif 8, and motif 9 showed that they may contain multiples
of the seven transmembrane domains. Only a few OSCA genes (CtOSCA1.5, CiOSCA2.2,
and LsOSCA4.1) contained a motif, although they were relatively long. CmOSCA2.2 was
the longest and contained 10 exons, but it also contained eight motifs. The LsOSCA4.4
gene had the shortest length and contained one exon but only one motif (Motif 3). This
indicates that the distribution of OSCA gene motifs in Compositae was highly correlated
with the length of the genes.
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Figure 6 Phylogenetic tree, gene structure, and conserved motif analysis of the OSCA gene family of
Compositae.Different motifs are displayed in different colored boxes as indicated on the right side.
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Analysis of cis-acting elements in the promoter of the sunflower OSCA
gene
Transcription factors (TFs) are proteins that can bind to the promoter regions of genes
in a sequence-specific manner in order to regulate transcription, thereby regulating
plant functions, including responses to environmental factors, growth, and development
(Warren, 2002). Analysis of the 2,000 bp upstream sequence of the sunflower OSCA gene
start codon showed that there were multiple stress and hormone response elements in
the upstream sequence of the HaOSCA gene, with different types and numbers (Fig. 7).
Three main categories of cis elements were found in the promoter sequences of HaOSCA
genes. The first category was involved in phytohormones, such as abscisic acid (ABA),
jasmonic acid (JA), auxin, gibberellins (GA), and salicylic acid (SA). The second category
was associated with stresses, such as low-temperature responsiveness, defense, and stress
responsiveness. The last category was mainly MYB binding sites. Importantly, all 14
HaOSCA genes, except HaOSCA1.8, contained the JA-responsive element (TGACG-motif
and CGTCA-motif), and the ABA responsive element (ABRE) was found in almost all gene
promoters (Table S3). Interestingly, cis-acting elements were not found in the promoter
region of HaOSCA1.8. These results showed that HaOSCA may affect hormone signal
responsiveness and stress adaptation. No cytokinin-responsive elements were identified in
the HaOSCA promoter regions.
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Figure 8 Expression analysis of the sunflower OSCA gene. (A) Heatmap of expression patterns in dif-
ferent tissues. (B) Heatmap of expression patterns under different hormone treatments. (C) Heatmap of
expression patterns under salt stress.

Full-size DOI: 10.7717/peerj.15089/fig-8

Expression analysis of the sunflower OSCA gene
Gene expression patterns are usually closely related to gene functions. To gain insight
into the expression patterns of sunflower OSCA genes, we first analyzed the expression
patterns of 15 sunflower OSCA genes in nine tissues (Fig. 8A). The results showed that
there were nine sunflower OSCAs (HaOSCA1.1, HaOSCA1.2, HaOSCA1.4, HaOSCA1.6,
HaOSCA1.7, HaOSCA1.8, HaOSCA2.5, HaOSCA2.6, and HaOSCA3.1) in pollen and
stamen. The expression was higher than in other tissues, and the remaining six had higher
expression levels in root, stem, leaves, bract, corolla, ovary, and ligament, which indicated
that sunflower OSCA had a wide range of tissue expression types.

Plant hormones play an important role in the processes of growth, development, and
stress. We analyzed the expression pattern of the sunflower OSCA gene induced by six
hormones (ABA, BR, JA, GA, IAA, and SA) (Fig. 8B). Six genes (HaOSCA1.3, HaOSCA1.5,
HaOSCA1.8, HaOSCA2.2, HaOSCA2.3, and HaOSCA2.4) were more strongly induced by
ABA than other hormones, six genes (HaOSCA1.2, HaOSCA1.4, HaOSCA1.6, HaOSCA1.7,
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Figure 9 Expression analysis of the sunflower OSCA gene under NaCl stress. Error bars represent the
average of three replicates± Sd. (* P < 0.05; ** P < 0.01). The housekeeping gene HaActin was used as the
internal reference gene.
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HaOSCA2.5, and HaOSCA2.6) were more strongly affected by IAA than other hormones,
and HaOSCA1.1 was most strongly affected by JA.

Next, we analyzed the expression pattern of the sunflower OSCA gene under salt
stress. All sunflower OSCA gene expression levels changed after NaCl treatment (Fig. 8C).
Seven OSCA genes (HaOSCA1.1, HaOSCA1.2, HaOSCA1.5, HaOSCA1.7, HaOSCA2.2,
HaOSCA2.6, and HaOSCA3.1) were upregulated, three (HaOSCA1.4, HaOSCA1.6,
and HaOSCA2.5) were significantly downregulated, and the expression levels of the
remaining five (HaOSCA1.3, HaOSCA1.8, HaOSCA2.1, HaOSCA2.3, and HaOSCA2.4)
also changed, but not significantly (Fig. 8C). These results indicated that the 10 OSCA
genes (HaOSCA1.1, HaOSCA1.2, HaOSCA1.4, HaOSCA1.5, HaOSCA1.6, HaOSCA1.7,
HaOSCA2.2, HaOSCA2.5, HaOSCA2.6, andHaOSCA3.1)may play a role in the sunflower’s
response to salt stress.

qRT−PCR of the sunflower OSCA gene under salt stress
With the increase of soil salinization, salt stress has become the most important abiotic
stress faced by the sunflowers. Based on the previous expression analysis, we found that
10 genes (HaOSCA1.1, HaOSCA1.2, HaOSCA1.4, HaOSCA1.5, HaOSCA1.6, HaOSCA1.7,
HaOSCA2.2, HaOSCA2.5, HaOSCA2.6, andHaOSCA3. 1) may be involved in the response
of sunflower to salt stress. qRT−PCR was used to study the expression patterns of these 10
genes under NaCl stress. Compared with levels before stress (0 h), the expression of seven
genes (HaOSCA1.1, HaOSCA1.2, HaOSCA1.5, HaOSCA1.6, HaOSCA2.2, HaOSCA2.6,
and HaOSCA3.1) was significantly changed at different points in time during treatment
(Fig. 9). HaOSCA1.6 was significantly downregulated and the remaining six genes were
significantly upregulated. The expression levels of HaOSCA2.6 and HaOSCA3.1 reached
more than a 10-fold change at 6 h of NaCl stress. These results suggest that HaOSCA2.6
and HaOSCA3.1 may play an important role in the response of sunflower to salt stress.
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Protein interaction of sunflower OSCA gene
Genes typically perform their biological functions and signal transduction pathways
through interacting networks, so studying the underlying interaction networks associated
with gene families can provide a better understanding of their functions. To elucidate the
role of OSCA genes in salt stress in the sunflower, we used WGCNA to analyze OSCA
genes (HaOSCA1.1, HaOSCA1.2, HaOSCA1.5, HaOSCA1.6, HaOSCA2.2, HaOSCA2.6,
and HaOSCA3.1) and the salt coexpression network of all differentially expressed genes
under stress. Genes were clustered using dynamic shearing and divided into modules. By
calculating the eigenvectors of each module and merging similar modules, a total of seven
gene coexpression modules were obtained (Fig. 10A). In this study, OSCA genes in each
module were selected as core genes, and gene interaction network diagrams were drawn
using core genes and their interacting genes (Fig. 10B and Table S4). To further uncover
the function of the network, we performed an enrichment analysis of all interacting genes
(Figs. 10C and 10D). The GO enrichment results showed that the biological processes
involved were mainly cellular component organization or biogenesis, biological regulation,
multicellular organismal process, response to stimulus and cellular process, cellular
components are extracellular regions, cells and extracellular regions, molecular functions
are transporter activities, antioxidant activities, transcription regulator activities, and
molecular carrier activity (Fig. 10C). The KEGG pathway was mainly alpha-linolenic acid
metabolism, glycerolipid metabolism, peroxisome, and tryptophan metabolism (Fig. 10D).
This network further demonstrated the complex functions and potential roles of the OSCA
gene family in sunflower salt-stressed species. The results of this study lay a foundation
for further research on the functions and molecular mechanisms of these genes in the
sunflower under salt stress and provide a reference for further study of the sunflower
OSCA gene family.

DISCUSSION
Over their long evolutionary history, all living plants are thought to have undergone at least
one or more whole genome duplication (WGD) events, which provide opportunities for
repeated genes to acquire functional diversification, leading to more complex organisms.
In this process of differentiation, the gene family produces more members (Zhang et al.,
2018; Swarbreck, Colaço & Davies, 2013). Plant biologists have always been fascinated by
the structure, function, and evolution of genes, and the interactions and adaptations
between the environment and plants have been well studied (Gao et al., 2021; Yuan et
al., 2014). With the continuous publication of plant genomes, the structure, function,
and evolution of various gene families have been extensively studied in plants, and these
results can provide more insight into the origin, diversity, and biological function of these
gene families (Kiyosue, Yamaguchi-Shinozaki & Shinozaki, 1994; Glasauer & Neuhauss,
2014; Li et al., 2015; Tong et al., 2021; Miao et al., 2022). Asteraceae is made up of many
different species, each with a rich morphological type that exhibits extreme characteristics
(Badouin et al., 2017). The evolution of the cultivated sunflower progressed in two phases
(domestication by native North Americans, followed by breeding according to traits related
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to modern agricultural production) and have two complex WGD histories that provide
an excellent opportunity to study the relationship between gene family isolation and plant
morphological changes (Badouin et al., 2017). In a breakthrough study in 2014, the first
hypertonic-induced Ca2+ conductive cation channel obtained from plants was discovered,
which was designated to reduce hypertonic-induced [Ca2+] increase1 (OSCA1) (Yuan
et al., 2014). OSCA1 mutants exhibited impaired osmotic Ca2+ signaling in guard cells
and root cells, as well as weakened water transport regulation and root growth response
under osmotic stress conditions (Yuan et al., 2014). This work advanced the study of OSCA
genes, leading to the identification of more OSCA gene families (Yuan et al., 2014). The
15 sunflower OSCA genes obtained in this study were close to the number of OSCA gene
families in other crops, but much fewer than in soybeans and cotton, which may be related
to the size of the soybean and cotton genomes and the large number of replications within
their OSCA family members. The cell membrane (the dividing line between the internal
and external environment of the cell) is the first to feel the stress stimulus, and OSCA is
a calcium channel with multiple transmembrane domains, which is consistent with the
subcellular structure predictions in this study (Table 1). This may be because when plants
encounter adversity, genes in cells will regulate multiple organs to, through the synthesis
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of organic matter, generate energy and jointly resist adversity and stress, which needs to be
further explored (Yin et al., 2021;Miao et al., 2022).

InArabidopsis thaliana, two tandem repeat events occurred in theOSCA family (Kiyosue,
Yamaguchi-Shinozaki & Shinozaki, 1994). Moreover, tandem duplications of the OSCA
gene family have been detected in rice, litchi, wheat, and soybean species (Li et al., 2015;
Tong et al., 2021; Yin et al., 2021;Miao et al., 2022). In this study, an in-depth evolutionary
analysis of the sunflower OSCA gene family was performed using the OSCA genes of 13
species (Figs. 2–6). The HaOSCA evolutionary tree was subdivided into three subfamilies,
which was inconsistent with the OSCA family member evolutionary tree subfamily division
of rice, soybean, corn, and other plants (Li et al., 2015; Tong et al., 2021; Ding et al., 2019;
Wang et al., 2019). HaOSCA has the closest evolutionary tree clades and the largest number
of collinear gene pairs toArabidopsis thaliana and soybean, suggesting that the research basis
of Arabidopsis thaliana and soybean OSCA genes can be used to expand our understanding
of sunflower OSCA genes (Li et al., 2015; Tong et al., 2021; Ding et al., 2019; Wang et al.,
2019). Three pairs of tandem duplication genes were found in the sunflower OSCA
gene family, which indicated that the expansion and evolution of the sunflower OSCA
gene family might be caused by tandem duplication. According to the Ka/Ks analysis,
the strong purifying selection signal also indicated the functional importance of the
sunflower OSCA gene. We also hypothesized that this may be because nonsynonymous
substitutions generally bring harmful traits and rarely result in an evolutionary advantage
(Swarbreck, Colaço & Davies, 2013;Miao et al., 2022). The six Asteraceae species contained
four subgroups, and only three of these subgroups (1, 2, and 3) were included in the
sunflower. Previous studies in tomatoes found that tomato OSCA family members were
divided into five subfamilies, which indicates that the number of genetic family evolutionary
subfamilies may be greatly related to crop growth habits (Wang et al., 2019). We found that
sunflower OSCA had more collinearity with other Asteraceae plants and less collinearity
with Carthamus tinctorius, indicating that the OSCA gene family was conserved during the
evolution of Asteraceae. Sunflower and Lactuca sativa var. Angustata had the most colinear
gene pairs, and the evolutionary tree was also closer to Lactuca sativa var. AngustataOSCA,
suggesting that sunflower may have the same biological function as Lactuca sativa var.
AngustataOSCA. Combined with the evolutionary tree, the number of CDS coding regions
of family members from the same subfamily was similar, but the number of different
subfamilies varied greatly, and it is speculated that the functions performed by subfamilies
may be different.

The functions ofmultipleOSCA genes involved in regulating plant growth, development,
and various stress responses have been verified, and the roles played by different tissues
and growth stages are different (Zhang et al., 2018; Swarbreck, Colaço & Davies, 2013; Gao
et al., 2021; Kiyosue, Yamaguchi-Shinozaki & Shinozaki, 1994; Yin et al., 2021; Miao et al.,
2022). In this study, cis-acting elements in the promoter region of the sunflower OSCA
gene were analyzed, and we found that cis-acting elements in the binding sites of folic ABA
and JA-bound cis-acting elements were the most abundant. Through expression analysis,
we also found that more HaOSCA genes were induced by ABA and JA (Fig. 8B). A growing
number of studies have found that ABA is the most important hormone for plant abiotic
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stress, and JA also plays an important role in this process (Wang et al., 2020; Baldoni, Genga
& Cominelli, 2015). ABA has been found to activate the phosphorylation membrane of
SnRKs bound to NADPH oxidase RBOHF, increasing the production of H2O2 in apoplasts
(Umezawa et al., 2009). Salt-induced ABA and Ca2+ signaling activates RBOHF activity
through SnRK2.6 and CIPK11/26 signaling modules, while ABI1 is inhibitory. ABA, ROS,
and Ca2+ exhibit complex signal crosstalk to control plant responses to salt stress (Quan et
al., 2007). JA levels are elevated and JA signaling is activated under salt stress (Chen et al.,
2016). The F-box protein COI1, also known as the JA receptor, forms complexes with SKP1
and CULLIN1 to mediate JAZ degradation (Valenzuela et al., 2016). When JAZ is removed,
inhibited transcription factors such as MYC activate the expression of JA response genes.
Activation of JA signaling under salt stress eventually leads to inhibition of primary root
growth. Exogenous JA can mitigate salt toxicity by maintaining ROS or ionic homeostasis
(Valenzuela et al., 2016). These combined results hint at the complexity and importance of
the sunflower OSCA gene in the coordination of growth and adversity.

The yield and quality of the sunflower are susceptible to various biotic and abiotic stresses
(Dar et al., 2021; Gogna & Bhatla, 2019). Abiotic stresses such as salinity and temperature
often have a greater impact on plants (Gong et al., 2020;Verma, Ravindran & Kumar, 2016).
Although sunflowers are not halophytes, they have a strong ability to tolerate salt and alkali
(Keeley, Cantley & Gallaher, 2021;Rele & Mohile, 2003). This candidate gene formining salt
tolerance-related genes is a good research model. The soybean OSCA gene family generally
responds to abiotic stress (saline-alkali), and nine OSCA genes were also upregulated
or downregulated in rice abiotic stress treatments (Li et al., 2017). In the sunflower, we
found that the expression levels of HaOSCA1.1, HaOSCA1.2, HaOSCA1.5, HaOSCA1.6,
HaOSCA2.2, HaOSCA2.6, andHaOSCA3.1 all changed significantly at different time points
during NaCl treatment. Of these, only HaOSCA1.6 was significantly downregulated (Fig.
9). The expression levels of HaOSCA2.6 and HaOSCA3.1 reached more than a 10-fold
change at 6 h of NaCl stress. These results suggest that HaOSCA2.6 and HaOSCA3.1 may
be the most important in the sunflower’s response to salt stress.

Studies on other plants have shown that most processes related to plant growth,
development, and physiology are regulated by networks of protein−protein interactions
(Yuan et al., 2014; Zhang et al., 2020; Liu, Wang & Sun, 2018). Building interaction
networks between proteins is important for understanding how proteins work in
biological systems. It is of great significance to understand the growth and development
of plants, biological signals, and response mechanism of energy metabolism in some
specific physiological states, as well as to understand the functional connections between
proteins. We used WGCNA to analyze the coexpression network of sunflower OSCA genes
and differentially expressed genes under salt stress (Fig. 10). Using the KEGG pathway
enrichment analysis of the interacting genes, we found that the main enrichments were
in the alpha-linolenic acid metabolism, glycerolipid metabolism, and peroxisome and
tryptophan metabolism pathways (Fig. 10D). In Arabidopsis thaliana, alpha-linolenic acid
metabolism has been found to be important in synthesizing JA (Valenzuela et al., 2016).
AtLOX3 is involved in the process of Arabidopsis thaliana salt stress (Kilaru et al., 2011).
Constitutive overexpression of AOC inwheat led to elevated JA levels and also confirmed JA
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involvement in salt stress response (Kilaru et al., 2011). The function of JAZ congeners in
salt stress response has been demonstrated in many plant species (Valenzuela et al., 2016).
In addition, the bHLH factor RICE SALT SENSITIVE3 (RSS3)/OsbHLH094 has been found
to interact with JAZ to regulate salt tolerance (Toda et al., 2013). In addition, overexpression
of OsbHLH148 in rice mutants induced high expression of OsDREB and OsJAZ under
drought stress (Seo et al., 2011). Similarly, overexpression ofOsJAZ9 significantly improved
the salinity and drought tolerance of rice (Seo et al., 2011). However, whether OSCA relies
on the JA pathway to improve the salinity tolerance of plants has not been reported, but
provides a reference for our future research. In conclusion, the expression analysis of
sunflower OSCA genes under salt stress and the construction of a coexpression network
will provide clues to further study the salt tolerance of sunflower.

CONCLUSION
In this study, a systematic evolutionary analysis of sunflower OSCA genes was performed
using 13 plant OSCA genes, and the sunflowerOSCA gene family was found to be conserved
in the evolution of Compositae. The analysis of the expression patterns of six hormones
and salt stress in nine tissues showed that the OSCA gene played an important role in
regulating the response of sunflower to salt stress, and HaOSCA2.6 and HaOSCA3.1 were
the most important in the sunflower’s response to salt stress. The coexpression network
of the sunflower OSCA gene under salt stress was also constructed based on WGCNA. In
this study, the systematic evolution and expression analysis of the sunflower OSCA gene
family was carried out for the first time, and provided clues for further research on the role
of sunflower OSCA genes in salt-tolerant species.
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