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ABSTRACT

Yellow head virus (YHV) is one of the most important pathogens in prawn cultivation.
The outbreak of YHV could potentially result in collapses in aquaculture industries.
Although a flurry of development has been made in searching for preventive and
therapeutic approaches against YHV, there is still no effective therapy available in
the market. Previously, computational screening has suggested a few cancer drugs
to be used as YHV protease (3CLP™) inhibitors. However, their toxic nature is still
of concern. Here, we exploited various computational approaches, such as deep
learning-based structural modeling, molecular docking, pharmacological prediction,
and molecular dynamics simulation, to search for potential YHV 3CLP™ inhibitors. A
total of 272 chalcones and flavonoids were in silico screened using molecular docking.
The bioavailability, toxicity, and specifically drug-likeness of hits were predicted.
Among the hits, molecular dynamics simulation and trajectory analysis were performed
to scrutinize the compounds with high binding affinity. Herein, the four selected
compounds including chalcones cpd26, cpd31 and cpd50, and a flavonoid DN071_f
could be novel potent compounds to prevent YHV and GAV propagation in shrimp.
The molecular mechanism at the atomistic level is also enclosed that can be used to
further antiviral development.

Subjects Aquaculture, Fisheries and Fish Science, Bioinformatics, Computational Biology,
Virology

Keywords Yellow head virus, 3C-like protease, Homology modeling, Molecular docking,
Molecular dynamics simulation

INTRODUCTION

Yellow head virus (YHV) is one of the major pathogens in shrimp aquaculture, causing
catastrophic loss to aquacultural industries across South-East Asian countries (Stentiford,
Bonami & Alday-Sanz, 2009). YHV is one genotype in a complex of closely relative viruses,
including Gill-associated virus (GAV), a severe shrimp pathogen found in Australia
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(Ziebuhr et al., 2003). As the name suggested, the most recognizable sign of infection is
the appearance of yellowish coloration on the cephalothorax (Chantanachookin et al.,
1993). The virus is well known for its virulence as it can slay the entire farm within
2-3 days of emergence (Assavalapsakul, Smith ¢ Panyim, 2006). Several methods have
been developed against YHV infection, such as the feeding of herbal extract from guava
(Direkbusarakom et al., 1997), using rat raised poly-clonal antibody against YHV spike
protein (Chaivisuthangkura et al., 2008), using RNA interference technique against YHV
RNA polymerase (Tirasophon, Roshorm & Panyim, 2005; Yodmuang et al., 2006), helicase
(Tirasophon, Roshorm & Panyim, 2005; Yodmuang et al., 2006), protease (Assavalapsakul,
Chinnirunvong & Panyim, 2009; Tirasophon, Roshorm & Panyim, 2005; Tirasophon et al.,
2007; Yodmuang et al., 2006), and selective breeding (Moss et al., 2012). However, it is
still insufficient to prevent massive losses caused by YHV outbreaks. The development of
effective antiviral agents against the infection is still required.

Several antiviral drugs targeting the viral replication process have been developed.
These drugs often interrupt the orchestrated action of the viral nonstructural proteins
(Dinesh et al., 2020). Viral protease is one of the most exciting targets for antiviral drug
development due to its structural simplicity, small size, and function in producing other
enzymes and structural proteins necessary to produce mature virions (Dinesh et al.,
2020). Chymotrypsin-like proteinase (3CLP™) is a protease encoded by most viruses in
Nidovirales, including YHV. 3CLP™ plays a pivotal role in the viral replication process by
cleaving the viral polyproteins at multiple conserved sites to release several vital replicative
proteins (Ziebuhr et al., 2003). Due to the unavailability of the 3D structure from X-ray
crystallography, nuclear magnetic resonance (NMR), or cryogenic electron microscopy
(cryo-EM) of YHV 3CLP™, homology-based modeling has been conducted to gain the
structural basis of this viral protease (Unajak et al., 2014). The YHV 3CLP™ model was
used in virtual screening for potential compounds from the cancer therapeutic drugs
database. NSC122819 was the best promising candidate as it showed relatively good results
in an inhibition experiment against bacterially expressed YHV 3CLP™. However, this
compound is a chemotherapeutic drug derivative to podophyllotoxin, causing a cytotoxic
effect and inhibiting topoisomerase 11 activity (Dombernowsky, Nissen ¢ Larsen, 1972).
Although the potential compound exhibited a good result the in vitro experiments, it is still
challenging further to develop NSC122819 for exploitation in the farm setting. Therefore,
a search for an alternative compound with higher bioavailability suitable for the treatment
of YHV infection would be of great interest.

Flavonoids, the common polyphenols produced by plants, are the most abundant
polyphenol in animal diets (Dai ¢~ Mumper, 2010). As secondary plant metabolites,
which are not essential for the living of the plant, flavonoids are responsible for
various biological activities, such as plant coloration (Yoshida, Oyama ¢ Kondo, 2012),
UV filtration (Takahashi & Ohnishi, 2004), molecular signaling (Brunetti et al., 2018),
detoxifying (Samanta, Das ¢ Das, 2011), and function as anti-microbial agents (Al Aboody
& Mickymaray, 2020). Moreover, flavonoids also showed several pharmaceutical properties
(Agrawal, 2011). Due to their low toxicity and availability, flavonoids are a well-known
component of herbal medicines and even dietary supplements (Kumar ¢ Pandey, 2013).
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Chalcones are precursors of flavonoids and isoflavonoids. The compounds are one the
most widespread natural products found in various plants. Chalcones also considered as a
subset of flavonoids since their chemical structures consist of open-chain flavonoids as the
two aromatic rings joined together with unsaturated carbonyl of three carbon atoms (Sahu
et al., 2012). Chalcones also showed a broad spectrum of bioactivities, same as flavonoids
(Elias, Beazely ¢ Kandepu, 1999). Flavonoid and chalcones have been reported to be
inhibitor of several virus proteases, such as HIV-1 protease (Turkovic et al., 2020; Xu et al.,
2000), dengue-2 protease (Hengphasatporn et al., 2020; Kiat et al., 2006; Srivarangkul et al.,
2018), MERS-CoV 3CLP™ (Jo et al., 2019), and SARs-CoV 3CLP™ (Hengphasatporn et al.,
20225 Nguyen et al., 20125 Park et al., 2016). In recent studies, as a presence of COVID-19
incident, line of evidence suggested that flavonoids and chalcones could have a potent
inhibitory effect against SARS-CoV-2 3CLP™ (Da Silva et al., 2020; Das et al., 2021; Jo et
al., 2020; Vijayakumar et al., 2020).

According to previous studies about potentials of flavonoid and chalcone as viral
protease inhibitors, as well as their low toxicity and bioavailable nature, a set of flavonoids
and chalcones from our database was considered for identification of bioactive drug
candidates for inhibition of YHV major protease, YHV 3CLP™, using computational
approaches (Abudayah et al., 2022; Al-Sha’er, Basheer ¢ Taha, 2023). The YHV 3CLP™
model predicted by deep learning-based structural modeling was used to identify potential
candidates of chalcones and flavonoids by molecular docking, drug-likeness prediction,
and molecular dynamics (MD) simulations. The insights offered from this work can thus
open a new avenue to exploit both chalcones and flavonoids in preventive and therapeutic
approaches against YHV infection. Since YHV and GAV are closely related, the structure
of GAV is also included in the screening process to obtain the candidate compounds that
can be antiviral agents for both pathogens.

MATERIALS & METHODS

3CLP™ structure modeling

Due to lack of the 3D structure available, the 3D model of 3CLP™ of YHV and GAV were
constructed based on their amino sequences. The amino acid sequence of YHV 3CLP™
was obtained from the NCBI protein database (NCBI reference sequence: ACH99403.1,
accessed in October 2021). The amino sequence of GAV 3CLP™ was extracted from ORF1, a
polyprotein ppla, available on NCBI database (NCBI reference sequence: YP_001661453.1).
The two proteins were modelled using ColabFold web software (Mirdita et al., 2022) with
AlphaFold v.2.0 (Jumper et al., 2021). Subsequently, the protonation state of ionizable
residues was assigned at pH 7.4 using the Open Babel (O’Boyle et al., 2011). The catalytic
histidine, H63, was in neutral form with protonated § nitrogen. The side chain of catalytic
dyad H63 and C152 was adjusted to be in active conformation before energy minimization
using Chimera software (Huang et al., 1996). The model quality score and local distance
difference test (IDDT) were used to determine the local quality of the models, while the
regions with IDDT value <50 were manually trimmed out from the model.
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Molecular docking

According to previous works about potentials of flavonoid and chalcone as viral protease
inhibitors , HIV-1 protease (Turkovic et al., 2020; Xu et al., 2000), dengue-2 protease
(Hengphasatporn et al., 2020; Kiat et al., 2006; Srivarangkul et al., 2018), MERS-CoV 3CLP™
(Jo et al., 2019), and SARs-CoV 3CLP™ (Hengphasatporn et al., 20225 Nguyen et al., 2012;
Park et al., 2016), as well as their low toxicity and bioavailable nature, the set of 223
chalcones and 49 flavonoids from in-house database (Sangpheak et al., 2019) was considered
for identification of bioactive drug candidates for inhibition of YHV major protease, YHV
3CLP™, in this study. The structure of the reported anti-YHV 3CL P™ agent, NSC122819
(Unajak et al., 2014), was downloaded from the ZINC database. The 2D structures of all
studied compounds were depicted in supplemental Fig. S1. Each compound from in-house
database and the known potent compound NSC122819 was docked into the 20x20x20 A3
box centered at the center of 3CLP™ catalytic residues, H63 and C152, using AutoDock
VinaXB (Koebel et al., 2016) with 100 runs. Among the different configurations, the ligand
conformation with the highest binding affinity was selected for further analysis. To validate
reliability of molecular docking result, the known inhibitor NSC122819 was used as a
template to generate 50 decoy molecules with Directory of Useful Decoys, Enhanced
(DUD-E) sever (Mysinger et al., 2012). The decoys and candidate molecules went through
the molecular docking process again to generate receiver operating characteristic (ROC)
curve (Empereur-Mot et al., 2015).

Drug-likeness prediction

The screened compounds from the molecular docking study were submitted to SwissADME
(http:/www.swissadme.ch/) (Daina, Michielin ¢ Zoete, 2017) to calculate physicochemical
properties. The molecular weight (MW), the numbers of hydrogen bond donors (HBD)
and acceptors (HBA), rotatable bond (RB), polar surface area (PSA), and lipophilicity
(LogP) were used to predict the compound drug-likeness following criteria of Lipinski’s
rule of five which are: (i) Mw < 500 Da, (ii) HBD < 5 and HBA < 10, (iii) RB <10, (iv) PSA
<140 A and (v) LogP <5 (Lipinski, 2004). The molecule which breaks two or more criteria
is considered a non-drug-like compound. The Brain Or Intestinal EstimateD permeation
method (BOILED-Egg) (Daina ¢ Zoete, 2016) was also obtained from SwissADME.

Molecular dynamics simulation

The docked ligands/YHV 3CLP™ complexes were performed by 200-ns MD simulations
in periodic boundary conditions using AMBER20 (Case et al., 2021). The ligand structures
were optimized by the HF/6-31G(d) level of theory using Gaussian 09 software (Frisch
et al., 2009), and the electrostatic potential (ESP) charges were generated at the same
method (Sanachai et al., 2020). Subsequently, the restrained ESP (RESP) charges of ligand
were obtained using the ANTECHAMBER module. The protein was treated by AMBER
tf16SB forcefield, while the ligand parameters were retrieved from generalized AMBER
force field version 2 (GAFF2). The TIP3P water molecules were added to solvate the
complex in a cubic box with a dimension extended at least 13 A from the system surface.
Counter ions, Na+, were added to neutralize the system. To diminish the unfavorable
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contacts and steric hindrances, the added waters and ions were minimized using steepest
descent (SD) and conjugated gradient (CG) methods for 1500 iterations with restrained
protein-ligand complex using a force constant of 500 kcal/mol A2, followed by the same
minimization procedure with 1000 iterations for the whole system. The SHAKE algorithm
was applied to constrain all hydrogen atoms connected with covalent bonds (Ryckaert,
Ciccotti ¢ Berendsen, 1977). The particle-mesh of Ewald’s summation method (York,
Darden & Pedersen, 1993) was used to treat the long-range electrostatic interactions with
10 A cut-off distance. Temperature and pressure were controlled by the Langevin dynamics
(Welling ¢ Teh, 2011) and Berendsen barostat (Berendsen et al., 1984), respectively. The
time step of 2 fs was used. Two steps of 500-ps MD simulations were carried out on each
system with a restrained position of the ligand/protein complex by a force constant of
5.0 and 2.0 kcal/mol A2, respectively. Then, MD simulations of ligand/protein complexes
without any restraint were continued up to 200 ns. The trajectories extracted every 10 ps
were analyzed in terms of root mean square displacement (RMSD), number of contact
atoms and number of H-bonds between protein and ligand with CPPTRAJ module (Roe
& Cheatham 111, 2013).

To calculate the binding affinity of the interaction between candidate compounds
and 3CLP™, the Molecular Mechanics/Poisson—-Boltzmann Surface Area (MM/PBSA)
and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method were
performed using 100 snapshots from the last 50 ns of the simulations. The internal dielectric
constant was set to be 1. The external dielectric constant was set to 80. The surface tension
was set to 0.0072 kcal/mol A%. And the solvent probe radius was set to 0.14 A. Moreover,
the solvated interaction energy (SIE) approach was also adopted to evaluate the binding
affinity of ligand toward 3CLP™ (Naim et al., 2007). The compounds with the same level or
higher binding affinity against YHV 3CLP™ compared to the known inhibitor NSC122819
were selected for investigation on intermolecular interactions with protein target, i.e.,
MM/GBSA per-residue decomposition free energy (Miller III et al., 2012), with cutoff at
AGping = —1 kcal/mol. The top molecules with highest binding affinity were simulated
again along with the known inhibitor to confirm repeatability of the simulation.

RESULTS AND DISCUSSION

Virtual screening

The 3D structures of YHV and GAV 3CLP™ were modeled using the CollabFold web
application (Mirdita et al., 2022) with AlphaFold v.2.0 and MMseqs2 (Jumper et al., 2021,
Mirdita et al., 2021) according to the amino acid sequences obtained from the NCBI
database (codes: ACH99403.1 and YP_001661453.1). The two models of YHV 3CLP™,
YHV_M1 and YHV_M2, and a model of GAV 3CLP™ with the best model quality score are
chosen and given in supplemental Fig. S1. The catalytic dyad H63 and C152 are identified in
both YHV and GAV 3CLP™, as described in the previous study of GAV (Ziebuhr et al., 2003).
GAV and YHYV are closely related both genetically and morphologically (Chantanachookin
et al., 1993; Cowley et al., 2000; Ziebuhr et al., 2003). The binding pockets of the YHV and
GAV models are considered and compared in Fig. 1A. It can be seen that the binding
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pockets of YHV_M1, YHV_M2, and GAV 3CL P™ models were well-aligned, and the
amino acid sequence at the binding site was highly conserved (92.6% identity, Fig. 52). In
Fig. 1B, the model YHV_M2 exhibited a higher z-score (11.8) to the GAV binding pocket
than YHV_M1 (11.2). The 3CLP™amino sequences of GAV and YHV are highly conserved
with 94% similarity (Fig. 52). Thus, the model YHV_M2 was chosen to be a representative
model for YHV 3CLP™ in the following studies. The previous homology based model of
YHV 3CLP™ suggested H30, D70, and C152 as 3 catalytic residues that form the catalytic
triad of the protease (Unajak et al., 2014). On the contrary, our predicted model from
AlphaFold2 indicated that the YHV 3CLP™ employs H-C catalytic dyad for proteolytic
mechanism which is in good agreement with the previous experimental data obtained
from GAV 3CL P* (Ziebuhr et al., 2003). Considering the genetic similarity and mactching
residue position of 3CLP™ H63 and C152 in the catalytic dyad of both GAV and YHV
3CLP™ (Fig. 1A), we identified H63 as one of the catalytic residues in our model instead of
the previously proposed H30 (Unajak et al., 2014). The designation of H63 as part of the
YHV 3CLP™ catalytic dyad is in great accordance with the previous experimental reports
(Ziebuhr et al., 2003).

Molecular docking with 100 runs was employed to generate the possible ligand binding
configurations in the binding pocket of YHV and GAV 3CLF™. For each compound, the
best configuration with lowest binding free energy (AG) was chosen to be ranked and
compared with the known YHV inhibitor, NSC122819 (Unajak et al., 2014). The AG
of NSC122819 was of —8.0 kcal/mol in YHV 3CLP™ and —6.7 kcal/mol in GAV 3CL
P9 Among the 272 studied compounds (Fig. 1C), there were 111 compounds with AG
lower than that of NSC122819. In this study, only the top 15% consensus were selected
as candidate compounds. These were six chalcones (cpd26, cpd27, cpd28, cpd31, cpd4l,
and cpd50), and three flavonoids (DNO071_f, IP004, and TP034) with AG values in a range
of —9.0 to —10.1 kcal/mol for YHV 3CLP™, and —8.0 to —9.3 kcal/mol for GAV 3CLP™,
The 2D structures of these nine compounds were depicted in supplemental Fig. S3, while
their 2D interactions were shown in Figs. S4-S5. All screened compounds were stabilized
by hydrophobic interactions with YHV 3CLP™ residues. The chalcones cpd28, cpd41 and
cpd50, and flavonoids IP004 and TP034, can form hydrogen bonding with the imidazole
ring of H63, which is one of catalytic residues.

The candidates and the known inhibitor NSC122819 served as primers to generate decoy
molecules using the Directory of Useful Decoys, Enhanced (DUD-E) sever (Mysinger et
al., 2012). The 50 decoys with similar physicochemical properties were created for each
compound. All compounds were separately docked into the binding pocket of the YHV
3CLP™ model again with all decoys. The receiver operating characteristic (ROC) curve
was constructed to validate the docking results (Empereur-Mot et al., 2015). In Fig. 1D,
the receiver operating characteristic (ROC) curve showed a high true-positive rate over a
false-positive rate, with the area under the curve (AUC) of 86.19%. This finding suggested
that the molecular docking results were highly predictive and suitable for the viral proteases.
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Figure 1 Molecular modeling and screening. (A) Structural comparison of YHV and GAV 3CLP™ mod-
els with the close-up image of the binding pocket containing the catalytic dyad H63 and C152. (B) Pair-
wise comparison of Z-score, RMSD, and identity percentage of structural alignment at the binding pocket
residues for the models YHV_M1, YHV_M2, and GAV (C) Scatter plot shows binding free energies (AG)
of the 223 chalcones and 49 flavonoids toward YHV and GAV 3CLP™ from molecular docking, where the
compounds with AG values lower than that of known YHV inhibitor NSC122819 (represented by green
dot) are in the green zone, and only the top 15% consensus are in the red zone. (D) Receiver operating
characteristic (ROC) curve for active ligands and decoys.

Full-size & DOI: 10.7717/peerj.15086/fig-1

Drug-likeness prediction

The bioavailability of molecules is one of the most important properties to be considered
as a drug. The physiochemical properties of the top nine compounds and NSC122819 were
summarized in Table 1. All nine compounds were accepted by Lipinski’s of five indicating
good physicochemical properties and bioavailability of the molecules. In contrast, the
known inhibitor NSC122819 was rejected by Lipinski’s criteria with three breaking rules,
which indicate that the molecule has poor bioavailability.

BOILED-Egg model result in Fig. 2 shows that most candidates were placed in the
yellow and white area, indicating that the molecules were susceptible to gastrointestinal
absorption. The flavonoid TP034 and the known inhibitor NSC122819 in the grey area
were predicted to be not absorbed in the gastrointestinal tract. Noticeably, the chalcone
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Table 1 Drug-likeness of the 9 candidate compounds and NSC122819. Calculated physicochemical properties of the candidate compounds com-
pared with known viral inhibitor following Lipinski’s rule of five.

Compound Lipinski’s Rule of Five [60]

MW (<500 Da) HBD (<5) HBA (<10) RB (<10) PSA (<140 A) LogP (<5) Drug-Likeness
cpd26 446.45 1 7 7 91.29 3.38 Yes
cpd27 414.45 0 5 9 61.83 4.15 Yes
cpd28 430.45 1 6 9 82.06 3.95 Yes
cpd31 441.48 0 6 9 75.47 4.16 Yes
cpd4l 423.48 2 5 7 101.08 3.13 Yes
cpd50 460.59 1 3 7 74.86 3.64 Yes
DNO71_f 496.49 0 7 5 76.33 1.15 Yes
1P004 421.47 1 5 6 90.08 3.31 Yes
TP034 449.35 1 1 7 93.99 2.61 Yes
NSC122819 640.59 3 14 6 173.97 3.31 No

Notes.

*Lipinski’s rule violation. Compound with Lipinski’s rule violation <2 is considered as drug-like molecule.

cpd27 could pass through the blood-brain barrier (yellow area) and be pumped out of
the brain by activating permeability protein, PGP (Daina, Michielin ¢ Zoete, 2017), as
suggested by the blue dot.

MD study of YHV 3CLP™© Complexes

The six chalcones and three flavonoids complexed with YHV 3CL P™ were investigated
by 200-ns MD simulations. The stability of system in term of RMSD was shown in

Fig. 3A. The protein structures of most systems including apo protein showed a high
RMSD fluctuation with a deviation of 1-2 A at the early simulation period. The low
fluctuation of RMSD values was found after 100 ns until the end of the simulation (<1 A).
The stability of the systems in the last 100 ns is also supported by the RMSD comparison of
the MD trajectories in the 2D-RMSD plot (Fig. 56). The ligand-binding at the 3CLP™active
site could reduce the motion of the catalytic dyad, governed by a lower RMSD value in
complex in comparison to apo-form protein (green line in Fig. 3A).

The number of atom contacts (#Atom contact) within 3.5 A of the compound at the
3CLP™ binding pocket and the distance between a closet heavy atom of ligand and the
center of mass of catalytic dyad (dLigana) along with the simulation time were plotted
in Figs. S7B-S7C. #Atom contact of each compound was in the same magnitude from
the beginning until the end of the simulation, except for a drastically decreased #Atom
contact at 170 ns in flavonoid IP004 (Fig. 3B). The drastically change in the interaction
of IP004 system was also spotted in distance measurement between the molecule and the
catalytic residues, as flavonoid IP004 moved away from the catalytic dyad at 170 ns (dLigand
lengthened from 7.70 to 15.49 A, Fig. 3C). Result of chalcone cpd41 and known inhibitor
NSC122819 also show great distance at the beginning of simulation (dpigang = 14.5 A and
12.17 A, respectively). These results of the three molecules indicate their weak interaction
to the catalytic dyad. However, the three molecules are still clinging to other residues inside
the binding pocket which can still be considered as obstacle for substrate to bind at the
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active site. Other candidates were occupied in the 3CL P™ active site for the whole period of
simulation and located closer to the catalytic dyad (drigana <7 A) than the known inhibitor
NSC122819 (drigand = 12.17 A). From the results in Fig. 3, the trajectories between 150 to
200 ns were considered the equilibrated stages and used for analysis in terms of structural
dynamics and energetic data.

Ligand-protein hydrogen bonding

The hydrogen bond is undeniably one crucial factor determining compound binding
strength toward the protein. The hydrogen bond formation between compound and
3CLP™ was counted when the distance between hydrogen bond donor (HD) and acceptor
(HA) was less than 3.5 A, and the angle of HD_H...HA was larger than 120° . The
number of hydrogen bonding (#Hbond) along with the simulation and the hydrogen bond
occupation >10% of selected simulation length (50 ns) were given in Fig. 57. Among the
screened compounds, most chalcones formed at least a strong hydrogen bond (>70%)
with the backbone of the binding pocket residues, i.e., A172 (cpd26), A180 (cpd41), N194
(cpd26 and cpd31), Y197 (cpd28 and cpd50). Instead, a moderately strong hydrogen bond
was detected in the flavonoid DNO071_f with the imidazole ring of a catalytic residue, H63
(60.2%). Noticeably, the number of hydrogen bonding formed with IP004 dramatically
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declined after 170 ns, which is a result of the same event shown in Figs. 3B-3C as a relatively
weak interaction with A180 (29.5%). The chalcone cpd27 and flavonoid TP034 formed the
very weak hydrogen bonds with the surrounding residues (<10%).

Ligand binding affinity
Table 2 showed the AGy;,g obtained from three end-point binding free energy calculations
MM/GBSA, MM/PBSA, and SIE for all nine candidates. The simplified comparison of all
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Table 2 Binding free energies. Predicted binding free energies (A Gyping, kcal/mol) of the 9 candidates and
the known inhibitor NSC122819 against YHV 3CLP™.

Compound MM/GBSA MMPBSA SIE

AGping SD AGping SD AGping SD
cpd26 —16.3018 8.39 —9.8284 9.7856 —8.81 0.51
cpd27 —16.2456 4.7054 —8.6274 5.4369 —2.47 0.26
cpd28 —6.9181 3.2014 —6.221 3.3243 —7.42 0.36
cpd31 —28.5782 3.4971 —24.9119 2.9586 —-9.76 0.45
cpd4l —5.0087 3.7453 —2.2305 4.517 —7.37 0.4
cpd50 —16.7241 3.4504 —12.3697 4.5167 —9.16 0.47
DNO71_f —17.8799 49514 —16.1626 5.2596 —8.89 0.41
1P004 —9.0483 3.8444 —6.3956 6.0151 —7.18 0.41
TP034 —2.3404 5.3616 —0.9598 4.8607 -7 0.39
NSC122819 —3.044 3.9642 —2.7458 5.4544 —7.6 0.4

energy calculations was illustrated in the 3D scatter plot (Fig. 4A), which the compounds
with better binding affinity were located toward the bottom left corner of the plot. It can
be seen that the compounds were found to cluster into three groups corresponding to their
predicted A Ging values: (I) the chalcone cpd31 with the best binding energy, lowest A Gping
values, predicted by all methods; (II) the chalcones cpd26 and cpd50, and the flavonoid
DNO071_f with AGMM/PBSA gwer than —20 kcal/mol and AGMM/GBSA [gwer than —25
kcal/mol; and (III) the other screened compounds as well as and the known YHV 3CLP™
inhibitor NSC122819 with relatively higher AGying values, and locate toward the top-right
corner of the plot. The compound present in group I and II were considered as best
candidates. The simulation systems of the best four compounds, cpd31, cpd26, cpd50, and
DNO71_f, were repeated in duplicate runs to confirm the reliability of result. The RMSD
result of the duplicated simulations show the similar pattern to the original simulation
(Fig. S8A). Most of duplications also show the same pattern of hydrogen bonding, except
for chalcone cpd26 which the duplicated result show lower number of hydrogen bond at
last 50 ns of the simulation (Fig. S8B).

Figure 4B illustrates the residue contribution for ligand binding, where the residues
which exhibit AG{ﬁflig“e lower than —1 kcal/mol were identified as hotspot residues. All
candidates from this study interacted with YHV 3CL P™ better than the known inhibitor
NSC122819 in accordance with the binding affinity results. The hotspot residues were
mainly found in the C-terminal domain of 3CL P™ (right hand site of the plot), i.e., there
were seven to nine stabilized residues for the three chalcones (cpd26, cpd31, and cpd50)
and four residues for the flavonoid (DN071_f). Among them, the two nonpolar residues,
1168 and V169, and the polar residue Y199 served as the common hotspot residues response
in stabilizing all candidates. The chalcones cpd31 and cpd50 and the flavonoid DN071_f
also showed interactions with the two hotspot residues on the N-terminal domain, i.e.,
the catalytic dyad residue H63 and R46 or L49. Only the catalytic residue H63 served
as the shared hotspot residue among the 3 compounds. In comparison to cpd26, which
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Figure 4 Binding free energy of 3CLP*--ligand complexes. (A) The 3D scatter plot of binding free en-
ergy (AG, kcal/mol) predicted by MM/GBSA, MM/PBSA, and SIE methods using the 100 snapshots from
the last 50 ns. (B) Per-residue binding free energy decomposition of YHV 3CLP* bound to the top 4 can-
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not interact with N-terminal cluster, the compound exhibits the weakest binding affinity
among the best four candidates.

In Fig. 4C, the vdW energic term with a negative value in almost all key residues implied
that vdW force was the primary interaction for all candidate compounds, similar to the
result in the previous study (Unajak et al., 2014). The vdW as a major interaction of
flavonoids and chalcones toward the binding site of viral 3CLP™ has also been reported
in other studies of nidoviruses, especially coronaviruses such as SARs-CoV (Nguyen et
al., 2012), SARs-CoV-2 (Das et al., 2021), and MERS-CoV (Jo et al., 2019). This was in
concordance with the previous suggestion in the linkage between 3CLP™ of invertebrate
nidoviruse, including YHV and GAV, and coronavirus (Cowley et al., 20005 Ziebuhr et al.,
2003). As mentioned earlier, most interactions of candidate compounds in this study are
toward nonpolar residue on the C-terminal domain, with only a few interactions toward
the catalytic residue on the N-terminal domain. This interaction pattern is similar to
the interaction of antiviral compounds against 3C protease (3C P™) of coxsackievirus
and enterovirus (Sripattaraphan et al., 2022). Although coxsackievirus and enterovirus
3C P™ employ a catalytic triad, while YHV 3CL P™ uses a catalytic dyad active site, both
proteases share several common characteristics since the viruses are identified as members
of picornavirus-like supercluster (Kim et al., 2012). Although this study primarily focused
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on finding anti-viral agents against YHV 3CLpro, due to the fact that YHV and GAV are
closely related and GAV 3CLpro was also included in the screening process, all potent
candidate compounds present here are potentially provide inhibiting properties for both
YHV and GAV 3CLpro.

Searching for YHV anti-viral agent posed many challenges including unavailable of
both YHV and GAV viral protein structure data, from either X-ray crystallography,
NMR, or cryo-EM experiments. Since YHV and GAV are only two members of their
family, Roniviridae, make it difficult to find good reference structures or templates for
structural modelling. Moreover, beside the in-silico study, in vitro experiments, such as
enzyme-based assay, and in vivo experiments in real animals should be performed to gain
better validation of candidates’” potential and toxicity. However, the in vitro and in vivo
data are not included in this study due to the time and cost constraints in the experiments
including newly synthesizing the required amount of potent bioorganic compounds.
Further investigation in potential of all candidates presented in this study in both in vitro
and in vivo experiments are suggested. The in vitro experiment with the enzyme inhibition
assay using potent compounds from this study will be included in our future study.

CONCLUSIONS

Computational approaches were used to identify potential compounds from in-house
database containing chalcones and flavonoids with high predicted bioavailability against
YHV 3CLP™. As aresult, the four potent candidates of three chalcones, cpd26, cpd31, cpd50,
and a flavonoid, DN071_f, showed the high binding affinity towards the targeted protease.
Most of the interactions were found toward hydrophobic residues on the C-terminal
domain of the binding pocket, while some compounds, cpd31, cpd50, and DN071_f, also
have interactions directly toward a catalytic residue, H63, on the N-terminal domain. All top
candidates with higher binding affinity than reported inhibitor NSC122819 are suggested
to be tested by enzyme-based assay for further development as anti-YHV 3CLP™inhibitor.
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