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ABSTRACT

Background. Estuaries are transitional coastal ecosystems that are threatened by
multiple sources of human pollution. In 2015, mining tailings from an upstream dam
failure caused massive metal contamination that impacted benthic assemblages on the
Brazilian Rio Doce estuary.

Methods. In this study, we investigate and compare meiofaunal assemblages with e DNA
metabarcoding 1.7 years (2017) and 2.8 years (2018) after the initial contamination
by mine tailings in order to evaluate the continued impact of sediment mine tailing
contaminants on the structure of benthic assemblages after the disaster.

Results. The community was dominated by Arthropoda and Nematoda 1.7 yr after
the impacts (42 and 29% of meiofaunal sequence reads, respectively) but after 2.8
years Arthropoda (64.8% of meiofaunal sequence reads) and Rotifera (11.8%) were the
most common taxa. This continued impact on meiofaunal assemblage revealed a lower
phylogenetic diversity (7.8-fold) in 2018, despite overall decrease in metal concentration
(Al, Ba, Cr, As, Fe, Zn, Mn, Pb, Cd, Co) in sediments. Our data suggests that differences
in benthic assemblages and loss of diversity may be influenced by contaminants in
sediments of this estuary, and indicate that broad eDNA assessments are greatly useful
to understand the full range of biodiversity changes in dynamic estuarine ecosystems.

Subjects Ecology, Genetics, Genomics, Freshwater Biology, Environmental Impacts

Keywords Environmental DNA, Pollution, Environmental Impact, Benthos, Rio Doce, Estuary,
Meiofauna

INTRODUCTION

Estuaries are considered dynamic and transitional coastal ecosystems with a high variability
in environmental conditions. Most of them are highly productive habitats and acts as a
nursery for a great diversity of organisms. For this reason, estuaries are considered one of the
most valuable ecosystems in the world, providing important ecological services (Costarnza
etal., 1997; McLeod et al., 2011; Pendleton et al., 2012; Janakiraman et al., 2017; Lana ¢
Bernardino, 2018). Estuarine environments are naturally stressed and variable habitats due
to their plasticity of physic-chemical processes that vary in short spatio-temporal scales
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(e.g., changes in salinity and tide) (Mulik, Sukumaran & Srinivas, 2020). Nonetheless,
during the last century, the contamination of estuarine ecosystems became a worldwide
problem (Irabien et al., 2008) due to acute and chronic impacts generated by contamination
and pollution, which change the composition of animal assemblages closely associated with
sedimentary matrix (Alves et al., 2013; Alves et al., 2015; Varzim et al., 2019).

Meiobenthos, or meiofauna, are sediment associated organisms between 50 and 500 pm
(Higgins ¢ Thiel, 1988; Meyer, 1990). Invertebrates larger than 1,000 wm may be included
in meiofauna if they spend part of their life as interstitial organisms (McIntyre, 1969;
Hakenkamp & Palmer, 2000). Meiofauna undertake important ecological roles in estuarine
ecosystems, through the biomineralization of organic matter and enhancing nutrient
regeneration, linking trophic levels of the food web (Coull, 1999; Kennedy ¢ Jacoby, 1999).
Their high sensitivity to anthropogenic inputs make them excellent proxies for estuarine
pollution (Coull, 1999), and bioindicator for the management of coastal environment
(Ward & Jacoby, 1992). However, environmental changes in estuaries, caused by human
activities, can strongly impact meiofauna community structure and functioning (Kennedy ¢
Jacoby, 1999; Elliott ¢ Quintino, 2007), often leading to functional and long-term ecological
changes (Gomes et al., 2017). Salinity, organic matter content and sediment grain size, for
example, are strongly related to the spatial distribution of meiofaunal organisms (Austen
& Warwick, 1989; Coull, 1999; Rutledge ¢ Fleeger, 1993; Walters ¢ Bell, 1994; Gomes &
Bernardino, 2020).

Due to the difficulty and labor requirements of accurately identifying meiofauna
organisms by traditional morphological identification protocols, these organisms are
usually neglected in many biodiversity assessments. However, in recent years there
have been considerable advances in applying DNA-based methods using metabarcoding
techniques to disentangle biodiversity patterns of microorganisms (Baird ¢ Hajibabaei,
20125 Taberlet et al., 2012), including meiofauna (Tang, Li ¢ Yan, 2012; Faria et al., 2018;
Fais et al., 2020). Recent studies have successfully assessed, by environmental DNA (eDNA)
metabarcoding, metazoan biodiversity in different marine ecosystems, such as estuaries
(Bernardino et al., 2019; Clark et al., 2020), continental shelf (Bakker et al., 2019; MacNeil
et al., 2022), and coastal sediment (Aylagas et al., 2018; Jeunen et al., 2018). This approach
has proven to be useful in assessing the compositional data from samples containing such
organisms, while the eDNA metabarcoding has proven to be a powerful tool to overcome the
limitation for meiofaunal morphological identification (Valentini, Pompanom ¢ Taberlet,
2009; Medinger et al., 2010; Gielings et al., 2021).

The use of eDNA to measure and monitor marine and estuarine biodiversity is gaining
popularity (Creer et al., 2010; Bik et al., 2012; Brannock ¢ Halanych, 2015; Brannock et
al., 2016; Mdechler et al., 2019; Ruppert, Kline ¢ Rahman, 2019; Berry et al., 2020; Clark et
al., 2020; Naro-Maciel et al., 2022). Recent metabarcoding studies using eDNA extracted
from sediment (Avd et al., 2017; Lanzén et al., 2017; Faria et al., 2018; Nascimento et al.,
2018; Bernardino et al., 2019; Fais et al., 2020; Castro et al., 2021; Pawlowski et al., 2022)
demonstrated its usefulness to assess marine biodiversity. For the most part of biodiversity,
eDNA metabarcoding can be more efficient than traditional morphological-based
taxonomy, enable the bulk identification of multiple species in an environmental sample by
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simultaneously amplifying individual DNA barcodes, which can allow the identification of
specimens that are small, cryptic or too degraded for morphological identification (Steyaert
et al., 2020). In addition, it can be an effective technique for determining the quality and
recovery in ecosystems following anthropogenic disasters, such as metal contamination
after a rupture on a mining dam (Chariton et al., 2015; Cordier et al., 2017; Di Battista et
al., 2020; Martinez et al., 2020; He et al., 2021; Leasi, Sevigny ¢ Hassett, 2021).

In point of fact, in November 2015 a large mine tailing dam ruptured in SE Brazil,
releasing nearly 50 million m? of iron ore tailings into the Rio Doce watershed. The mine
tailings load was carried over 600 km downstream reaching the Rio Doce estuary and the
Atlantic Ocean, where it severely impacted estuarine and coastal ecosystems nearby (Carmo
et al., 2017; Queiroz et al., 2018; Bernardino et al., 2019; Magris et al., 2019; Gabriel et al.,
2020a). The tailings, mainly composed of iron oxyhydroxides, were associated to different
potentially toxic elements including Mn, Cr, Pb, Hg, As, La, and Sc, which were 24 times
higher for Mn (and more than 200 times higher for other metals, such as Zn and Cu)
than before the incident (Queiroz et al., 2018; Queiroz et al., 2021). The first impacts of the
tailings deposition in the estuary included loss of several macrofaunal benthic organisms
(Gomes et al., 2017), contamination of aquatic organisms (Gabriel et al., 2020a; Queiroz
et al., 2021) and changes in sediment bioturbation and biogeochemistry (Barcellos et al.,
20215 Queiroz et al., 2021; Barcellos et al., 2022). The mine tailings impacted the benthic
macrofauna diversity, composition and trophic groups (e.g., loss of surface-dwelling taxa),
and these impacts were still observed on macrofauna even after almost four years (Gormes
et al., 2017; Gabriel et al., 2020D).

eDNA metabarcoding identified effects of this disaster in the meiofaunal assemblages
in the Rio Doce estuary in August 2017, 1.7 years after the tailings spill (Bernardino et al.,
2019). At the time, high levels of Fe contamination were detected in the estuary sediment,
suggesting that meiofaunal assemblages were partially influenced by environmental filtering
from toxicity of highly contaminated sediments, since this metal concentrations acted as
significant predictors of changes in dominant meiofaunal taxa (e.g., nematodes, copepods,
ostracods and flatworms) (Bernardino et al., 2019). The Fe concentrations significantly
increased by two times two days after the impact (Gomes et al., 2017), and in August 2017
continued to be 2-20 times higher compared to preserved (Piraqué-A¢u-Mirim estuary)
or polluted estuaries, such as the Vitéria Bay, located in a metropolitan and industrial
area approximately 100 km to the south (Hadlich et al., 2018). As the time passes and
the contamination impacts in Rio Doce are reduced, it is expected that these biological
communities will exhibit some degree of recovery, which should be detected by long-term
monitoring and biodiversity assessments.

Given the highly dynamic nature of the estuarine ecosystems, and the prediction that
levels of contaminants in sediments will decrease with time (see Gabriel et al., 2021), we
re-evaluated he Rio Doce meiofaunal assemblages 2.8 years (2018) after the initial impact.
Our aim was to evaluate the continued impacts on meiofaunal assemblages in response
to sediment contamination by metals, through biodiversity assessment and multivariate
association. We hypothesized that meiofaunal composition and diversity would be affected
by metal concentrations in the impacted estuarine sediments, leading to ecological recovery,
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and that higher phylogenetic diversity would occur with a reduction on the contaminant
levels.

MATERIAL & METHODS

Sampling site and sampling procedures

The Rio Doce estuary (19°38" to 19°45'S, 39°45' to 39°55'W; Fig. 1) is located in SE Brazil
with a tropical climate, and two well-defined seasons, dry winters (April to September) and
wet summer (October to March), and a monthly average rainfall of 145 mm (Alvares et al.,
20135 Bernardino et al., 2015; Bissoli & Bernardino, 2018). The estuary is characterized by
low salinity levels (0.05-8 ppt) and temperatures between 23.1 and 30.5 °C (Gomes et al.,
2017; Bernardino et al., 2018; Lana ¢ Bernardino, 2018; Gabriel et al., 2021).

Sampling was carried out in August 2018 at 16 sampling sites distributed throughout
the lower portion of the Rio Doce estuary, covering about five km from its mouth (Fig.
1). At each site, we collected two sediment samples (top five cm) using sterile, DNA-free
corers and immediately frozen in liquid nitrogen. Additional samples were obtained
for determination of grain size, total organic matter and trace metal quantification. All
sediment samples were stored in a freezer at —20 °C upon arrival at the laboratory until
further analysis. Additionally, water temperature and salinity were measured at each site.
Field sampling was approved by SISBIO-IBAMA (sampling license N 24700-1), and data
were collected as previously described in Bernardino et al. (2019).

Grain size was determined according to Suguio (1973) by sieving and pipetting, and we
quantified total organic matter (TOM) gravimetrically by the weight loss after combustion
(500 °C for 3 h). Metal concentration in sediment samples was evaluated from two
independent replicate samples. For the total trace metal contents, approximately 1 g of
the freeze-dried samples was digested by a tri-acid mixture (nine mL of HNO3 + three
mL of HF 1 mol/L + five mL of H3BO3 5%; USEPA, 1996) in a microwave oven digestion
system. Vessels containing the samples were shaken and heated at 110 °C for 4 h. After
that, we diluted samples to 40 mL in deionized water. We determined the concentrations
of trace metals (Al, Ba, Cr, As, Fe, Zn, Mn, Pb, Cd, Co) using aliquots of 0.1mL on an
ICP-OES spectrometer (iCAP 6200; Thermo Scientific, Waltham, MA, USA; see Queiroz et
al., 2018) in triplicate. Standard solutions were prepared from dilution of certified standard
solutions and certified reference materials (NIST SRM 2709a) and used for comparison
to measured and certified values. Sedimentary and metals concentrations analysis were
realized as previously described in Gabriel et al. (2020a).

DNA extraction and sequencing

Prior to DNA extraction, we elutriated the sediment samples using 45 pm sieves, following
the protocol established by Brannock ¢ Halanych (2015), using 950 mL of filtered seawater
in a 1L flask, inverting the flask and decanted the liquid over the sieve after the flask was
let to sit. After repeating this procedure ten times, sediment retained on the sieve was
rinsed to a sterile 50 mL falcon tube, and spun down using an Eppendorf Centrifuge
5430 at room temperature for 3 min at 1,342 x g, and was aliquoted to 20 mL. The
sample was mixed using a sterile pipette, and two separate one mL aliquots were
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Figure 1 Location of the study area. Map indicating the sampling stations at Rio Doce estuary, on the SE
Brazilian coast, in August 2018.

Full-size &) DOL: 10.7717/peerj.14992/fig-1

removed and stored in separate sterile 1.5 mL tubes, and stored at —20 °C for DNA
extraction. All glassware and materials used during the elutriation process were cleaned,
sterilized, and autoclaved between samples. After elutriation, we extracted DNA from
the sediment samples using the PowerSoil DNA Isolation® kit (Qiagen) following the
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manufacturer’s instructions. We verified DNA integrity on a 1% agarose gel and purity
(260/230 and 260/280 ratios) using a NanoDrop spectrophotometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA). We determined DNA concentration using a Qubit®
4 Fluorometer (Life Technologies-Invitrogen, Carlsbad, CA, USA), and samples were
sent to ()NGS Genomic Solutions (Piracicaba, SP, Brazil) for metabarcoding sequencing
and construction of the amplicon libraries by HiSeq Illumina platform (2 x 250 bp).
The V9 hypervariable region of the 18S SSU rRNA gene was amplified using primers
[Mlumina_Euk_1391f forward primer (GTACACACCGCCCGTC) and Illumina_EukBr
reverse primer (TGATCCTTCTGCAGGTTCACCTAC) (Medlin et al., 1988; Lane, 1991;
Amaral-Zettler et al., 2008; Stoeck et al., 2010).

Bioinformatic pipelines

We used the 2021.2 QIIME2 software distribution to process and analyze all demultiplexed
raw paired-end reads to estimate the observed taxa (Bolyen et al., 2018). Fastq files were
first imported as QIIME2 artifacts, and reads were denoised via DADA2 (Callahan et al.,
2016) with the DADA2 denoise-paired plugin, setting the p-trunc parameter to 220 to
remove low-quality bases, and the p-trim set to 10 to remove primer sequences.

The taxonomic composition of the amplicon sequence variants (ASV), generated after
running the DADA2 plugin, were assigned using the machine learning Python library
scikit-learn (Pedregosa et al., 2011). The feature-classifier plugin was used to generate the
classification results by a pre-trained Naive Bayes classifier trained on Silva 132 database
clustered at 99% similarity (Quast et al., 2013), and the taxonomic profiles of each sample
were visualized using the taxa-barplot plugin. Due to the difference on the number
of identified sequences, we normalized datasets from both years to allow analysis and
comparison with homogenous sampling depth. We used the 2018 dataset minimum
sampling depth (2,282 reads) and resampled each station to the same depth. These
filtered/subsampled datasets were used to calculate all diversity metrics.

We reanalyzed and re-identified all sequences from the 2017 assessment realized by
Bernardino et al. (2019) following this pipeline to guarantee that both datasets (2017 and
2018 assessments) were treated and analyzed using the same techniques and procedures,
and to guarantee we were doing a more accurate comparison. Additionally, we built one
phylogenetic tree for each dataset using QIIME2. To generate the trees, we used the align-to-
tree-mafft-fasttree pipeline from the g2-phylogeny plugin. After that, we calculated Faith’s
phylogenetic diversity (PD) using the diversity core-metrics-phylogenetic pipeline, based on
the phylogenetic tree generated before. The PD is obtained summing the branch lengths on
a phylogenetic tree, where longer branches correspond to longer evolutionary times and
more distinct taxonomic groups (Faith, 1992). Additionally, we plotted rarefaction curves
for both assessments. Raw sequence data is deposited in NCBI (SRA: SRR21716030).

Statistical analysis

Only meiofaunal sequence reads were used for ecological and statistical analysis, and
here we considered meiofaunal metazoans the five phyla that are exclusively meiofauna
(Gnathostomulida, Kinorhyncha, Loricifera, Gastrotricha, and Tardigrada) and other
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metazoans that can be representative of meiofauna during any stage of life and play
important role in the sediment (temporary meiofauna) (Higgins ¢ Thiel, 1988; Giere,
2009). Normality of all environmental data were tested by Shapiro—Wilk test, and when
necessary, data were log-transformed (log10 or log10(x + 1)). Differences in environmental
variables, phylogenetic diversity, and the relative abundance of taxa between 2017 and 2018
assessments were assessed by Student’s t-test (Student, 1908; Mann ¢ Whitney, 1947). The
differences on abundance between phyla were analyzed by a One-Way Analysis of Variance
(ANOVA), followed by the Tukey post-hoc test for multiple comparisons (Tukey, 1949;
Underwood, 1997). A Similarity Percentage Routine (SIMPER) was applied to analyze the
contribution of each taxonomic group to the assemblage composition dissimilarity between
the two datasets (Clarke, 1993). Linear regressions were performed to evaluate the relation
between metals concentrations and phylogenetic diversity and, phyla relative abundances.
A non-metrical multidimensional scaling (nMDS; Oksanen et al., 2022) plot was performed
with the meiofaunal assemblage composition in August 2017 and August 2018. A canonical
analysis of principal coordinates (CAP; Anderson ¢ Willis, 2003) ordination plot was made
with the set of environmental variables that better explain the meiofaunal assemblage.
Significant differences were defined when p < 0.05. All graphical and analytical processes
were performed in R environment (R Core Team, 2022).

RESULTS

Environmental conditions

In the 2018 assessment, the salinity in the estuary at the time of sampling was 0.14 = 0.04,
and the temperature ranged from 23.7 °C to 26.3 °C. Sediment grain size of sampled
stations indicated a predominance of sand particles (minimum = 48.8% and maximum
= 94.1%), and the total organic matter (TOM) varied between 1.5 and 11.8% (Table 1;
Table S1). We found a significant decrease in concentration of all measured sediment
trace metal compared to the assessment made in 2017 (p < 0.05; Table 1; Table S1), except
for arsenic which increased (p =0.536; Table 1). We measured an average sediment Fe
concentration of 16,566 mg/kg. Associated metals, including As, Cr, and Cd still have
showed concentrations above the limits allowed by the current legislation (5.9 mg/kg, 37.3
mg/kg, and 0.6 mg/kg, respectively).

Assemblage structure and phylogenetic diversity
We reanalyzed the data from the 2017 assessment and found a significantly higher number
of meiofaunal sequence reads when compared to the 2018 assessment (2017 = 3,090,870
sequence reads; 2018 = 120,627 meiofaunal sequence reads; t = 11.147; p < 0.001; Table
S3). In the 2017 dataset we identified 12 phyla, which is similar to the 10 phyla identified
in the 2018 assessment, with the addition of Micrognathozoa, and Tardigrada. The most
frequent phyla in the 2017 assemblages were Arthropoda (41.8%) and Nematoda (29.2%)
(Fig. 2A).

We detected a total of 162,330 sequences from the eDNA metabarcoding of Rio Doce
estuarine sediments in 2018 (Table S2). After filtering the dataset to remove sequences that
were not meiofaunal animals (e.g., bacteria, fungi, algae, protists), we obtained 120,627
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Table 1 Environmental data from sedimentary samples. Sediment grain size, total organic matter
(TOM), and metal concentrations (mg/Kg), as median, minimum and maximum, obtained from sampled
station in Rio Doce estuary in August, 2017 and August, 2018. Significant differences (p < 0.05) are

presented in bold.
Variables Year
2017 2018 p
Median Min - Max Median Min-Max
%Sand 87.8 11.8-96.2 85.5 48.8-94.1 0.532
TOM 3.20 1.50-16.8 4.00 1.50-11.8 0.646
Al 32,495 10,066—65,386 19,467 10,754-27,590 <0.001
As 2.84 <LQ-53.1 4.29 0.15-12.6 0.536
Ba 238.7 33.3-688.4 68.3 26.1-177.3 <0.001
Cd 3.25 0.57-7.53 1.76 0.72-2.67 <0.001
Co 9.41 3.81-20.9 7.18 4.78-9.69 0.004
Cr 47.1 17.7-79.6 25.1 10.25-45.3 <0.001
Cu 8.83 2.31-16.1 4.05 0.64—6.65 <0.001
Fe 35,538.3 13,204.4-57,923.3 15,990.5 8,981.7-26,862.1 <0.001
Mn 551.8 148.4-1094.9 345.3 163.5-539.2 <0.001
Ni 14.5 7.17-28.6 10.1 6.27-15.0 <0.001
Pb 101.9 4.92-182.2 6.52 3.68-10.9 <0.001
Zn 35.4 15.3-85.9 27.4 14.6-46.1 0.009
Notes.
*Data from August, 2017 were obtained from Bernardino et al. (2019).
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Figure 2 Frequency of identified taxa. Barplots showing (A) the proportion of identified Phylum at the
Rio Doce estuary in 2017 assessment, and (B) in the 2018 assessment.
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sequence reads from ten phyla, most of them identified as Arthropoda (64.8% of sequence
reads; Table 2) and Rotifera (11.8%; Table 2). The frequencies were significantly different
between phyla (df =9; F =12.715; p < 0.001; Fig. 2B; Table S3). The rarefaction curves
suggest that the number of meiofaunal taxonomic groups was on overall higher in 2017
when compared to 2018 (Fig. 3).
Further, we observed a significant decrease in phylogenetic diversity (PD) from 2017 to
2018. Meiofaunal assemblages in 2017 had a mean PD of 166.6 £ 35.1, when compared to
the meiofaunal PD in 2018 of 21.3 £ 7.2; a significant decrease in PD of 7.8 times in 2018
(t =23.320, df =44, p <0.001). In addition, we observed the same pattern for Shannon
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Table 2 Frequency of meiofaunal sequences identified in the 2017 and 2018 assessments. Meiofauna
assemblage composition and relative frequency of sequences of each amplicon sequence variants (ASVs)
identified at Rio Doce estuary in 2017 and 2018 assessments.

Phylum Class Order 2017 2018
Assessment Assessment
Miscellaneous - 5.79%
Annelids
Clitellata Haplotaxida 0.21% 3.09%
Rhynchobdellida 0.12% -
Polychaeta Echiuroinea 0.00% -
Eunicida 1.97% -
Spionida 2.73% 0.13%
Miscellaneous 0.20% 19.52%
Arthropods
Arachnida Acari 0.34% 0.09%
Branchiopoda - 0.25%
Diplostraca - <0.01%
Malacostraca Eucarida <0.01% 0.02%
Maxillopoda 0.02% 7.07%
Calanoida 0.01% -
Hexanauplia(Copepoda) 0.06% -
Cyclopoida - 0.57%
Harpacticoida 0.10% 0.13%
Ostracoda Halocyprida - 0.02%
Podocopida 33.68% 25.39%
Bryozoa Gymnolaemata 0.03% -
Phylactolaemata Plumatellida - 0.08%
Cnidaria Anthozoa Actiniaria <0.01% -
Zoantharia 0.01% -
Hydrozoa 0.01% 0.01%
Anthoathecata 0.06% 0.02%
Limnomedusae 0.01% 2.45%
Myxozoa Bivalvulida 0.01% 0.08%
Gastrotricha Chaetonotida 23.11% 0.12%
Micrognathozoa <0.01% -
Miscellaneous - <0.01%
Molluscs
Bivalvia - 0.08%
Myoida 0.04% -
Nuculoida <0.01% -
Veneroida 0.01% 2.82%
Gastropoda Caenogastropoda 0.06% -
Heterobranchia <0.01% -

(continued on next page)
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Table 2 (continued)

Phylum Class Order 2017 2018
Assessment Assessment
Nematoda Chromadorea 0.08% 0.09%
Aerolaimida 0.03% -
Chromadorida 0.02% -
Desmodorida 6.43% 0.23%
Monhysterida 16.73% 4.52%
Rhabditida <0.01% -
Tylenchida <0.01% 0.02%
Enoplea Dorylaimia 0.22% 1.39%
Enoplida 6.72% 0.16%
Triplonchida 0.38% 0.56%
Nemertea Anopla Heteronemertea <0.01% 5.84%
Enopla Monostilifera - 0.09%
Miscellaneous 0.02% 0.62%
Platyhelminthes
Catenulida 0.01% 0.31%
Monogenea Monopisthocotylea 0.07% 0.10%
Rhabditophora Macrostomida 0.01% 1.97%
Proseriata 0.91% -
Rhabdocoela 5.13% 0.47%
Seriata 0.13% 0.03%
Trematoda - 0.18%
Echinostomida - 0.01%
Rotifera Bdelloidea <0.01% 14.90%
Adinetida - 0.05%
Philodinida - 0.09%
Monogononta <0.01% 0.60%
Flosculariacea 0.01% -
Ploimida 0.23% 0.04%
Tardigrada Eutardigrada Parachela 0.03% -

diversity, with significant higher diversity in 2017 (2017 dataset = 5.46 % 0.48, and 2018
dataset = 4.75 £ 0.79; df =21;t =2.639; p=0.015).
Multivariate analysis revealed significant differences on the composition of meiofauna

assemblages in the Rio Doce estuary between years (Fig. 4). The phyla that most contributed
to this difference are Nematoda (24%), Gastrotricha (23.3%), and Arthropoda (18.9%);
which contributed to 49.25% of the dissimilarity between the 2017 and 2018 assemblages

(Table 3).

Association with metals and sediments
The results of assemblages’ composition in 2018 have a negative relation between the
Al concentration and the relative abundance of Mollusca ASVs (F = 4.964; R?> = 0.209;

p=0.043) and Platyhelminthes ASVs (F = 4.408; R?=0.185; p=0.050). Furthermore, we

observed significant negative relation between the Zn concentration (F = 14.31; R = 0.412;
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Figure 4 Meiofaunal assemblages composition. Non-metrical multidimensional scaling (nMDS) plot
based on meiofaunal assemblage composition in August 2017 (blue triangles) and August 2018 (red trian-

gles).
Full-size & DOI: 10.7717/peerj.14992/fig-4

p=0.001), Ni concentration (F = 9.877; R?2 =0.318; p=0.006), Pb concentration

(F =7.302; R> =0.249; p = 0.015), Co concentration (F =13.11; R =0.389; p = 0.002)
and phylogenetic diversity. Even other negative relationships were observed between phyla
ASVs and metals concentrations, or between Faith’s Phylogenetic Diversity and metals
concentrations, they were not significative. The CAP analysis demonstrated that TOM,
%Sand, Zn, Cu and Cd is the best set of variables to explain the distribution of meiofaunal
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Table 3 SIMPER results. Results from similarity percentage analysis (SIMPER) indicating each Phylum
contribution to the similarity between 2017 and 2018 assessment in the Rio Doce estuary.

Phyla Av. Dissim. Contrib. Cumulative
(%) (%)
Nematoda 11.81 24 24
Gastrotricha 11.48 23.3 47.35
Arthropoda 9.32 18.93 66.27
Rotifera 7.71 15.65 81.92
Nemertea 2.96 6.01 87.93
Annelida 1.99 4.04 91.97
Mollusca 1.39 2.82 94.79
Platyhelminthes 1.29 2.63 97.42
Cnidaria 1.22 2.49 99.91
Bryozoa 0.02 0.05 99.96
Tardigrada 0.01 0.03 99.99
Micrognathozoa 0.00 0.01 100.00
Notes.
Av. Dissim., Average Dissimilarity; Contrib., Contribution.
[} Phylum Scores CAP1
= TOM Annelida 0.63
Arthropoda -0.12
Bryozoa 0.04
< el Cu Cnidaria 0.30
{2 Gastrotricha 0.07
‘-2' cd ,i ) inth Mollusca 0.32
~ S e — =V 8111?4&’%‘:::1&; _____________________________ Nematoda -0.11
& e ° Mg‘ff}gm Nemertea 0.33
5 : Roti@¥a Paltyhelminthes  0.30
| Arthroppda Rotifera 0.77
< Zn
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Figure 5 Canonical analysis of principal coordinates (CAP) ordination of samples according to multi-
variate distribution of the meiofaunal metazoans identified in the Rio Doce estuary in 2018.
Full-size Gal DOI: 10.7717/peer;j.14992/fig-5

assemblage in 2018, and this model significatively explain 66.66% of the distribution of the
identified meiofaunal metazoans (Fig. 5; F =2.378; p=0.044).
Differences in the composition of assemblages, and in the phylogenetic diversity between

2017 and 2018 can also be observed on the respective phylogenetic trees, built based on the

ASVs identified in the dataset of each sampling event. We can observe a more complex,

diverse and with longer branches in the tree based on the 2017 assessment (Fig. 6A). In the

phylogenetic tree from 2017 the branches are longer and more divided in different nodes,

representing more diversity, especially in Nematoda, Gastrotricha and Platyhelminthes.

Additionally, in 2018 the meiofaunal assemblage changed, since the branches are shorter
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and less divided in different nodes. Is notable how Arthropoda and Rotifera become more
representative phyla for the assemblage composition (Fig. 6B).

DISCUSSION

eDNA metabarcoding of the Rio Doce estuary revealed a lower meiofaunal phylogenetic
diversity 2.8 years after the mine tailing disaster, which is contrary to our initial hypothesis
of a temporal increase of meiofaunal diversity along an expected decrease in sediment
contamination. The temporal comparison of meiofauna assemblages showed significant
changes in the composition and diversity (Figs. 2; 6) of meiofaunal organisms, which are
markedly associated with the metal contamination in the sediments. Therefore, our results
support that the meiofaunal assemblage in the Rio Doce estuary has changed substantially
between 2017 and 2018, but with observed reductions in phylogenetic diversity, number
of sequences, and changes in the relative abundance of each taxon.

Sediment metal concentrations decreased since the initial impacts were observed in
the Rio Doce estuary, but concentrations are still well above pre-impact levels (Gomes
et al., 2017; Gabriel et al., 2021). Estuaries are commonly considered ecosystems with
low diversity, due to the highly dynamic hydrological conditions (Gray, Wu ¢ Or,
2002; Anila Kumary, 2008; Alves et al., 2013; Janakiraman et al., 2017; Hadlich et al., 2018).
Nematodes and Arthropoda are common taxa in estuarine sediments (Coull, 1999; Dalto
& Albuquerque, 2000), and in the Rio Doce they represented over 70% of the taxa sampled
(Table 2; Fig. 2). These taxa were key to differences observed between 2017 and 2018.
In 2017, Nematoda was dominant in the same sampled stations representing 29.2% of
sequences of meiofauna (Bernardino et al., 2019).

Copepods are known as a pollution sensitive taxon (Won et al., 2018), but nematodes
are highly tolerant to pollution, and some species detoxify absorbed or ingested metals
by using metal-binding proteins (Montserrat et al., 2003; Ferraro et al., 2006). Millward ¢
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Grant (1995) applied toxicity tests on a nematode community from a severely contaminated
estuary, and evidenced that nematodes are resistant to Cu. Thus, the higher dominance of
nematodes in 2017 may be related to the higher levels of metals (Bernardino et al., 2019);
and their decreased abundance in 2018 suggests a temporal succession of dominance;
possibly related to a gradual decrease in pollution observed in the estuary (see Gabriel et
al., 2021). This reduction on the relative abundance of nematodes (from 29.2% to 5.2% of
total meiofaunal sequences), which are a potential indicator of contaminated sediments,
may indicate an assemblage response to the reduction in the metal concentrations in the
sediment, where other less tolerant taxa can compete with taxa that are more tolerant to
toxicity.

The significant changes observed in meiofaunal assemblages supports the marked
temporal changes in environmental conditions of the estuarine sediments. We additionally
observed a stronger degree of dissimilarity in assemblages in 2018, which support
high bottom heterogeneity and some recovery. The higher heterogeneity in sediment
composition can be a source of species nestedness (or loss) in estuarine sediments
(Menegotto, Dambros ¢ Netto, 2019), which could explain lower taxonomic diversity
and higher dominance of Arthropods in 2018.

The distribution of metals (e.g., Cd, Cuand Zn) may help explain the distribution pattern
of meiofaunal metazoans in 2018. McLeese, Sprague ¢ Ray (1987) indicated Cd as not toxic
at typical environmental concentrations. Some other studies on meiofauna suggest that
Cd does not affect species compositions (Austen ¢» McEvoy, 1997; Austen & Somerfield,
1997). Trannum et al. (2004) did not observe negative effects from high concentrations
of Cd on the recolonization of different benthic taxa. On the other hand, Wakkaf et al.
(2020) observed Cd toxicity to meiobenthic nematodes. Copper, a common contaminant
in bays and estuaries (Hadlich et al., 2018), and considered to be most toxic metal to many
marine species (NAS, 1977), showed negative correlations with benthic recolonization
rates in experiments realized by Olsgard (1999) and Trannum et al. (2004). Although Zn is
not considered toxic to marine organisms (Bryan ¢» Langston, 1999), Gyedu-Abadio (2011)
found influences of this metal on the structure of nematodes in two estuaries in South
Africa.

Metal concentrations had a significant effect on meiofaunal assemblages after 2.8 years,
in addition to sedimentary organic content and grain size. Organic matter contents in
the sediment plays a key role and is a nutrient source that determine benthic organisms’
distribution (Paarsons, Takahashi & Hargrave, 1984; Neto, Bernardino ¢ Netto, 2021). The
distribution of some meiofaunal organisms may be influenced by grain size, like crustaceans
that are usually more abundant in coarse sediments (Tietjer, 1969; Hicks ¢ Coull, 1983).
Grain size determines structural and spatial conditions from the habitat, and indirectly
influences the physical and chemical parameters of it (Giere, 2009). In fact, different studies
suggest that abiotic factors, such as grain size and organic matter content, contribute to the
patchy distribution of meiofaunal assemblages in a similar pattern observed in the present
study (Nascimento, Karlson & Elmgren, 2008; Alves et al., 2009; Faria et al., 2018; Fais et al.,
2020).
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We expected to detect a meiofaunal successional process towards assemblages with
higher richness and diversity, when compared to the 2017 assessment, which would
suggest a recovery process from chronic impacts of metal contamination. Our study then
supports that other factors can influence the rate at which biotic assemblages recover
from environmental disasters. Our results suggest that the Rio Doce estuary was not
yet on a recovery path after nearly 3 years from the initial impacts, as ecosystems are not
considered recovered until a secondary succession returns the ecosystem to the pre-existing
condition (Borja, Dauer & Elliott, 2010). In this sense, we would need continued long-term
assessments to determine its a recovery trajectory (Latimer et al., 2003). The recovery of
benthic communities can vary greatly from weeks (Danovaro, Fabiano ¢ Vincx, 1995) to
10-25 years (Jones ¢ Schmitz, 2009; Borja, Dauer ¢ Elliott, 2010; Aderhold et al., 2018),
and some ecosystems may never be technically recovered and end up irreversibly in an
alternative state (Borja, Dauer ¢ Elliott, 2010). A similar result was observed by Fleeger et
al. (2019) that did not observe a full recover on meiofaunal assemblages 6.5 years after
an oil spill contamination. Our results corroborate those found by Gambi et al. (2020)
that clearly detected the effect of long-term tailing discharge on benthic diversity after
several decades from the end of the mining. In our case, it is difficult or even impossible
to determine the state of recovery the Rio Doce estuary since there are no baseline data or
long-term studies of meiofaunal assemblages in this estuary.

The meiofaunal phylogenetic diversity from the Rio Doce estuary suggests losses of
diversity in assemblage composition from 1.7 to 2.8 years after initial impacts. This may be
aresult or a response to the chronic effects of the metal concentrations following the disaster
since, despite a significant decrease on metal concentrations, the contamination remains
above reference values (Gabriel et al., 2021). These observed differences in meiofauna
assemblages may indicate changes in other biological components, and consequently in
the whole estuarine ecosystem. The loss of some meiofauna phyla and the decrease in
phylogenetic biodiversity corroborates to this hypothesis.

CONCLUSION

In conclusion, we observed substantial differences on meiofaunal assemblage composition
and diversity in the Rio Doce estuary from 1.7 yrs to 2.8 yrs after a mine tailing disaster.
Although sediment metal concentrations decreased in time, we observed fewer identified
sequences and phylogenetic diversity. Our results suggest that meiofaunal diversity are now
influenced by total organic matter content and grain size, but the continuous contamination
by trace metals including Cd, Cu and Zn seems to still influence assemblage diversity. On
the other hand, the reduction on Nematoda relative abundance—a tolerant taxa to
toxicity—may indicate a recovery of meiofaunal assemblages via competition with less
tolerant taxa. Additionally, we reinforce that the use of eDNA assessments is very useful and
cost-effective to understand the dynamic of estuarine ecosystems and temporal changes
on biodiversity. The continued sampling and monitoring on the Rio Doce estuary would
be of great importance to understand how this meiofaunal assemblage will respond during

the successional process over time.
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