
Machine learning aided multiscale modelling of the HIV-1
infection in the presence of NRTI therapy
Huseyin Tunc 1 , Murat Sari 2 , Seyfullah Kotil Corresp. 3

1 Department of Biostatistics and Medical Informatics, School of Medicine, Bahcesehir University, Istanbul, Turkey
2 Mathematics Engineering, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
3 Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey

Corresponding Author: Seyfullah Kotil
Email address: enesseyfullah.kotil@med.bau.edu.tr

Human Immunodeficiency Virus (HIV) is one of the most common chronic infectious
diseases in humans. Increasing the expected lifetime of the patients depends on the use of
optimal antiretroviral therapies. The emergence of drug-resistant strains can reduce the
effects of treatments and lead to Acquired Immunodeficiency Syndrome (AIDS), even with
antiretroviral therapy. Investigating genotype-phenotype relationships is a crucial process
for optimizing the therapy protocols of the patients. Here, a mathematical modelling
framework is proposed to address the impact of initial strains, timing of initiation, and
adherence levels of nucleotide reverse transcriptase inhibitors (NRTIs) on the emergence
of a possible AIDS phase. For the first time, the existing Stanford HIV drug resistance data
have been combined with a multi-strain within-host ordinary differential equation (ODE)
model to track the dynamics of the most common NRTI resistant strains. Regardless of
drug choice, late initiation and poor adherence levels to the NRTI therapy increases the
probability of the emergence of the AIDS phase. Overall, the D4T-3TC, D4T-AZT and TDF-
D4T drug combinations have been shown to provide higher success rates. The results are
in line with the genotype-phenotype data and pharmacokinetic parameters of the NRTI
inhibitors, but we show that the undetectable mutant generations of those detected at
diagnosis have a significant effect on the success/failure rates of the proposed NRTI
therapies. It has been recognized that the improvement of multi-scale models can
contribute to the understanding of disease progression and treatment options, and
potentially increase the reliability of genotype-phenotype models.
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ABSTRACT13

Human Immunodeficiency Virus (HIV) is one of the most common chronic infectious diseases in humans.

Increasing the expected lifetime of the patients depends on the use of optimal antiretroviral therapies.

The emergence of drug-resistant strains can reduce the effects of treatments and lead to Acquired

Immunodeficiency Syndrome (AIDS), even with antiretroviral therapy. Investigating genotype-phenotype

relationships is a crucial process for optimizing the therapy protocols of the patients. Here, a mathematical

modelling framework is proposed to address the impact of initial strains, timing of initiation, and adherence

levels of nucleotide reverse transcriptase inhibitors (NRTIs) on the emergence of a possible AIDS phase.

For the first time, the existing Stanford HIV drug resistance data have been combined with a multi-strain

within-host ordinary differential equation (ODE) model to track the dynamics of the most common NRTI

resistant strains. Regardless of drug choice, late initiation and poor adherence levels to the NRTI therapy

increases the probability of the emergence of the AIDS phase. Overall, the D4T-3TC, D4T-AZT and

TDF-D4T drug combinations have been shown to provide higher success rates. The results are in line

with the genotype-phenotype data and pharmacokinetic parameters of the NRTI inhibitors, but we show

that the undetectable mutant generations of those detected at diagnosis have a significant effect on the

success/failure rates of the proposed NRTI therapies. It has been recognized that the improvement of

multi-scale models can contribute to the understanding of disease progression and treatment options,

and potentially increase the reliability of genotype-phenotype models.
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INTRODUCTION31

Antiretroviral drug resistance is one of the main barriers to therapy success for HIV-positive patients.32

According to the WHO, the HIV drug resistance report 2021, 10% and 40% of adults are affected by33

drug-resistant strains (DRS) for naive and treated patients, respectively. In addition, 50% of newly34

diagnosed infants were exposed to the DRS. The DRS can be acquired with nonadherence to the therapy35

protocols, or patients can directly be infected with DRSs (Blower et al., 2001). Both scenarios yield36

life-long persistence of the DRS and need to be carefully tracked by clinicians by suggesting optimal37

therapy protocols.38

Quantitative evaluation of HIV drug resistance has been carried out with the use of phenosense39

assays by finding the fold-change of IC50 values (the amount of concentration to inhibit 50% of virion)40

between drug-resistant and wild-type strains (Zhang et al., 2005; Pham et al., 2018; Feng et al., 2016).41

It is time-consuming and expensive to account for all possible genotype-phenotype relationships with42

such experiments. On the other hand, data modelling frameworks have been used to construct general43

mathematical relations between genotype and phenotype information (Steiner et al., 2020; Tarasova et al.,44

2018; Shah et al., 2020). These mathematical models aim to generalize the given data by means of45
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encoding the amino acid sequence of target enzymes (Rhee et al., 2010). One of the main contributions of46

the current study is to explore how these models can be embedded into a within-host model to answer47

some critical questions about HIV dynamics.48

For forecasting the viral dynamics of HIV, various within-host models have been presented in ordinary49

differential equation (ODE) forms in the presence/absence of resistant strains and antiretroviral therapy50

(Hadjiandreou et al., 2007; Perelson and Nelson, 1999; Dixit and Perelson, 2004; Rong et al., 2007;51

Sutimin et al., 2017; Wu and Zhao, 2020; Chen et al., 2021). The proposed mathematical models assume52

the co-existence of susceptible and resistant strains and generally investigate the response to antiretroviral53

therapy (ART). Additionally, the effect of drug adherence on the virological failure of ARTs (Rosenbloom54

et al., 2012), the effect of time-dependent drug efficiencies on ART response (Rong et al., 2007; Vaidya55

and Rong, 2017), competition between susceptible and resistant strains on the viral dynamics (Ball et al.,56

2007; Lythgoe et al., 2013) and latently infected CD4+ T cell reservoirs (Doekes et al., 2017) on the57

evolution of strains have been investigated through within-host models. The current study addresses58

similar questions with a novel multiscale model fed by the Stanford HIV Drug Resistance data and59

machine learning models.60

For the first time, we combined the experimental drug resistance data of nucleotide-reverse transcrip-61

tase inhibitors (NRTI) available in the Stanford HIV drug resistance database with a within-host model62

of HIV infection to observe the dynamics of the viral strains under different scenarios. Our multiscale63

model brings together three pieces of information: IC50 values for each mutant with machine learning64

models, within blood dynamics for NRTIs, and CD4+ T cells and macrophage cells for primary targets of65

virions.We are particularly interested in stopping infections dominated by mutant strains. For different66

mutant compositions, we aim to investigate the emergence of the AIDS phase for different initiation67

timing (up to one year) and adherence level of NRTI therapies (21 different combinations). Our results68

proposed the best NRTI combination for a patient with a mutant viral composition. Strikingly, our results69

differ from the predictions of the Stanford HIV drug resistance database, which identifies the best drug by70

selecting the one that has the lowest IC50 for a given mutant. But that model is a static model that cannot71

incorporate the effects of new mutants that can be generated through time which is accounted for in our72

model.73

MATERIALS AND METHODS74

Within-host model with wild-type virus75

In this part, we have inspired from the earlier studies on the within-host HIV infection model (Hadjiandreou

et al., 2007; Hernandez-Vargas, 2019; Hernandez-Vargas and Middleton, 2013). We assume that the

primary reservoirs for HIV infection are: CD4+T cells and macrophages denoted by T (t) and M (t)
(Hernandez-Vargas, 2019; Hernandez-Vargas and Middleton, 2013). The long-living macrophage cells

cause the persistence of virions over the years (Orenstein, 2001; Herbein and Varin, 2010). Macrophage

cells contribute to the depletion of healthy CD4 + T cells in advanced HIV infection (Crowe, 1995).

Within-host modelling of HIV infection without considering the macrophage reservoirs yielded less

realistic outcomes, such as the models that never result in the AIDS phase (Rong et al., 2007). We denote

the HIV infected CD4+T cells and macrophages by T ∗(t) and M∗ (t) . Lastly, the number of free wild-type

virions in the host is denoted by the function V (t) . By considering model assumptions like homeostatic

cell proliferation terms (sT , sM), bilinear incidence terms (kT TV, kMT M), natural deaths of cells and

virions (δT T, δMM, δT ∗T ∗, δM∗M∗, δVV ), viral replication terms (pT T ∗, pMM∗) and the Michaelis-

Menten type proliferation terms
�

ρT V

cT+V
T, ρMV

cM+V
M

�

, we express the one strain within-host model with

the following system of ordinary differential equations (Hernandez-Vargas, 2019; Hernandez-Vargas and

Middleton, 2013)

dT

dt
= sT − kT TV −δT T +

ρTV

cT +V
T

dT ∗

dt
= kT TV −δT ∗T ∗

dM

dt
= sM − kMMV −δMM+

ρMV

cM +V
M (1)
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dM∗

dt
= kMMV −δM∗M∗

dV

dt
= pT T ∗+ pMM∗−δVV

where initial conditions are considered as T (0) = T0, T ∗ (0) = T ∗
0 , M (0) = M0, M∗ (0) = M∗

0 and76

V (0) =V0. Further details of the model (1) can be seen in the study of Hernandez-Vargas and Middleton77

(2013). In the following section, we expand the model equation (1) to include both susceptible and78

resistant multiple strains as well as NRTI therapy.79

Multi strain within-host model with NRTI therapy80

The ARTs include at least one of the NRTIs that aim to block the activation of the reverse transcriptase81

enzyme. Effective treatment of HIV-positive patients with NRTIs saves millions of lives worldwide82

(Tressler and Godfrey, 2012). However, the error-prone structure of the HIV replication yields resistant83

strains over the years, and these strains are known to be a primary barrier to preventing AIDS (Kuritzkes,84

2011). Our multiscale within-host model includes three main steps: constructing machine learning models85

to generalize isolate-fold change data for NRTIs, a model for dealing with NRTI action in blood, and86

finally, a within-host model with multi strains and NRTI therapy.87

An artificial neural network model for isolate-fold change relation88

There exists various genotype-phenotype experiment data, including the fold change values of IC50 (the89

required drug concentration to inhibit 50% of virions) for various reverse transcriptase inhibitors in the90

presence of susceptible and resistant isolates (Rhee et al., 2006). The most used genotype-phenotype91

data is the Stanford HIV drug resistance database (https://hivdb.stanford.edu/). We use filtered genotype-92

phenotype data of reverse transcriptase inhibitors available in this database and are widely used for various93

machine learning algorithms (Amamuddy et al., 2017; Masso and Vaisman, 2013). By regulating the94

data for each NRTI, 1224 unique mutations were observed for the reverse transcriptase enzyme. In95

this filtered dataset, 1662 isolates for epivir (3TC), 1597 isolates for abacavir (ABC), 1683 isolates for96

zidovudine (AZT), 1693 isolates for stavudin (D4T), 1693 isolates for didanosine (DDI) and 1354 isolates97

for tenofovir (TDF) have been analyzed for NRTI susceptibility. The dataset includes 1206, 1136, 1220,98

1223,1223, and 1119 unique mutations for 3TC, ABC, AZT, D4T, DDI, and TDF, respectively.99

Here, we apply the binary barcoding technique (Rhee et al., 2010) to represent the isolates occurring in

the dataset. Hence, 1224-dimensional input vectors of 0s and 1s are created by considering the existence

of unique mutations in the isolates. Let us denote our complete mutation set as X = {x1, x2, . . . ,x1224}
where xi is an NRTI specified mutation pattern. We define the binary representation of isolate j as

I j = {a1, a2, . . . ,a1224} with

ak =

�

1, i f xk ∈ I j

0, otherwise.

We construct six artificial neural networks (ANN) models to predict logarithmic fold-change values in the

presence of any isolates related to each NRTI therapy by using the Machine Learning and Deep Learning

toolbox of the MATLAB program. The ANN architectures include 1224-dimensional input, five hidden

layer neurons, and one output neuron with hyperbolic tangent-sigmoid and linear activation functions.

The model selection process is explained with detailed quantitative observations in Table S1. The scaled

conjugate gradient algorithm with MATLAB built-in function “trainscg” has been used in the training

process over GPU. Let us denote our model as a function that maps isolates to the fold changes as

Fold Change = ANNX (isolate)

where X is a specified inhibitor (X ∈ {3TC, ABC, AZT, D4T, DDI, TDF}). To overcome possible100

overfitting, we have implemented an ensemble learning process. For each inhibitor, the 50×100 model101

has been trained with random training, validation, and test set (80%, 10% and 10%). A model is chosen102

from every 100 models that yield the minimum mean square error for the test set of the corresponding103

inhibitor data. Hence, 50 optimal models are selected out of 5000 models for each NRTI inhibitor and the104

final model is calculated as the average of these models.105

The prediction performance of six ANNX (isolate) with linear correlation coefficient (R) and mean106

square error (MSE) values are presented in Figure 1. According to the figure, ANNX (isolate) models107
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yield accurate predictions with high R scores and low MSE scores. Mean MSE value of ANNX (isolate)108

models have been obtained as 0.0453 with 95% CI [0.0005,0.0901]. Similarly, the mean R value of the109

models has been calculated as 0.9093 with 95% CI [0.8677,0.9509]. To observe how six ANNX (isolate)110

models classify resistant and susceptible strains, we convert our regression models into classification111

models by labeling the data as resistant (Fold Change ≥ 3) and susceptible (Fold Change < 3). The112

receiving operating curves (ROC) corresponding to the six ANN models and area under the curve (AUC)113

values are presented in Figure S1. According to the classification results, we get mean AUC score as114

0.9649 with 95% CI [0.9423,0.9875]. Additionally, to see why such a nonlinear model is needed to map115

the genotype data into the phenotype output, we also perform multiple linear regression (MLR) analysis116

(with %20 holdout data) for data of six NRTIs. The regression and classification performance of the117

MLR models are shown in Figures S2-S3. A fair comparison between the ANN and MLR models in118

terms of the MSE, R, and AUC values are given in Table S2. According to the table, even classification119

performance of the models is almost the same, the ANN models give much more accurate estimations in120

regression. Since better regression performance is more desirable for our further modelling framework,121

the ANN models are assumed to be our baseline models for predicting the resistance profiles of given122

viral strains.123

Figure 1. Regression performance of the six ANN models for each NRTI to predict logarithmic fold

change values (log(FC)) of the mutant strains existing in the data. The x-axis of the figures denotes

logarithmic fold change value, which is mathematically equivalent to log
�

(IC50)mutant

(IC50)wild−type

�

, for all existing

mutant strains in the data and y-axis denotes corresponding predictions of the ANN models. For each

ANN model, linear correlation coefficient (R) and mean square error (MSE) metrics are specified to

measure the ability of these models to fit the existing real data.

Modelling the time-dependent drug efficacy124

Modelling the efficacy of antiretrovirals using the plasma drug concentrations can be seen in various125

studies in the literature (Rosenbloom et al., 2012; Rong et al., 2007; Dixit and Perelson, 2004). Here126

we use the time-dependent drug efficacy model described by Dixit and Perelson (2004) considering the127

dynamics of drug concentrations in the blood. Dixit and Perelson (2004) considered the phosphorylated128

concentration of the tenofovir (TDF) in the cells. Since the time-drug efficiency functions obtained by129

taking into account blood concentration and phosphorylated within cell concentration of drugs follow a130

very similar trend, here we assume the blood concentration of the drugs (see Figure 1 of Dixit and Perelson131

(2004)). Additionally, the non-availability of phosphorylation reaction parameters for the remaining five132

inhibitors 3TC, ABC, AZT, D4T, and DDI have encouraged us to consider the blood concentration of the133

drugs only.134
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Let εY
X (t) denotes the time-dependent efficacy of drug X in the presence of strain (isolate) Y . The

instantaneous efficacy can be approximated as (Dixit and Perelson, 2004)

εY
X (t) =

CX
b (t)

(IC50)
Y
X +CX

b (t)
(2)

where CX
b (t) denotes the within blood concentration of drug X and (IC50)

Y
X denotes the required concen-

tration of drug X to inhibit the 50% of strain Y . According to our isolate-fold change ANN model, Eq. (2)

can be rewritten as

εY
X (t) =

CX
b (t)

ANNX (Y )(IC50)
WT
X +CX

b (t)
(3)

where (IC50)
WT
X denotes the required concentration of drug X to inhibit the 50% wild type virus. Thus,

to completely describe εY
X (t) , we should model CX

b (t) . According to Dixit and Perelson (2004), the

concentration of a drug in the blood can be expressed as

Cb (t) =
FDkae−ket

Vd (ke − ka)(ekaId −1)

�

1− e(ke−ka)t
�

1−eNdkaId

�

+

�

ekeId − ekaId
�

�

e(Nd−1)keId −1
�

ekeId −1

−e((Nd−1)ke+ka)Id

�

(4)

where F is the bioavailability of the drug, D is the mass of the drug administered in one dose, Id is the135

dosing interval, Nd is the number of doses up to time t, Vd is the volume of distribution, ka and ke are136

pharmacokinetic parameters. The drug-specific parameters ka, ke, D, Id and F occurred in Eq. (4) and137

IC50 values for 3TC, ABC, AZT, D4T, DDI and TDF according to the equations given by Dixit and138

Perelson (2004) are evaluated and presented in Table 1. Detailed explanations of the derivation of these139

parameters are given in the Supplementary Information.140

Parameter/Drug 3TC ABC AZT D4T DDI TDF

IC50 (×10−5mg/ml) 3.97 132.64 1.87 4.25 113.11 16.24

D (mg) 300 300 300 40 400 300

Id (day) 1 0.5 0.5 0.5 1 1

F 0.86 0.83 0.64 0.86 0.42 0.39

ka 27.98 51.07 37.42 54.29 32.34 8.36

ke 3.44 8.52 14.25 7.84 47.30 16.58

Vd (ml) 91000 60200 112000 46000 54000 87500

Table 1. Drug specific parameters for time-dependent drug efficiency equation (4).

A multi-strain within-host model141

This part of the study combines all of our investigations into a unique multi-strain within-host model.

To reduce the cost of the simulations, we assume the main NRTI related mutations 115F, 151M, 184I,

184V, 210W, 215F, 215Y, 41L, 65N, 65R, 67N, 69D, 70E, 70G, 70R, 74I and 74V according to the study

of Rhee et al. (2005). These 17 mutations yield 131,071 unique strains having all possible mutations.

Thus, by considering wild-type and mutant strains, we have total N = 131,072 strains. Our multi-strain

within-host model with time-dependent NRTI therapy can be derived from one strain model (1) as follows

dT

dt
= sT − kT T

N

∑
i=1

(1− ci)(1− ε i
X (t))Vi −δT T +

ρT ∑
N
i=1 Vi

cT +∑
N
i=1 Vi

T

dT ∗
i

dt
= kT (1− ci)(1− ε i

X (t))TVi −δT ∗T ∗
i
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dM

dt
= sM − kMM

N

∑
i=1

(1− ci)(1− ε i
X (t))Vi −δMM+

ρM ∑
N
i=1 Vi

cM +∑
N
i=1 Vi

M (5)

dM∗
i

dt
= kM(1− ci)(1− ε i

X (t))MVi −δM∗M∗

dVi

dt
= pT T ∗

i + pMM∗
i −δVVi

where i = 1,2, . . . ,N = 131,072, T ∗
i (t) and M∗

i (t) denote the number of CD4 + T cells and macrophage142

cells infected by strain i and Vi(t) represents the number of virions having i th genotype. In the multi-strain143

within-host model (5), ε i
X (t) denotes the time-dependent efficacy of the inhibitor X on the strain i and144

0 ≤ ci ≤ 1 represents the fitness costs of mutant strains with c1 = 1 for the wild type of strain. The lack145

of enough experimental results on these fitness values compelled us to use the mean fitness cost values146

of mutations 41L, 67N, 70R, 184V, 210W, 215D, 215S and 219Q estimated by Kühnert et al. (2018) as147

0.2232, 0.3181, 0.3863, 0.5899, 0.3091, 0.0981, 0.1664 and 0.3207, respectively. According to these148

data, we assume that ci = 0.3015 for mutant strains i ≥ 2. A schematic illustration of the multi-strain149

within-host model (5) is given in Figure 2. Parameter values of multi-strain within-host model (5) with150

corresponding references can be seen in Table 2.151

The within-host model (5) ignores the role of latently infected CD4+ T cells. As indicated in the152

study of Chun et al. (2000), latently infected CD4+ T cells are not a major reason for the rebound of153

plasma viremia after discontinuation of the ART. The study of Alexaki et al. (2008) shows that the154

macrophage cells are of particular importance in HIV-1 persistence, and this is why model (5) mainly155

considers this observation like some existing studies (Hadjiandreou et al., 2007, 2009; Hernandez-Vargas,156

2019; Hernandez-Vargas and Middleton, 2013). The main role of latently infected CD4+ T cells is the157

viral rebound after poor adherence to the given therapy (Chun et al., 2000), and these cells are almost158

three percent of all CD4+ T cells (Hadjiandreou et al., 2009). Since model (5) is continuous over time159

and hence the emerged viral strains are not completely eradicated in the viral suppression phase, the160

persistence of HIV-1 virions is automatically ensured, and poor adherence in model (5) provides viral161

rebound. Thus, ignoring the latently infected CD4+ T cells in model (5) does not considerably affect our162

modelling framework.163

To realistically model the effect of mutations, we do not explicitly include the mutation matrix in

the ODE system (5); instead, we address the transition between mutations and strains at the end of each

time step by generating Poisson random numbers (Rosenbloom et al., 2012). Let us assume time step n

(t = n day), (T ∗
i )n = T ∗

i (n) and (M∗
i )n = M∗

i (n). The mutation matrix of our system is denoted by MT

and defined as

MT i j =

�

1, i f strain i can take a mutation to become strain j

0, otherwise
(6)

For the infected CD4 T cells (T ∗
i )n and infected macrophage cells (M∗

i )n, we calculate the number of new164

infected ones in one day period as ∆(T ∗
i )n and ∆(M∗

i )n without taking into account the death of these165

newly infected cells. For each i = 1,2, . . . ,N, poissrnd(µ∆(T ∗
i )n) and poissrnd(µ∆(T ∗

i )n) number of166

infected cells are randomly transmitted from strain i to strain j according to the mutation matrix MT i j167

where function poissrnd(x) generates Poisson random number with mean x and µ = 3×10−5 denoting168

the mutation rate (Rosenbloom et al., 2012). Therefore, this procedure models the existence of mutations169

more realistically than explicitly embedding the mutation matrix MT i j into multi-strain within-host model170

(5). Note that the mutation rate for each point mutation is unique for the corresponding amino acid change,171

but we assume a fixed average mutation rate µ = 3×10−5 as stated by Rosenbloom et al. (2012). Since172

NRTI-related mutation rates have low variance value (Rosenbloom et al., 2012) and we have so many173

viral strains to track, we use overall mutation rate µ = 3×10−5. Parameter values of models (1) and (5)174

are presented with their references in Table 2.175

Model (5) can also include dual therapy of NRTIs X and Y by modifying the therapy-related time-

dependent infection coefficients for CD4 + T cells and macrophage cells β
T/M

i (t)= kT/M(1− ci)(1− ε i
X (t))

with the use of Bliss independence of drug actions as (Jilek et al., 2012)

β
T/M

i (ε i
X (t) ,ε i

Y (t)) = kT/M (1− ci)
�

1− ε i
X (t)

��

1− ε i
Y (t)

�

(7)
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or Loewe additivity of drug actions (Jilek et al., 2012)

β
T/M

i (ε i
X (t) ,ε i

Y (t)) = kT/M (1− ci)
1

ε i
X (t)

1−ε i
X (t)

+
ε i
Y (t)

1−ε i
Y (t)

+1
. (8)

Bliss independence assumes independent actions of combined drugs, and Loewe additivity assumes176

the competition for the same binding site. According to Jilek et al. (2012), all combinations except177

AZT-D4T and DDI-TDF obey the Bliss independence rule, and these two combinations obey the Loewe178

additivity rule. Note that, since we assume kM ≈ kT/1000 and β T
i (t) ≈ β M

i (t)/1000 according to the179

Hernandez-Vargas (2019); Hernandez-Vargas and Middleton (2013) (see Table 2), we prefer to use the180

notation βi for β T
i throughout the following parts. Whenever βi values are quantitatively mentioned in the181

results section, these values correspond to the β T
i .182

Note that even though we describe our model parameters for 1 ml of blood in Table 2 as widely183

assumed in the literature (Hadjiandreou et al., 2007; Hernandez-Vargas, 2019; Hernandez-Vargas and184

Middleton, 2013), we simulate the viral dynamics in the host plasma (3000 ml (Rosenbloom et al., 2012))185

to catch more realistic viral diversity. We assume that the only reservoir of HIV virions is the plasma,186

which is the major one (Valcour et al., 2012), even if there exist other reservoirs like lymph nodes or187

cerebrospinal fluid (CSF) (Valcour et al., 2012; Haase, 1999). Since the instantaneous drug efficiency188

rates are (εY
X (t)) in non-dimensionless form, we can easily simulate the dynamics in the host plasma by189

converting the volume-dependent model parameters given in Table 2. For example, by considering 3L190

host plasma (Rosenbloom et al., 2012), the infectivity parameter kT = 4.5714×10−8ml/day equivalently191

becomes kT = 4.5714×10−8

3000
plasma/day = 1.5238×10−11 plasma/day.

Parameter Value Unit Reference/ Parameter Variation

sT 104 ml−1d−1 Hernandez-Vargas and Middleton (2013)

sM 150 ml−1d−1 Hernandez-Vargas and Middleton (2013)

kT 4.5714×10−8 mld−1 Hernandez-Vargas and Middleton (2013)

3.2×10−8 −10−7

kM 4.3333×10−11 mld−1 Hernandez-Vargas and Middleton (2013)

pT 38 d−1 Hernandez-Vargas and Middleton (2013)

30.4-114

pM 35 d−1 Hernandez-Vargas and Middleton (2013)

22-132

δT 0.01 d−1 Hernandez-Vargas and Middleton (2013)

0.001-0.017

δT ∗ 0.4 d−1 Hernandez-Vargas and Middleton (2013)

0.1-0.45

δM 0.001 d−1 Hernandez-Vargas and Middleton (2013)

10−4 −1.4×10−3

δM∗ 0.001 d−1 Hernandez-Vargas and Middleton (2013)

10−4 −1.2×10−3

δV 2.4 d−1 Hernandez-Vargas and Middleton (2013)

0.96-2.64

ρT 0.01 d−1 Hernandez-Vargas and Middleton (2013)

ρM 0.003 d−1 Hernandez-Vargas and Middleton (2013)

cT 3×105 ml−1 Hernandez-Vargas and Middleton (2013)

cM 2.2×105 ml−1 Hernandez-Vargas and Middleton (2013)

Table 2. Parameter values, descriptions, and references of the within-host models (1) and (5).

192

RESULTS193

This section provides the simulation results of the multi-strain within-host model (5), starting with various194

viral strains. The effects of adherence levels and initiation timing of NRTI therapies on the progression of195
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the AIDS phase are investigated. This section includes four subsections in which we propose the statistics196

of the infection rates, details of model simulations, the quantitative measure for the therapy success, and197

the simulation results for various cases.198

Statistics of Infection Rates199

Before running the simulations to observe the failure/success distribution of each NRTI combination, we200

may predict the best possible therapy protocol through our pre-trained machine learning model and the201

pharmacokinetic properties of the inhibitors. Obviously, as we infer from our model (5) and drug-specific202

time-dependent infection rate βi(ε
i
X (t) ,ε i

Y (t)) (7)-(8), each viral strain has its infection rate and aims203

to be dominant by infecting more healthy cells. Since evaluation of βi(ε
i
X (t) ,ε i

Y (t)) is straightforward204

through Eqs. (7)-(8) and (3), we may have some priori estimates for the selection of the best therapy205

protocol. Distribution of 131,071 βi

�

ε i
X ,ε

i
Y

�

=
� 1

0 βi(ε
i
X (t) ,ε i

Y (t))dt values in the presence of 21 different206

mono and dual NRTI therapies are illustrated in Figure 3. Descriptive statistic values of βi(ε
i
X ,ε

i
Y ) values207

for all combinations are presented in Table 3.208

Figure 3 and Table 3 show that the probability distributions are almost uniform and βi(ε
i
X ,ε

i
Y ) values209

have considerable diversity and standard deviations among the viral strains. Hence, this observation210

means that even having point mutations can change the infection rates considerably and thus may lead211

to a need for more perfect adherence levels to the given therapy. Additionally, Figure 3 implies that the212

initial viral strain of the patient plays a critical role in the progression of HIV dynamics. According to213

Table 3, NRTI therapy combinations yield 38.4% and 78% decrease in infection rate on average (among214

all therapies) (95% CI [36.2%, 40.7%] and [69.7%, 86.3%]) for the worst and best case scenario (having215

most and least resistant initial strain), respectively.216

Table 3 ranks the possible NRTI combinations in terms of the resistance scores but ignores the side217

effects and cost-effectiveness. Various side-effects of NRTIs linked with mitochondrial toxicity (Holec218

et al., 2018). We present the possible side-effects of the existing NRTIs in Table S3, and a detailed review219

can be found in the study of Montessori et al. (2004). The cost-effectiveness of NRTI therapies is essential220

to maximize the expected survival times of the patients with minimized costs. Various mathematical221

models are available that compare treatments for cost-effectiveness, and a detailed review of Mauskopf222

(2013) provides various essential results. Most of the models described in their study ignore the effect223

of drug resistance. Drug resistance is a crucial contributor to the expected costs. This study is only224

interested in the effect of drug resistance on the NRTI therapy outcomes, and we both ignore side effects225

and cost-effectiveness.226

Details of Model Simulations227

In our simulations, we investigate the effect of type of NRTI therapy, timing of NRTI therapy, and228

adherence to the provided therapy on CD4+ T cell counts of the patients. All possible 21 mono and229

dual NRTI combinations of six inhibitors have been included in the simulations by considering their230

independent or additive actions. The initiation time of the NRTI therapy is considered within the first231

year after the patient became infected and denoted by τ . The adherence level of a patient to the provided232

therapy protocol is assigned to a real number α between 0 and 1, representing nonadherence to full233

adherence levels. After initiating the treatment with adherence level α in a day of the simulation, the234

patient takes drug(s) with probability α according to the parameters given in Table 1. Initial viral load,235

CD4 + T cell count and macrophage cell count in the simulations are considered as 1 virion/ml, 106
236

cell/ml and 150 cell/ml, respectively (Hernandez-Vargas, 2019).237

It is assumed that the patient is infected with one type of mutant strain with one to five-point mutations238

on the reverse transcriptase enzymes. In this way, five groups are constructed to include five different239

strains. These viral strains have been determined according to the frequency of presence in the Stan-240

ford HIV drug resistance database. These initial viral strains are denoted by Gi j where i = 1,2,3,4,5241

denotes the number of the point mutations in the strain and j = 1,2,3,4,5 indexes the most frequently242

occurring examples in the dataset. We have performed our simulations with these 25 different initial viral243

strains having the following point mutations: G11 = {69D} , G12 = {70E},G13 = {74I}, G14 = {151M},244

G15 = {41L}, G21 = {69D, 115F},G22 = {69D, 215Y}, G23 = {70R,215Y}, G24 = {67N, 69D},G25 =245

{67N, 70R}, G31 = {69D, 115F, 215Y}, G32 = {69D, 70R, 115F}, G33 = {67N, 69D, 215Y}, G34 =246

{67N, 70R, 215Y}, G35 = {67N, 69D, 70R}, G41 = {67N,69D, 115F, 215Y}, G42 = {67N,70R, 115F, 215Y},247

G43 = {69D, 70R, 115F, 215Y}, G44 = {67N,69D, 70R, 115F}, G45 = {65N,69D, 70R, 215Y}, G51 =248

{65N, 69D, 70R,115F, 215Y , G52 = {69D, 70R,74F, 115F, 215Y}, G53 = {41L,67N,69D,70R, 215Y},249
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Drugs Mean Min Max Std Median Mode Q1 Q3

D4T-3TC 1.290 0.160 2.069 0.363 1.295 0.16 1.029 1.576

D4T-AZT 1.370 0.427 2.358 0.442 1.368 0.427 1.021 1.722

TDF-D4T 1.403 0.604 2.373 0.371 1.382 0.604 1.109 1.679

D4T 1.442 0.697 2.319 0.351 1.426 0.697 1.157 1.72

AZT-3TC 1.473 0.154 2.212 0.462 1.531 0.154 1.109 1.877

D4T-ABC 1.525 0.695 2.405 0.374 1.514 0.695 1.221 1.826

DDI-D4T 1.592 0.765 2.466 0.382 1.581 0.765 1.279 1.903

TDF-AZT 1.627 0.474 2.523 0.506 1.683 0.474 1.226 2.056

AZT-ABC 1.755 0.551 2.529 0.503 1.844 0.551 1.363 2.194

AZT 1.775 0.554 2.564 0.513 1.858 0.554 1.373 2.223

DDI-AZT 1.834 0.562 2.602 0.533 1.933 0.562 1.412 2.307

TDF-3TC 1.884 0.3 2.265 0.307 1.952 0.3 1.835 2.065

3TC 1.965 0.29 2.173 0.339 2.114 0.29 2.000 2.133

ABC-3TC 2.030 0.274 2.318 0.359 2.173 0.274 2.025 2.225

DDI-3TC 2.155 0.323 2.373 0.356 2.305 0.323 2.201 2.325

TDF-ABC 2.172 1.508 2.588 0.181 2.176 1.508 2.038 2.314

TDF 2.299 1.889 2.665 0.172 2.3 1.889 2.163 2.438

TDF-DDI 2.323 1.917 2.667 0.164 2.327 1.917 2.194 2.457

ABC 2.459 1.733 2.698 0.126 2.485 1.733 2.404 2.544

DDI-ABC 2.546 1.869 2.726 0.106 2.57 1.869 2.505 2.617

DDI 2.746 2.675 2.78 0.02 2.747 2.675 2.732 2.762

Table 3. Descriptive statistics (×10−8) of infection rate βi values for all possible mono and dual NRTI

therapies.

G54 = {65N,67N,69D, 70R, 215Y}, G55 = {67N,69D, 70R,74I, 215Y}. For instance, G14 = {151M}250

strain has only one point mutation 151M and the rest of the amino acids are the same as wild type HIV-1251

virus.252

Measuring the Therapy Success253

It is essential to track the success of the antiretroviral therapy by protecting the patients from the AIDS254

phase, i.e., by keeping the CD4 + T cell count as high as possible. The AIDS phase yields opportunistic255

infections for the patients and occurs when CD4 + T cell count is less than 200 cell/µl (Kitahata et al.,256

2009). Our primary criterion for the success of NRTI therapy is the occurrence and nonoccurrence of the257

AIDS phase after initiation of the therapy with some initiation timing τ and adherence level α , as was258

done in cohort studies (van Sighem et al., 2003). All simulations start with one infected CD4 + T cell and259

one infected macrophage cell with one of the initial strains Gi j. The simulation final time t f is considered260

20 years, and therapy success/failure is determined according to the occurrence of the AIDS phase in261

20 years. However, we note that the clinical goal of ART therapy is the full suppression of detectable262

viremia. In our simulations, total suppression of detectable viremia is equivalent to not developing AIDS263

after 20 years. However, the opposite is false: detectable (200 copies/ml) suppression misses low copies264

of violent mutants, eventually leading to the AIDS phase. Therefore, we consider the AIDS occurrence as265

our output.266

We run our simulations for randomly scattered 512 (α, τ)∈ [0,1]× [0,365] pairs for predetermined ini-267

tial strain Gi j. The success rate (SR) of a therapy is measured as the number of (α, τ) pairs that lead to pro-268

tection from the AIDS phase in all 512 (α, τ) pairs. In Figure 4, we show some representative simulation269

results of the multi-strain within-host model (5), starting with the G51 = {65N, 69D, 70R, 115F, 215Y}270

strain under various mono and dual NRTI therapies with randomly scattered (α, τ) pairs. For this271

simulation setup, 9 out of 21 NRTI therapy protocols have considerable success in preventing the patient272

from the AIDS phase. The importance of adherence level (α) and initiation timing (τ) is evident from273

the figure for all cases. In some cases, such as the DDI-D4T combination shown in Figure 4, the initiation274

timing considerably affects the success rates. Higher τ values yield therapy failure even at high adherence275

levels. As observed from the figure, the D4T-3TC combination yields the best SR value by performing276
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well for late initiation with perfect adherence levels. For the current case, the success of the D4T-3TC277

combination is mainly due to the behaviour of the therapy in the higher initiation timing (τ) region.278

While the importance of the adherence levels is evident from its direct relation with infection rates,279

the importance of the initiation timing is non-evident and should be explained here clearly. In Figure280

5, we illustrate the effect of initiation timing τ in our multi-strain model (5) when initial strain and281

adherence level are selected as G51 = {65N, 69D, 70R, 115F, 215Y} and α = 0.5. According to Figures282

5a-b, τ = 50 yields successful therapy by maintaining healthy CD4 +T cell and macrophage cells at283

normal levels and declining the viral load to undetectable levels. On the other hand, when we assume the284

initiation timing as τ = 360, virologic failure and AIDS phase are observed in Figures 5c-d. According285

to our model (5), the main difference between early and late initiation timing is the diversity of viral286

strains at the initiation to therapy times. Late initiation to the therapy increases the probability of the287

occurrence of the more resistant strains, even if their ancestors are slowly growing. For example, as we288

compare Figure 5b with Figure 5d, the two generation of mutant strains occur when τ = 360 (Figure 5d)289

while there exists only one generation of mutant strains when τ = 50 (Figure 5b). The two generations of290

mutant strains yield viral rebound and failure of the therapy in Figure 5d.291

If we go back to Figure 4, the NRTI combinations having boundary lines with relatively low slope292

values are more sensitive to increasing values of τ since these therapies yield high variance in IC50 values293

of possible viral strains mutated from the initial strain. Therefore, in our modelling framework, the late294

initiation is directly related with the variance of IC50 values corresponding to the initial strain and possible295

mutants. Thus, the level and type of the NRTI therapy should be planned so that the reoccurrence of the296

viral strains should be blocked depending on the initiation time τ . Additionally, in the reoccurrence phase297

of viral strains, non-perfect adherence to the therapy leads to the selection of resistant strains (Figure 5d).298

In this case, two possible problems arise:299

1. If the therapy protocol of the patient is updated, therapy is less likely to be successful than when300

therapy was first started.301

2. The probability of infecting another person with more resistant strains increases, and the probability302

of having an AIDS phase increases for the infected person.303

The existence of low viral loads of new mutated strains is enough for selecting these strains after304

antiretroviral therapy. Therefore, according to our simulations, initiation timing is as crucial as the305

adherence level to overcome the AIDS phase and to protect the possible susceptible persons from more306

dangerous scenarios.307

The NRTI mutants are known to have epistasis effects, which implies that the viral fitness of the mutant308

strain depends on the existing genetic background. The epistasis effects may lead to the selection of309

diverse branches in mutant generations (Biswas et al., 2019). Epistasis of mutations can impact the values310

of IC50 and fitness costs. The data we used to train our IC50 values implicitly includes epistatic effects.311

The ANN model that predicts IC50 values for mutants is expected to learn the epistatic interactions.312

However, it is not completely unlikely that some unobserved data may have unpredictable epistasis.313

Nevertheless, that variant being underrepresented in the data implies its irrelevance in the clinic. On the314

other hand, the fitness costs of mutants are assumed to be fixed due to lack of enough data. Nevertheless,315

as we explain later, this assumption should not significantly impact our claims.316

Simulation Results317

Here we have simulated our multi-strain within-host model (5) for all possible initial strains Gi j to observe318

the effect of initial strains on success rates. All possible mono and dual NRTI therapies have been319

implemented for randomly scattered 512 (α, τ) ∈ [0,1]× [0,365] pairs. The SR values of mono and dual320

NRTI therapies are calculated, and the well-performed combination results are comparatively illustrated321

in Figure 6.322

In line with Figure 3 and Table 3, the D4T-3TC combination has been the best option for 20 out of 25323

cases. The inhibitory potential of this combination is because of the pharmacokinetic parameters (see Table324

1) of inhibitors, the drug-resistance profiles of inhibitors (see Table 3), and their Bliss-independent action325

on the target enzyme. Following the D4T-3TC combination, the TDF-D4T and D4T-AZT combinations326

are observed to be in first place in 4 and 1 out of 25 cases, respectively. The strong relation between the327

infection rate of an initial strain (and possible new strains) and the corresponding success rate value is328
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evident from the correlation between Figures 3 and 6. For instance, according to Figure 3, the D4T-3TC329

combination yields fewer infection rates for most of the viral strains. Similarly, Figure 6 shows that330

the D4T-3TC combination has great success rates for most of the initial viral strains. We will later331

quantitatively analyze the relationship between the infection rates of the detected viral strains and the332

success rates of the given therapies.333

According to our modelling framework, since the fitness cost of all strains is assumed to be the same,334

the initial strain is dominant when the patient is diagnosed. Moreover, as evident from Figures 5b-d,335

considerable mutational variations at low copy numbers exist besides the initial strain. However, only the336

dominant strain is likely to be detected (strains having less than 200 copies/ml in blood (Barletta et al.,337

2004)) when a phenosense assay is implemented. Thus, the clinician would only observe the initial strain338

and maybe a few mutational variations (according to Figures 5b-d, only the initial strain can be observed339

when the patient is diagnosed) to decide on the NRTI therapy protocol. Therefore, it is inevitable to ask340

whether the only predictor of the success rate is the detected viral strains at the diagnosis.341

The undetected viral strains play a vital role in estimating the success rate and finding an optimal342

therapy protocol—especially their infection rates. We have trained regression models that predict therapy343

outcome based on the infection rates of the initial strain and its mutants—the mutants will be referred344

to as first, second, third, fourth, and fifth generations. The first generation is mutated from the initial345

strain, whereas the second is mutated from the first. For the regression model, we aimed to determine346

how many generations of the detected strain(s) should be considered to predict an optimal therapy. To347

answer this question quantitatively, we construct the ANN and MLR models for predicting the success348

rate of therapy from the infection rates of the existing mutant strains. We construct six ANN and MLR349

models denoted by Gi for i = 0,1, ...,5. Gi denotes i− th generation of the detected strain(s) that has been350

considered in the inputs of the models. For instance, model G0 only assumes the infection rates of the351

detected viral strain(s), and model G3 considers the infection rates of the detected viral strain(s) and the352

first three-generation mutants of this strain(s). In each generation of mutant strains, we use two values:353

mean and maximum values of the infection rates of the considered generation. Thus, together with the354

detected viral strain, the model Gi has 2i+ 1 dimensional input. 2i input values denote the mean and355

maximum infection rates of i− th generation, and the remaining one input value denotes the infection rate356

of the detected viral strain at the diagnosis. The graphical illustration of model Gi can be seen in Figure 7.357

Simulation results are given in Figure 6 for 25 initial strains converted to the training data for the358

ANN and MLR models. 304 input-output relations have been obtained from various therapies having359

SR ≥ 0.02. For the ANN models, this data is divided into the train, test, and validation sets (70%, 15%,360

and 15%). Each Gi model having the ANN architecture is trained using the scaled conjugate gradient361

algorithm. Similarly, for the MLR models, 20% of the data is considered as a test set, and the remaining362

80% is used in the training process. To test the prediction performances of the ANN and MLR models,363

we have generated external test dataset by simulating the model (5) with 25 random initial strains having364

one-to-five-point mutations, and 314 test sample is obtained. Additionally, to observe how well our ANN365

and MLR models classify the therapies as successful (SR >= 0.5) and unsuccessful (SR < 0.5), the area366

under the receiving operating curves is measured for both the ANN and MLR models.367

In Figures 8-9, we illustrate the regression and classification performances of the ANN and MLR368

models on the training and test sets. The mean square error (MSE), linear correlation coefficient (R),369

and area under the curve (AUC) metrics are presented for six Gi models having the ANN and MLR370

architectures. According to the test set performance of the models, model G2 gives better MSE, R, and371

AUC values with both the ANN and MLR architectures. That means considering the infection rates of both372

the detected strains and the first two mutant generations of the detected strains led to better predictions.373

On the other hand, the G0 type models yield relatively poor regression and classification performances,374

i.e., considering only the infection rate of the detected strains is not enough to estimate better therapy375

protocols. This implies that the possible undetected mutant generations should also be taken into account in376

determining the therapy protocols. Nevertheless, there is a threshold on the number of mutant generations377

that must be considered. Figures 8-9 show that models G3, G4 and G5 overfit the data and yield less378

accurate predictions than the model G2 for both architectures. Additionally, for each Gi model, the ANN379

architecture yields a better approximation for the SR values than the MLR architectures.380
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DISCUSSIONS AND CONCLUSIONS381

In this study, we have proposed a multi-strain within-host model of HIV infection with time-dependent382

NRTI therapy. Drug-resistant strains have been assumed to initiate the infection for the patients, and six383

available NRTI inhibitors with mono and dual combinations have been implemented in the simulations384

for various initiation timing and adherence levels. To assess the drug response curves with the IC50 values385

of the NRTI-resistant strains, artificial neural network models are trained for each inhibitor by using the386

Stanford HIV drug resistance database. To describe time-drug efficiency and time-infection rate curves,387

pharmacokinetic parameters of the inhibitors have been calculated and hybridized with the corresponding388

IC50 values. We have designed our simulation environment to determine the effect of initial strains,389

initiation timing for the therapy protocol, and adherence levels to the given drug usage schedule on the390

occurrence of the AIDS phase within 20 years after infection.391

According to our modelling framework, the occurrence of the AIDS phase has been seen to be highly392

correlated with initiation timing and adherence level of the NRTI therapies. The success rate of the393

NRTI therapies in case of late initiation has led to the availability of more resistant viral strains, and394

then the resistant strains become dominant in the host plasma after an initial decline of the detected395

strain. Although some mathematical models assume implicitly that the initiation timing does not affect the396

success-failure of the therapy (Dixit and Perelson, 2004; Rong et al., 2007), our multi-strain model more397

realistically catches the penalty of late initiation since the late initiation was proven to block the therapy398

success in various experimental results (Kitahata et al., 2009; van Sighem et al., 2003). Our simulation399

results have shown that in the case of the late initiation to therapy, the efficiency of the therapy should be400

far more than the early initiation case to prevent the possible AIDS phase.401

We have shown that D4T-3TC, D4T-AZT, and TDF-D4T combinations are more likely to prevent402

patients from the AIDS phase. These inhibitors have been seen to provide fewer infection rates due to403

their pharmacokinetic parameters and IC50 values in the presence of various viral strains. According to404

our results, the success rate of accurately predicting the best therapy depended on the composition of405

detected strains and their possible further mutants. This observation implies that the emergence of new406

mutants from the initial strain is likely to have a considerable effect on the success of the therapy. Thus, it407

is more reasonable to suggest the optimal therapy combinations to the patients by considering the detected408

viral strain and the undetected mutant, which most likely were generated from the detected strain.409

The most important message of this article is that the undetected viral strains, at the diagnosis, may410

have considerable effects on therapy outcomes. Specifically, double mutants of the detected viral strain411

should be taken into account even if they were not detected. Earlier studies, such as Stanford HIVdb412

(Talbot et al., 2010), HIV-grade (Obermeier et al., 2012), REGA (Van Laethem et al., 2002) and ANRS413

(Meynard et al., 2002) predicted the best possible therapy protocol. However, the undetected viral strains414

may lower the prediction power of such models. We have shown that a multi-strain within-host model (5)415

can help estimate undetected mutant strains and their role in optimal therapy selection.416

A possible criticism of our model is that each mutant strain should have a unique fitness cost. However,417

we assume a constant factor for all mutants. To our best knowledge, there is not much data for specific418

strains to construct a machine-learning model as we did for the IC50 values. According to the theory,419

fitness costs can play a role in selecting resistant strains, which can alter our success rate. However, the420

fitness costs would affect the dynamics more at low drug concentrations. Luckily, the phase changes421

(AIDS or no AIDS) occur at relatively high adherence levels, which implies a relatively high concentration.422

Our modeled treatments include only NRTIs, but current clinical practice includes additional drugs423

(Aguilar et al., 2022). Indeed, including the other components of ART would add to the realism. However,424

it is known that different classes of HIV drugs generally interact independently (Rosenbloom et al., 2012;425

Jilek et al., 2012). By the independence assumption, the relative ranking of NRTI therapies is relevant426

to consideration for ART. However, we would like to openly indicate that our model is not designed to427

suggest a better first line of treatment but rather to relatively rank NRTI combinations in a multiscale428

model.429

This study has investigated the effect of NRTI inhibitors, which are the most important members430

of Highly Active Antiretroviral Therapy (HAART) (Achhra and Boyd, 2013). Since the Stanford drug431

resistance database also includes the genotype-phenotype data of protease inhibitors (PI), non-nucleotide432

reverse transcriptase inhibitors (NNRTI), and integrase inhibitors (II), some future studies may include433

these groups of inhibitors with possible mono, dual or triple drug combinations. Some existing HAART434

protocols may also be simulated through such a modelling framework. On the other hand, we have not435
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considered the too-late initiation of the NRTI therapy at considerably low CD4 + T cell levels because436

of the failure of simulated therapy protocols in such situations. Some future works may also investigate437

more comprehensive therapies to prevent patients from the AIDS phase when they are diagnosed too late.438
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Figure 2. Illustration of the core parts of multi-strain within-host model (5) with NRTI therapy. Model

(5) assumes the healthy CD4 + T cells (T (t)) and macrophage cells (M (t)) as the main targets of the

viral strains (Vi (t)) . T (t) and M (t) increases with both homeostatic cell proliferation and cell

proliferation due to the increasing viral load. Viral strains infect both CD4 + T cells and macrophage cells

and then those healthy cells become infected CD4 + T cells (T ∗
i (t)) and macrophage cells (M∗

i (t)) . T ∗
i (t)

and M∗
i (t) compartments produce mature viral strains Vi (t) with some constant rates. All compartments

have natural death or clearance with some constant rates. NRTIs block the infection mechanism of the

viral strains in healthy cells. The efficiency of the NRTIs are estimated through pharmacokinetic equation

(3) and the pre-trained artificial neural network models that map the genotype data to fold-change values

of the IC50’s with respect to the wild type virion.
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Figure 3. Probability distributions of infection rate (βi) values of various viral strains in the presence of

NRTI therapy combinations. (βi) values are calculated with Eqs. (7)-(8) depending on the drug pairs.

(βi) values are effected by pharmacokinetic parameters, IC50 values for the viral strains, baseline

infection rate kT = 4.5714×108 and the fixed viral fitness value (ci = 0.3015) of the viral strains.

Figure 4. Illustration of possible mono and dual NRTI therapy outcomes carried out using 512 random

(α, τ) pairs in the current multi-strain within-host model (5). The initial strain has been selected as

G51 = {65N, 69D, 70R, 115F, 215Y}. Blue circles represent the failure after 20 years of simulation,

i.e., the AIDS phase occurs when the patients start the therapy τ after infection and take the therapy with

an adherence rate α . Green circles mean that the therapy success under the conditions mentioned above.

SR values represent the success rate defined as SR = # of green circles/# of all circles.

17/20PeerJ reviewing PDF | (2022:06:74621:1:1:NEW 15 Nov 2022)

Manuscript to be reviewed



Figure 5. The effect of initiation timing is illustrated with healthy cell and virion counts. The initial

strain is taken as G51 = {65N, 69D, 70R, 115F, 215Y} and the common adherence level α = 0.5 is

considered. a) Dynamics of T(t) and M(t) when τ = 50, b) Dynamics of viral strains when τ = 50, c)

Dynamics of T(t) and M(t) when τ = 360, d) Dynamics of viral strains when τ = 360. Black dashed

vertical lines in parts c and d denote the HIV detection limit in blood as 200 copies/ml (Barletta et al.,

2004).

Figure 6. SR values of various NRTI combinations obtained by simulating multi-strain within host

model (5) with initial viral strain Gi j for randomly scattered 512 (α, τ) ∈ [0,1]× [0,365] pairs.
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Figure 7. Prediction process of SR values from the infection rates of the detected and possible mutant

strains. The models Gi are constructed by considering i generation of mutant strains and the detected

strain itself. For each generation, mean and maximum values of the infection rates are assigned to the

input of possible ANN and MLR models. SRANN and SRMLR denote the SR prediction of the ANN and

MLR models from the given infection rate input.

Figure 8. Regression and classification performances of models Gi having the ANN architectures on

predicting the SR values of the therapies. Models Gi assume the infection rates of the detected strain and

its first i mutant generations and have 2i+1 input values. Mean square error (MSE), linear correlation

coefficient (R), and area under the curve (AUC) metrics are presented for both training and test data.
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Figure 9. Regression and classification performances of models Gi having the ANN architectures on

predicting the SR values of the therapies. Models Gi assume the infection rates of the detected strain and

its first i mutant generations and have 2i+1 input values. Mean square error (MSE), linear correlation

coefficient (R), and area under the curve (AUC) metrics are presented for both training and test data.
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