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ABSTRACT
Background. Approximately 10–20%of patients diagnosed with prostate cancer (PCa)
evolve into castration-resistant prostate cancer (CRPC), while nearly 90% of patients
with metastatic CRPC (mCRPC) exhibit osseous metastases (BM). These BM are
intimately correlated with the stability of the tumour microenvironment.
Purpose. This study aspires to uncover the metabolism-related genes and the underly-
ing mechanisms responsible for bone metastatic prostate cancer (BMPCa).
Methods. Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA)
datasets of PCa and BM were analyzed through R Studio software to identify differen-
tially expressed genes (DEGs). The DEGs underwent functional enrichment via Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), with key
factors screened by a random forest utilized to establish a prognostic model for PCa.
The study explored the relationship between DEGs and the stability of the immune
microenvironment. The action and specificity of CRISP3 in PCa was validated through
western blot analysis, CCK-8 assay, scratch assay, and cellular assay.
Results. The screening of GEO and TCGA datasets resulted in the identification of
199 co-differential genes. Three DEGs, including DES, HBB, and SLPI, were selected
by random forest classification model and cox regression model. Immuno-infiltration
analysis disclosed that a higher infiltration of naïve B cells and resting CD4 memory T
cells occurred in the high-expression group of DES, whereas infiltration of resting M1
macrophages andNK cells was greater in the low-expression group ofDES. A significant
infiltration of neutrophils was observed in the high-expression group of HBB, while
greater infiltration of gamma delta T cells and M1 macrophages was noted in the low-
expression group of HBB. Resting dendritic cells, CD8 T cells, and resting T regulatory
cells (Tregs) infiltrated significantly in the high-expression group of SLPI, while only
resting mast cells infiltrated significantly in the low-expression group of SLPI. CRISP3
was established as a critical gene in BMPCa linked toDES expression. TargetingCRISP3,
d-glucopyranose may impact tumour prognosis. During the mechanistic experiments,
it was established that CRISP3 can advance the proliferation and metastatic potential
of PCa by advancing epithelial-to-mesenchymal transition (EMT).
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Conclusion. By modulating lipid metabolism and maintaining immunological and
microenvironmental balance,DES,HBB, and SLPI suppress prostate cancer cell growth.
The presence of DES-associated CRISP3 is a harbinger of unfavorable outcomes in
prostate cancer and may escalate tumor proliferation and metastatic capabilities by
inducing epithelial-mesenchymal transition.

Subjects Bioinformatics, Genetics, Orthopedics, Urology
Keywords Prostate cancer (PCa), Bone metastasis (BM), Epithelial to mesenchymal
transition (EMT), Immuno-microenvironmental homeostasis, scRNA-seq

INTRODUCTION
The incidence of prostate cancer (PCa) is 9% worldwide (Siegel et al., 2022), and about
10–20% of PCa patients develop castration-resistant prostate cancer (CRPC) (Kirby, Hirst
& Crawford, 2011), of which 90% of the patients with metastatic CRPC (mCRPC) develop
bone metastases (BM) (Gandaglia et al., 2015). Bone metastatic prostate cancer (BMPCa)
is mainly characterized by osteoblastic lesions with the formation of osteolytic components
(Roudier et al., 2004). PCa cells usually lead to the activation of bone anabolic pathways
and reduced bone deposition quality, so that the spatial distribution of the bone matrix is
disturbed even in the presence of active osteoblasts, causing microstructural damage and
reduced mechanical resistance in the bones (Sekita, Matsugaki & Nakano, 2017; Wong et
al., 2019). Therefore, patients with BM are often at an increased risk of fractures, bone
pain, and disability, with a poor prognosis (Bubendorf et al., 2000). In order to improve the
prognosis of patients with PCa, it is important to study BM formed from PCa.

Preclinical models of BM suggest that tumors can influence the bone marrow
microenvironment at an early stage of the metastatic process by forming pre-metastatic
niches (Giles et al., 2016; Peinado, Lavotshkin & Lyden, 2011). After colonization, tumor
cell survival and clonal selection are dependent on the bone microenvironment, which
includes angiogenesis and reprogramming of stromal signaling, immune regulation, and
immune escape (Hofbauer et al., 2021). In the bone microenvironment, different types
of immune cells exert different tumor-specific effects on the formation and progression
of BM. For example, the expression of the macrophage marker, CD68, is upregulated
in BMPCa, and the number of phagocytic CD68 + cells in PCa patients is positively
correlated with their Gleason score (Rusthoven et al., 2014; Gucalp et al., 2017). Moreover,
most cancer-related deaths occur due to metastasis, which is governed by the tumour
microenvironment (Chambers, Groom &MacDonald, 2002; Lambert, Pattabiraman &
Weinberg, 2017). Therefore, an in-depth understanding of themicro-environment immune
mechanisms will contribute to the prevention and treatment of metastatic tumors.

Currently, paclitaxel is primarily used for the treatment of BMPCa; however, themajority
of mCRPC patients eventually develop resistance against paclitaxel (Body, Casimiro &
Costa, 2015). Therefore, elucidating the molecules associated with the development of BM
is necessary to improve the prognosis of BMPCa patients. Effective treatment strategies are
still lacking for patients with drug-resistant BM. With computerised genetic technology,
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fields like medicine and healthcare will be able to provide reliable support for curing entire
populations with the help of bioinformatics (Wooller et al., 2017; Kinghorn et al., 2017; Sun
et al., 2018; Li et al., 2019; Shi et al., 2021; Chen et al., 2021; Chen et al., 2022; Xuan et al.,
2022; Lin et al., 2022). This study aims to explore the metabolism-related genes and the
underlying mechanisms associated with BMPCa, using bioinformatics analysis.

METHODS
Differential gene analysis
The data were downloaded from The Cancer Genome Atlas (TCGA) database (https:
//portal.gdc.cancer.gov/) and contained 177 normal and five PCa samples. DEGs were
identified using the R software package DEGseq2, p-value <0.05, and log2FC (|log2FC|)
>1. To perform external validation, GEO datasets (https://www.ncbi.nlm.nih.gov/geo/) were
filtered by entering ‘‘metastatic’’ and ‘‘prostate cancer’’ in the search box. The following
inclusion criteria must be met for data to be included in the database: the data information
must be detailed and downloadable and; the sample size must be sufficient. Datasets for
GSE32269 were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
(Cai et al., 2013). In this data set, 51 PCa and four BMPCa samples (n= 55) were annotated
using the GPL96 platform.

Quality control and analysis of single cell RNA (scRNA)-seq data
To retrieve relevant data, ‘‘single-cell RNA sequencing’’ and ‘‘prostate cancer’’ were
entered into the NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo/). The study was
conducted using the GSE168733 dataset obtained from the Gene Expression Omnibus
(GEO) database, containing information from three cell types, including LNCaP, RES-A,
and RES-B cells (n= 3000 cells) (Taavitsainen et al., 2021). We used the avereps function
of the limma package in R SOFTWARE 4.1.2 to obtain the average values of the data. The
scRNA-seq data was subjected to quality control, after which it was statistically analyzed
using the Seurat package. Samples with a minimum cell count of <3 and cells with <50
features were first filtered out, and then cells with ≥20% of mitochondria expressing
genes were excluded. A total of 143 low quality cells were excluded and only data from
2,857 cells were included in the analysis. The data were log-normalized (log[10,000UMI
gene /UMI cell +1]). The top 1,500 genes between cells were extracted and subjected to
principle component analysis (PCA). After normalizing the data, the t-distributed random
neighborhood embedding (tSNE) algorithm was used to reduce the dimensionality of the
20 initial principle components (PC) and cluster analysis was performed to obtain different
clusters. Wilcox was used to find differential genes for each cluster, and heat maps were
drawn based on the top 10 genes for each cluster. Different cell clusters were identified and
annotated using the singleR package, which was then manually validated and corrected
(Taavitsainen et al., 2021).

Functional enrichment analysis
For functional enrichment analysis of the DEGs, we first converted the gene name into
Entrez ID using the R package (org.Hs.eg.db; https://bioconductor.org/packages/release/
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data/annotation/html/org.Hs.eg.db.html). The DEGs were then subjected to enrichment
analysis using KEGG and GO and scored using the following formula: Enrichment score=
(overlapGeneCount × bgGeneNum)/(diffGeneNum × termGeneNum). The results were
visualized using the R packages clusterProfiler and ggplot2.

Random forest screening of key factors
Perl language and machine learning random forest algorithm were used to extract
approximately 199 genes from the intersection of the TCGA dataset. The decision tree
size was 500 after data centering. Genes were screened based on cross-validation of the
data.

Prognostic model construction
Prognostic analysis was performed on the DEGs, and the expression data and clinical
information of the genes were obtained from the TCGA database. Cox regression analysis
was performed on the DEGs using R software, survival package, and survminer package
to determine the prognostic genes. The genes with AUC >0.6 were identified by receiver
operating characteristic (ROC) validation, and Kaplan–Meier (KM) survival curves were
constructed for the three genes (DES, HBB, and SLPI ), with the best cutoff value for each
gene derived using surv_cutpoint function.

High and low gene expression grouping and enrichment analysis
The PCa samples were categorized into high- or low-expression groups based on to the
median log2 expression levels of DES, HBB, and SLPI, respectively. Differential analysis
was performed for each group using limma package, and heatmap visualization of the
10 most significantly expressed DEGs was done by using the ggplot2 package. Each gene
was analyzed using gene set variation analysis (GSVA) package to identify the associated
pathways.

Monogenic immune infiltration
CIBERSORT analysis was performed to determine the variations in the immune infiltration
of 22 immune cells between the high- and low-DES, HBB, and SLPI subgroups, and the
results were analyzed by two independent samples rank sum test as previous researches
(Newman et al., 2015; Chen et al., 2018; Kang et al., 2021; Kawada et al., 2021; Deng et al.,
2021; Mei, Li & Kang, 2022). Thereafter, correlation analysis was conducted for the 22
immune cells and the three genes by using spearman correlation analysis.

Cell culture
From Procell (Wuhan, China), we procured a collection of human prostate cancer cell
lines (PC3, DU145, LNCaP, and 22RV1). The cells were incubated in RPMI-1640 (bl303a;
Biosharp, Anhui, China) at 37 ◦C under an atmosphere of 5% CO2. The cells were firmly
affixed to the culture vessel and subcultured every 72 h.

Transfection and grouping
Employing logarithmically growing LNCaP cells (n= 200,000), Lipofectamine 2000 (11668-
027; Invitrogen, Waltham, MA, USA) was introduced via transfection in accordance with
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the manufacturer’s protocol. Three groups were evaluated for their CRISP3 expression:
low expression of CRISP3 (si-CRISP3), low expression with CRISP3 overexpression
(over-CRISP3), and the absence of CRISP3 expression. The efficacy of the transfection was
verified through quantitative reverse transcription-polymerase chain reaction (qRT-PCR).
The experiment was conducted thrice to establish reproducibility. The primer sequences,
as previously reported, are displayed in Table S1 (Wang et al., 2022).

RNA isolation and qRT-PCR
Total RNA was extracted from LNCaP cells with TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). The detection of the total RNA was performed using HiScript III RT SuperMix
(Vazyme, Nanjing, China) and reverse transcription was carried out with HiScript III
RT SuperMix (Vazyme, Nanjing, China). Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was utilized as an internal standard. The primer sequences, as previously
reported, are displayed in Table S2 (Wang et al., 2022).

Western blot analysis
Lysates of protein samples obtained from tissues or cells via RIPA buffer were subjected
to 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then
transferred to polyvinylidene fluoride membranes. The antibodies used included anti-
β-catenin, anti-Vimentin, and anti-Snail, while β-Tubulin served as the internal control.

CCK-8 assay
The logarithmically growing LNCaP cells were seeded into culture plates, as previously
documented (Yang et al., 2022). The experimental groups underwent the corresponding
treatments before 10 µL of CCK-8 solution (PR645; Dojindo, Kumamoto, Japan) was
added per well. The culture plates were then incubated in SpectraMax i3 microplate
readers (Molecular Devices, San Jose, CA, USA). The rate of proliferation inhibition was
calculated as follows: (control absorbance value - experimental absorbance value)/control
absorbance value ×100%. The experiment was conducted thrice.

Scratch assay
The cells were seeded into 6-well plates and underwent grouping and transfection after
reaching 80% confluence. After 24 h of scratching with a sterile gun tip, the cells were
supplemented with RPMI-1640 culture medium containing 0.5% serum. The images were
analyzed using ImageJ software.

Statistical analysis
Continuous variables were analyzed using the Student’s t -test and categorical variables
were analyzed using the chi-squared test. Means and standard deviations were calculated,
and data analysis was performed using R version 4.1.2 and GraphPad Prism 8.0 software.
Differences were considered significant at p-values less than 0.05. The experiment was
conducted thrice.
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Figure 1 Identification of key genes via TCGA and GSE32269 Datasets. (A) Intersecting the differen-
tial genes of the TCGA and GSE32269 datasets, yielding 199 common genes. (B) Bar graphs depicting the
Gene Ontology enrichment analysis of the differential genes. (C) Bubble plots portraying the Kyoto Ency-
clopedia of Genes and Genomes enrichment analysis of the differential genes. (D) Fold plots displaying er-
ror rates and the premier genes.

Full-size DOI: 10.7717/peerj.15013/fig-1

RESULTS
Screening for BMPC-associated DEGs
There are 199 intersecting DEGs between TCGA and GSE32269 (Fig. 1A). GO functions
with the highest scores in each item are displayed in the enrichment analysis chart (Fig. 1B).
KEGG enrichment analysis was used to construct the distribution map of the significant
differential gene pathways based on their significance level and the number of DEGs
included in the analysis (p value <0.05) (Fig. 1C). As shown in the Fig. 1C, cell cycle and
vascular smooth muscle contraction have the highest scores. In these results, pathways and
functions are identified in which these 199 DEGs are primarily enriched.

Random forest classification model was used to score the DEGs based on their
importance (Fig. 1D). In order to demonstrate the effectiveness of the random forest
model, we further demonstrated the top 20 DEGs (Fig. S1). The prognostic model was
constructed using the results of the random forest model, leading to 27 BMPCa prognostic
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Figure 2 TCGA data-based cox regression analysis. (A) Identification of 27 genes relevant to progno-
sis of bone metastatic prostate cancer (BMPCa); (B) selection of Genes with AOC greater than 0.6; (C)
Kaplan–Meier Survival Curves for HBB, (D) SLPI, and (E) DES.

Full-size DOI: 10.7717/peerj.15013/fig-2

genes. and the results were validated using ROC curves to obtain three genes, including
desminopathies (DES), beta-globin gene (HBB), and secretory leukocyte protease inhibitor
(SLPI ) (Figs. 2A–2B). KM survival curves with low expression for HBB, SLPI, and DES
indicate poor tumour outcomes (Figs. 2D–2E). And HBB, SLPI, and DES may be BMPC-
related DEGs.

Differential gene and enrichment analysis related to HBB, SLPI, and
DES
The BMPCa samples were grouped into high- and low-expression groups according to
the expression levels of DES, HBB, and SLPI. Cdk8-dependent kinase module (CKM ),
alpha cardiac muscle 1 (ACTC1), myosin heavy chain 11 (MYH11), filamin C (FLNC),
phosphoglucomutase 5 (PGM5), heat shock protein B8 (HSPB8), calponin 1 (CNN1),
actin gamma 2 (ACTG2), and lactotransferrin (LTF) showed high expression in the DES
high-expression group, which was significantly enriched in the pathways associated with
myogenesis, apical junction, epithelial mesenchymal transition, and angiogenic transition
(Figs. 3A–3B).
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Figure 3 An assessment of DES, HBB, and SLPI using TCGAData. (A) Comparison of High- and
Low-DES gene expressions through heat map analysis; (B) analysis of pathway variations between high-
and low-DES expression groups through GSVA; (C) comparison of high- and low-HBB gene expressions
through heat map analysis; (D) analysis of pathway enrichments between high- and low-HBB Expression
groups using GSVA; (E) comparison of high- and low-SLPI gene expressions through heat map analysis;
(F) analysis of pathways linked to high- and low-SLPI expressions.

Full-size DOI: 10.7717/peerj.15013/fig-3

CKM, ACTC1, E-selectin (SELE), hemoglobin A2 (HBA2), olfactomedin 4 (OLFM4),
lactoferrin (LTF), lipocalin 2 (LCN2), S100A9, and orosomucoid (ORM1) were highly
expressed in theHBB high-expression group, which was significantly enriched in pathways
associated with angiogenesis, KARS signaling pathway, apical junction, and inflammatory
response (Figs. 3C–3D).

Perilipin-1 (PLN1), prostate cancer gene expression marker 1 (PCGEM1), myosin
light chain 1 (MYL1), myosin heavy chain 7 (MYH7), myosin light chain 2(MYL2),
olfactomedin 4 (OLFM4), lactotransferrin (LTF), phosphatidylinositol 3 (PI3), and
recombinant keratin 17 (KRT17) were highly expressed in the SLPI high-expression
group, which was significantly enriched in pathways associated with hypoxia, coagulation,
allograft rejection, and late estrogen response (Figs. 3E–3F).

According to the above studies, HBB, SLPI, and DES are closely related to tumor-
associated pathways and microenvironments.
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Monogenic immune infiltration
Infiltration of the naïve B cells and resting CD4 memory T cells was greater in the DES
high-expression group, while M1 macrophage and resting NK cell infiltration was greater
in the DES low-expression group (Fig. 4A). This suggests that high DES expression may
promote the infiltration of naïve B cells and resting CD4 memory T cells, which exert
anti-tumor effects. Neutrophils were significantly infiltrated in the HBB high-expression
group, while gamma delta T cell and M1 macrophage infiltration was increased in the
HBB low-expression group (Fig. 4B). These results suggest that high HBB expression may
promote neutrophils infiltration. Resting dendritic cell, CD8 T cell, and Treg infiltration
was increased in the SLPI high-expression group, while resting mast cell infiltration was
increased in the SLPI low-expression group (Fig. 4C). These results suggests that high
SLPI expression may promote infiltration of resting dendritic cells, CD8 T cells, and Tregs,
which in turn exert anti-tumor effects. Therefore, anti-tumor M1 macrophage infiltration
was significantly increased in the DES and HBB low-expression groups, suggesting that
there may be other factors contributing to the poor prognosis of the low-DES and HBB
expressing patients.

Correlation analysis revealed that DES expression showed a significant negative
correlation with M1 macrophages and a positive correlation with naïve B cells. In contrast,
HBB expression showed a significant positive correlation with neutrophils and a negative
correlation with M1 macrophages. Lastly, SLPI expression showed a significant positive
correlation with resting dendritic cells, CD8 T cells, and Tregs and a negative correlation
with M2 macrophages (Figs. 4E–4J). We suggest that high expression of SLPI may inhibit
the infiltration of M2 macrophages, thereby suppressing tumor growth.

Analysis of single cell heterogeneity and marker genes
The number of genes detected according to the single cell quality control was >0.93,
suggesting that they are highly correlated (Figs. 5A–5B). A total of 20,435 corresponding
genes were included in the analysis, and analysis of variance (ANOVA) revealed 1500 highly
variable genes (Fig. 5C). PCA was used to determine the available dimensions and to screen
for correlated genes. Additionally, PCA analysis revealed a significant separation of cells in
the three groups (including: GSM5161288, GSM5161290 and GSM5161291) (Fig. 5D). We
selected 20 principal components (PCs) with estimated p-values <0.05 for further analysis
(Fig. 5E). Subsequently, human glioblastoma multiforme cells (GBMs) were divided into
nine separate clusters by applying the tSNE algorithm. Cell type annotation was performed
for pairs, and four cell types were obtained by annotating them with reference to singleR
and previous literature (Fig. 5F). Thereafter, the contribution of the original features to
the principal components was shown in Fig. 5G. And marker genes representing prostate
cancer heterogeneity were identified.

CRISP3 was found as a key gene in BMPCa associated with
DES expression
The intersection analysis of marker genes of single-cell GSE168733 with differential
genes for BMPCa revealed 60 key genes (Fig. 6A). An intersection analysis of these 60
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Figure 4 Analysis of immune infiltration by CIBERSORT. (A) assessment of the presence of 22 distinct
immune cell types in groups with low or high expression of DES, HBB, and SLPI, respectively; (B) correla-
tion between the expression levels of DES, HBB, and SLPI, and the 22 immune cell types; (C) linear corre-
lation between DES and M1 macrophages; (D) linear correlation between DES and naive B cells; (E) linear
correlation between HBB and neutrophils; (F) linear correlation between HBB and M1 macrophages; (G)
linear correlation between SLPI and T-regulatory cells; and (H) linear correlation between SLPI and M2
macrophages.

Full-size DOI: 10.7717/peerj.15013/fig-4

common DEGs with genes associated with DES, HBB, and SLPI expression resulted in
the identification of CRISP3, SLC4A4, SMS, and BANK1 genes associated with BMPCa
(Fig. 6B). Among these, only CRISP3 expression was found to be associated with PCa
prognosis (p < 0.05), suggesting that CRISP3may be a key gene for BMPCa associated with
DES expression (Figs. 6C–6F). And CRISP3 was found as a key gene in BMPCa associated
with DES expression. Volcano plot shows differential expression of DES, HBB, SLPI, and
CRISP3 in prostate cancer bone metastases (Fig. S2).

EMT is associated with CRISP3-induced proliferation and migration
of bladder cancer cells
To further confirm that CRISP3 related to DES promotes prostate cancer proliferation,
we carried out experiments in which CRISP3 was either overexpressed or silenced in
LNCaP cells. Results obtained through qRT-PCR showed that the expression of CRISP3
was significantly reduced in the group treated with si-CRISP3 compared to the si-NC
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Figure 5 Based on single-cell RNA-seq data, four clusters of prostate cancer (PCa) cells were identified
with different annotations. (A) After quality control of 3,000 cells from the tumor cores of three human
LNCaP and VCaP samples, 2,857 cells were included in the analysis; (B) the number of genes detected was
significantly correlated with the depth of sequencing (Pearson correlation coefficient= 0.93); (C) anal-
ysis of variance (ANOVA) plot showing 19,752 corresponding genes in all glioblastoma multiforme cells
(GBMs); (D) principle component analysis (PCA) showing clear separation of cells; (E) PCA identified 20
cases of principle component, with estimated P-value of<0.05; (F) the 20 pc were downscaled using the
t-distributed random neighborhood embedding (tSNE) algorithm, followed by cell type annotation and
classification of four cell clusters; and (G) differential analysis identified 8,025 marker genes, and the top
20 marker genes for each cell cluster are shown in the heat map.

Full-size DOI: 10.7717/peerj.15013/fig-5

group. On the other hand, expression of CRISP3 was remarkably elevated in the group
subjected to overexpression of the protein (Fig. 7A). The proliferation capacity and wound
healing ability of LNCaP cells were remarkably enhanced upon overexpression of CRISP3,
while the viability of CCK-8 cells was inhibited following silencing of CRISP3. No notable

Zhang et al. (2023), PeerJ, DOI 10.7717/peerj.15013 11/20

https://peerj.com
https://doi.org/10.7717/peerj.15013/fig-5
http://dx.doi.org/10.7717/peerj.15013


Figure 6 An examination of pivotal genes for bone metastatic prostate cancer (BMPCa). (A) Intersec-
tion analysis of the marker genes from single-cell GSE168733 with differential genes in BMPCa; (B) in-
tersection analysis of 60 commonly differential genes with genes linked to expression of DES, HBB, and
SLPI; and (C–F) Survival analysis of CRISP3 (C), SLC4A4 (D), SMS (E), and BANK1 (F) using the TCGA
database.

Full-size DOI: 10.7717/peerj.15013/fig-6
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Figure 7 The proliferation andmigration of bladder cancer cells elicited by CRISP3 is correlated with
epithelial-to-mesenchymal transition (EMT). (A) qRT-PCR analysis of CRISP3 expression in prostate
cancer cell lines; (B) results from the CCK8 assay suggest that the expression of CRISP3 significantly im-
pacted cellular viability; (C) CRISP3 cells underwent transfection with negative control or empty vector or
were overexpressed with CRISP3 after being treated with an invasion inhibitor; (D–E) qRT-PCR (D) and
Western blot (E) were employed to assess the expression of EMT-related mRNA and proteins.

Full-size DOI: 10.7717/peerj.15013/fig-7

changes were observed in their respective negative controls (Figs. 7B–7C). It appears that
CRISP3 may foster prostate cancer proliferation and migration by promoting EMT, as
evidenced by the suppression of N-cadherin, Vimentin, and Snail markers of EMT after
knocking down hsa_circ_0003823 protein (Figs. 7D–7E). Therefore, CRISP3 related to DES
has been correlated with a poor prognosis in PCa, and it may induce tumor proliferation
by promoting EMT.

DISCUSSION
Prostate cancer (PCa) is one of the most common malignancies in men worldwide
and characterized by a high incidence of BM (21, 22). The majority of cancer-related
deaths are caused by metastasis, yet this complex process is underpinned by the tumour
microenvironment (Chambers, Groom &MacDonald, 2002; Lambert, Pattabiraman &
Weinberg, 2017). Therefore, an in-depth understanding of themicro-environment immune
mechanisms will contribute to the prevention and treatment of metastatic tumors.

Differential gene intersection and immune infiltration analysis revealed that DES, HBB,
and SLPI were closely associated with immune cells. DES-associated CRISP3 is associated
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with poor prognosis in PCa, and it may promote tumor proliferation by promoting
EMT. DES encodes desmin, a muscle-specific intermediate filament protein that plays a
fundamental role inmuscle structure and force transmission (Loreto et al., 2022).Mutations
in DES result in abnormal cell growth patterns and adhesion, reduced RNA expression
of DES and other membrane protein encoding genes, and desmin aggregation, causing
abnormal cell function (Bermúdez-Jiménez et al., 2018). Additionally, desmin is involved
in epithelial mesenchymal transition, promotes cell migration, and increases albumin flux
in the cellular mono-molecular layer (Kang et al., 2010). These results are consistent with
those obtained following enrichment of differential gene pathways. In this study, DES
is investigated for the first time in relation to prostate cancer progression, and unlike
previous studies, patients with high DES expression tend to have better outcomes. High
DES expression is associated with the infiltration of resting CD4 memory T cells and naive
B cells.

HBB gene encodes hemoglobin subunit beta, an important structural component
constituting the hemoglobin tetramer. KM survival curves with low expression for HBB
indicates poor tumour outcomes in this study. According to a related study, HBB may be a
novel tumour suppressor gene in anaplastic thyroid cancer (ATC) (Onda et al., 2005). PCa
was found to have high HBB variations, and it was also considered a potential prognostic
biomarker (Davalieva et al., 2017; Lin et al., 2021). And high HBB expression may promote
neutrophils infiltration. However, blocking the oxygen binding site of HBB reverses the
increased tumor cell migration and upregulation of HIF-1 α inHBB over-expressing breast
cancer cells (Ponzetti et al., 2017). HBB probably has different effects in different tumours,
indicating that further pan-cancer research is necessary.

BMPCa patients are prone to fractures and bone pain due to activation of abnormal bone
metabolic pathways. Secretory leukocyte peptidase inhibitor (SLPI) is a highly upregulated
inhibitor of cellular proteases that protects HIF-2-alpha (2 α)-treated chondrocytes
from inflammatory responses (Kim et al., 2021). In addition, SLPI active reticulum-like
structures (a mixture of SLPI with neutrophil DNA and NE) stimulate the synthesis of type
I interferon (IFNI) synthesis in plasmacytoid dendritic cells (pDCs) in vitro to regulate
organismal immunity (Majewski et al., 2016). SLPI -treated monocyte culture supernatants
inhibited the proliferation of CD4 + lymphocytes, but not of CD8 + cells, suggesting that
SLPI can modulate innate and adaptive immune responses (Guerrieri et al., 2011).

CRISP3 was found to be a key gene in BMPCa associated with DES expression in this
study. As a result of the transgenic mouse model of prostate cancer, CRISP3 production
greatly contributed to the progression of in situ prostate cancer to invasive prostate cancer
in vivo (Volpert et al., 2020). PCa containing the TMPRSS2-ERG fusion gene overexpresses
CRISP3, a direct target of ERG. There is also some evidence that CRISP-3may be associated
with the development of pancreatic cancer lesions in other types of tumours, particularly
those which are predominantly found in the gastrointestinal tract (Liao et al., 2003).
CRISP3 has been identified as a potential therapeutic target in PCa progression (Noh et al.,
2016; Volpert et al., 2020).

D- Glucopyranose is a synonym for D-glucose, one of themost common glucose isomers
in nature, and plays an important role in glucolipid metabolism. There is evidence that the
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acquired metabolic phenotype associated with androgen receptor (AR)-targeted therapies
is related to glucose and lipid metabolism disorders (Blomme et al., 2020). Additionally,
high levels of serum glucose and triglycerides may affect PCa severity and aggressiveness
(Arthur et al., 2016). According to another study, elevated levels of glycolipid metabolism
biomarkers before prostate cancer diagnosis were associated with an increased risk of
secondarily diagnosed primary tumours (Bosco et al., 2018). This study indicates that
DES-associated CRISP3 is associated with poor prognosis in PCa, and it may promote
tumor proliferation and metastatic capacity by promoting EMT.

A preliminary bioinformatics analysis of the results in this study demonstrated that
CRISP3, DES, HBB, and SLPI in the bone micro-environment are capable of inhibiting
BM by regulating lipid metabolism and immune cell infiltration. However, most of the
existing studies are based on bioinformatics data analysis, and the results of this study need
to be further validated by in vitro and in vivo studies to develop a better understanding of
the immune mechanisms and prognosis of BMPCa.

CONCLUSION
DES, HBB, and SLPI may inhibit the development of bone metastasis in patients with PCa
by regulating immune cell infiltration. Cellular experiments revealed that DES-associated
CRISP3 is associated with poor prognosis in PCa, and it may promote tumor proliferation
and metastatic capacity by promoting EMT.
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