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This study used data from Taiwan’s Fisheries Agency, including fishing location, effort,
captures, and time, to evaluate the geographic distribution of Parastromateus niger in the
Taiwan Strait. Generalized linear models (GLMs) based on six oceanographic parameters
outperformed other species distribution models. The locations with the greatest
standardized catch-per-unit-effort (S.CPUE) of P. niger had a sea surface temperature (SST)
of 26.5°C –29.5°C, sea surface chlorophyll (SSC) level of 0.3–0.44 mg/m−3, sea surface
salinity (SSS) of 33.4–34.4 psu, mixed layer depth of 10–14 m, sea surface height of
0.57–0.77 m, and eddy kinetic energy (EKE) of 0.603–0.794 m2/s−2. The statistical results
indicate that the major factors influencing species distribution are SSS, SSC level, and EKE
and that SST is only a minor factor. An ensemble habitat model was formed through the
combination of four well-performing single-algorithm models with no discernible bias. The
largest annual distribution of S.CPUE and nominal CPUE was located in the ranges of
117°E–119°E and 22°N–24°N.
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15 Abstract

16 The location, effort, number of captures, and time of fishing were all used in this study to assess 

17 the geographic distribution of Parastromateus niger in the Taiwan Strait. Other species distribution 

18 models performed worse than generalized linear models (GLMs) based on six oceanographic 

19 parameters. The sea surface temperature (SST) was between 26.5°C and 29.5°C, the sea surface 

20 chlorophyll (SSC) level was between 0.3-0.44 mg/m3, the sea surface salinity (SSS) was between 

21 33.4°C and 34.4°C, the mixed layer depth was between 10°C and 14°C, the sea surface height was 

22 between 0.57°C and 0.77°C, and the eddy kinetic energy (EKE) was between 0.603°C According 

23 to the statistical findings, SST is merely a small effect compared to SSS, SSC level, and EKE in 

24 terms of impacting species distribution. By combining four effective single-algorithm models with 

25 no obvious bias, an ensemble habitat model was created. The ranges of 117°E-119°E and 22°N-

26 24°N have the highest annual distributions of S.CPUE and nominal CPUE.

27

28 Keywords: boosted regression tree (BRT), classification and regression tree (CART), ensemble 

29 model, generalized additive model (GAM), generalized linear model (GLM). 

30

31 1. Introduction

32 Species distribution models (SDMs) are the most common method of examining species habitat 

33 patterns through the use of oceanographic elements; they are also referred to as habitat models, 

34 ecological niche models, bioclimatic envelopes, and resource selection functions (Zimmerman et 

35 al., 2010, Robinson et al., 2011, Beale & Lennon, 2012, Li & Wang, 2013 and Tikhonov et al., 

36 2020). Habitat models use mathematical representations of the current species distribution to 

37 predict the future distribution by using an algorithm. Historically, the arithmetic mean and 

38 geometric mean models (Xue et al., 2017; Li et al., 2016) based on the habitat appropriateness 

39 index have been used. However, the adoption of various machine learning models has been 

40 accelerated by technical advancement. Machine learning (ML) is a topic of study focused on 
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41 comprehending and developing "learning" techniques, or techniques that use data to improve 

42 performance on a certain set of tasks. It's thought of as a part of artificial intelligence. Without 

43 being expressly taught to do so, machine learning algorithms create a model using sample data, 

44 also referred to as training data, in order to make predictions or judgments. Machine learning 

45 algorithms are utilized in a broad variety of applications, such as in medical, email filtering, speech 

46 recognition, agriculture, and computer vision, where it is difficult or unfeasible to design 

47 traditional algorithms to do the desired tasks. Computational statistics, which focuses on making 

48 predictions with computers, is closely related to a subset of machine learning, but not all machine 

49 learning is statistical learning. The field of machine learning benefits from the tools, theory, and 

50 application domains that come from the study of mathematical optimization. Data mining is a 

51 related area of study that focuses on unsupervised learning for exploratory data analysis. Some 

52 machine learning applications employ data and neural networks in a manner that resembles how a 

53 biological brain functions.  Machine learning is also known as predictive analytics when it comes 

54 to solving business problems. Different advanced models like regression models, including 

55 generalized linear models (GLMs) and generalized additive models (GAMs) as well as artificial 

56 intelligence models such as gradient boosting models (Hosain et al., 2020), artificial neural 

57 networks (Ahmad, 2019), classification and regression tree (CART) models (Youssef et al., 

58 2016)], and random forest models (Reisinger et al., 2018) are in use present days. Ensemble models 

59 (Reisinger et al., 2021; Tabor & Koch 2021), which incorporate the forecasts of two or more 

60 habitat models (ensemble members), exhibit superior performance and robustness compared with 

61 single-algorithm models. The ensemble members may be identical or dissimilar habitat model 

62 types, and each can be trained with the same or different training sets (Georgian et al., 2019). 

63 Statistics like the mode or mean can be used to combine the ensemble members' predictions, and 

64 sophisticated techniques are employed to determine the trustworthiness of each ensemble member 

65 and the circumstances under which it can be relied upon (Abrhams et al., 2019). Many studies 

66 released in the 1990s have shown the extensive use of ensemble learning techniques such core 

67 bagging, boosting, and stacking. When a single model is insufficient, ensemble models can be used 

68 for prediction.Considering bias in the model helps lower the predictive error variance. The current 

69 study concentrated on ensemble modeling for the habitat of the black pomfret. 

70 Black pomfret, or Parastromateus niger (Bloch, 1795), are small pelagic fish that live in the 

71 inshore waters of the Indian Ocean and western Pacific Ocean off the coasts of East Africa, 

72 southern Japan, and Australia (Liu, 2008). Black pomfret are found across the East China Sea and 

73 South China Sea, are prevalent in the Taiwan Strait, and play a significant role in lighting purse 

74 seine fisheries in Taiwan and in Fujian and Guangdong Provinces (Lu & Yan, 1985; Lu et al., 

75 1991). Black pomfret production is vital to the coastal fisheries of Taiwan. However, the P. niger 

76 stock status in the Taiwan Strait (TS) recently collapsed (Ju et al., 2020), as evidenced by a 

77 significant drop in the annual capture in Taiwanese waters between 2002 and 2019 (Taiwan 

78 Fisheries Agency, 2019). Possible reasons behind this substantial decline in yield might be due to 

79 a combination of high demand, unregulated fishing methods, climate change, and the overfishing 

80 of P. niger (eg: Tao et al. 2012, Ju et al. 2020), aimed/mentioned by the United Nations Sustainable 
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81 Development Goal (SDG) 14 (Ntona & Morgera, 2018). To achieve SDG 14, overfishing must be 

82 controlled which is related to the unsustainable fish stock whereas underexploited or partially 

83 exploited levels are viable, the target of sustainable exploration. 

84 Understanding P.niger habitat preferences and zones in-depth is essential for maintaining a species 

85 stock that is ecologically acceptable. In order to assist keep the species stock within an ecologically 

86 acceptable range, we thus used habitat modeling to evaluate the effects of the maritime 

87 environment on the P.niger habitat (Figure 1). (SDG 14.4). To stop overfishing of P.niger, a 

88 thorough study of its biological preferences and habitat regions may be helpful (SDG 14.6).

89

90 Figure 1. Study flowchart.
91

92 2. Materials and Methods

93 2.1 Data Collection

94 2.1.1. Fisheries Data

95 We collected information from Taiwanese fishing vessels (mostly coastal sea fishing, with gross 
96 register tonnage ranging from 0 to less than 250 tons) about P. niger fisheries from January 2014 
97 to December 2019 from Taiwan�s Fisheries Agency. The spatial coverage of the monthly fisheries 
98 data was 21°N�26°N and 116°E�123°E, with a resolution of 0.1°. The data provider did not specify 
99 whether the reported weights were dry or wet. Various fishing gear was used, and gears data with 
100 maximum catch contribution were only used in this study. The collected data included the year, 
101 month, latitude and longitude, catch in kilograms, effort in hours, total catch weight in one location, 
102 type of fishing gear used, and vessel identification number. Data on fishing depth and gear-soaking 
103 time were unavailable.
104

105 2.1.2. Oceanographic Data

106 Seven oceanographic characteristics (Table 1) were gathered from several sources for the current 

107 study: sea surface temperature (SST), sea surface salinity (SSS), mixed layer depth (MLD), sea 

108 surface chlorophyll (SSC) level, sea surface height (SSH), meridional velocity (U), and zonal 

109 velocity (V; Table 1). we calculated eddy kinetic energy (EKE) from U and V as follows: EKE = 

110 0.5(U2 + V2). The CMEMS eddy-resolving global ocean reanalysis product GLORYS12V1 (1/12° 

111 horizontal resolution with 50 vertical levels; 

112 https://resources.marine.copernicus.eu/product-

113 detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION)

114 was used to collect SST, SSS, MLD, SSH, U, and V data. Its processing level and coordinate 

115 reference system are L4 and W, respectively. In addition, we gathered SSC data using the CMEMS 

116 global ocean biogeochemical hindcast product FREEGLORYS2V4 (0.25° horizontal resolution, 

117 75 vertical levels, daily temporal resolution;

118  https://resources.marine.copernicus.eu/product-

119 detail/GLOBAL_MULTIYEAR_BGC_001_029/INFORMATION), 

120 whose processing level and coordinate reference system are Level 4 and ETRS89 (EU-

121 recommended frame of reference for geodata for Europe 1), respectively.
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122 These data were originally gathered between January 2014 and December 2019 and covered the 

123 geographic range of 116°E�123°E and 21°N�26°N. These data were interpolated using 

124 MATBLAB (version 2019a) to a 0.1° spatial resolution to match the fisheries data. The SSC data 

125 were interpolated to a monthly temporal resolution using MATLAB in addition to the 

126 oceanographic and fisheries data.

127

128 Table 1. Surface oceanographic data and their descriptions.
129

130 2.2. Fisheries Data Standardization

131 The relative abundance of P. niger was as assessed as the N.CPUE from a total of 55,852 

132 observations as follows (Dunn et al., 2000; Laurdisen et al., 2008):

133

134 N.CPUE = (catch in kilograms)/(fishing effort in hours)

135

136 The use of the popular GLM standardization technique and resulting bias-filtered N.CPUE data 

137 (Hazin et al., 2007; Hinton & Maunder, 2004; Tian et al., 2009) helped to lessen the effects of 

138 spatial data, including latitude (lat) and longitude (long); temporal data (year and month); and 

139 interaction factors (i.e., year*lat, lat*long, and year*long; Mondal et al., 2022; Mondal et al., 2021; 

140 Vayghan et al., 2020; Forrestal, 2019; Shono, 2004). The key benefits of employing a GLM for 

141 standardization include the exponential distribution of response variables and the ability to employ 

142 categorical predictors. A stepwise GLM was created using the stats package in RStudio (version 

143 3.6.0) using the aforementioned seven components (year, month, lat, long, year*lat, lat*long, and 

144 year*long). The family and procedure employed for GLM optimization were the Gaussian family 

145 and glm.fit, respectively. The GLM constructed for standardization was as follows:

146

147 GLM: log(N.CPUE) = year + month + lat + long + interactions,

148

149 where the interaction factors are year*lat, lat*long, and year*long.

150

151 2.3. S.CPUE�Oceanographic Factor Relationship

152 The correlations between the S.CPUE benchmark values and the aforementioned oceanographic 

153 factors were established to discern the preferred parameter ranges. We created suitability index 

154 (SI) curves for each oceanographic parameter using summed S with smoothing spline regression. 

155 The regression used S.CPUE as the dependent variable and all selected oceanographic elements as 

156 the explanatory variables. The SI curves were then normalized as follows using S.CPUE and the 

157 oceanographic variables:

158

159 SI = (Y − Ymin)/(Ymax − Ymin),

160

161 where Ymax and Ymin are respectively the maximum and minimum number of observations of 

162 S.CPUE or oceanographic factors; thus, SI has a range between 0 and 1, where Y is a simulated or 
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163 predicted value from Ymax to Ymin. An oceanographic factor range with a large SI value (>0.6) 

164 (Mondal et al. 2021, Vayghan et al 2020, and Lee et al. 2021) suggested a favorable range for 

165 S.CPUE.

166

167 2.4. Single-Algorithm Habitat Model Development

168 The current study incorporated four single-algorithm models, namely a GLM, GAM, boosted 

169 regression tree (BRT) model, and CART model. Each modeling technique was optimized 

170 according to the established protocol. We developed one model for each modeling technique in 

171 RStudio and the six oceanographic factors (SST, SSS, MLD, SSH, SSC, and EKE), which were 

172 regarded as predictor variables; S.CPUE was the response variable.

173 We used the Gaussian family and the generalized cross-validation of the mgcv package to construct 

174 each GAM. We employed the Gaussian family and the glm.fit technique from the stats package to 

175 create each GLM. Each BRT model was built using the Gini approach and the Gaussian family 

176 from the gbm program; optimization included the use of 100 trees, seven interactions, and 0.65 

177 bag fractions. The rpart package was used to build each CART model using the Gaussian family 

178 and the CP technique. The CART models were optimized with a CP value of 0.1 and minimum 

179 and maximum node counts of 1 and 6, respectively. 

180

181 2.5. Validation of Selected Single-Algorithm Habitat Models

182 The fisheries data set (n = 55,852) was split into two portions using a random splitting technique 

183 performed by the RStudio caret package at a ratio of 70 [n(70) = 39,115] to 30 [n(30) = 16,737] to 

184 validate the single-algorithm models. For each single-algorithm model, three coefficients�

185 namely the Pearson correlation coefficient (R), root-mean-square error (RMSE), and mean 

186 absolute error (MAE)�were computed for both portions of the data set. Little variation in the R, 

187 RMSE, and MAE values for the two data sets was considered indicative of a well-performing 

188 model with low bias.

189

190 2.6. Ensemble Habitat Model Development

191 We created an ensemble habitat model in the RStudio BIOMOD2 package (Georgian et al., 2019; 

192 Alabia et al., 2016; Reisinger et al., 2021; Tarbor & Koch, 2021; Abrahms et al., 2019) to enhance 

193 the power to predict the P. niger habitat. A weighted mean ensemble model of the P. niger habitat 

194 was created after the performance of the single-algorithm models was assessed. If no discernible 

195 bias was detected on the basis of the R, RMSE, and MAE values for the two data sets for a single-

196 algorithm model, the model was integrated into the ensemble model. Models exhibiting potential 

197 bias were excluded.

198 After the creation of the ensemble habitat model, MATLAB was used to visualize the monthly 

199 value predictions of the ensemble model along with the S.CPUE for each point in the study area.

200

201 3. Results

202

203 3.1. Standardization of Fisheries Data
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204 Over 88% of the catches were captured by otter trawl nets, gill nets, and Taiwanese seines (Figure 

205 2). Thus only these data were selected for the analysis. The full GLM (with all six factors) resulted 

206 in an explained deviance and adjusted R2 of 18.135% and 0.181, respectively. The residual 

207 distribution and quantile�quantile (QQ) plots (Figure 3) of the full GLM exhibited no significant 

208 fluctuation. Thus, the full GLM approach was used for the standardization of the P. niger fisheries 

209 data.

210

211 Figure 2. Catches from fishing with different gear.

212 Figure 3. Residual distributions and QQ graphs for the final GLM with predictor variables.

213

214 3.2. S.CPUE�Oceanographic Factor Relationships

215 The SI curves created for the S.CPUE of P. niger against the six oceanographic factors are 

216 illustrated in Figure 4. When the SI value exceeded 0.6, the ideal SST, SSC level, SSS, MLD, 

217 SSH, and EKE ranges were 26.5°C�29.5°C, 0.3�0.44 mg/m3, 33.4�34.4 PSU, 10�14 m, 0.57�0.77 

218 m, and 0.603�0.794 m2/s2, respectively. The total standardized CPUE of P. niger reached its 

219 maximum near the SST, SSC level, SSS, MLD, SSH, and EKE of 29.5°C, 0.36 mg/m3, 34.2 PSU, 

220 12 m, 0.67 m, and 0.661�0.724 m2/s2, respectively. These results indicate the preferred 

221 oceanographic range of P. niger in the TS during the research period.

222

223 Figure 4. Environmental ranges of P. niger with SI values from 2014 to 2019.

224

225 3.3. Contributions of Single Oceanographic Factors

226 Table 2 presents the performance of different oceanographic factors in the single-algorithm 
227 models. SSH was observed to be the most dominant oceanographic factor in all four single-
228 algorithm models. The second most crucial oceanographic factor was EKE, which ranked second 
229 in all single-algorithm models except the GLM. SSC ranked third in all single-algorithm models 
230 except the GLM. SST, which ranked last in all the models, was deemed the least critical parameter. 
231 SSS was ranked fifth in all models but the GLM, in which it was the least influential. 
232

233 Table 2. Predictive performance of six oceanographic factors in single-algorithm GAMs, GLMs, 

234 BRT models, and CART models.

235

236 3.4. Performance and Validation of Single-Algorithm Models

237 Table 3 presents the predictive performance of the full (with all oceanographic factors) GAM, 

238 GLM, BRT model, and CART model. The deviance explained by the full GAM, GLM, BRT 

239 model, and CART model was 54.1%, 41.52%, 52.7%, and 49.5%, respectively. The correlation 

240 values of the full GAM, GLM, BRT model, and CART model were 0.543, 0.415, 0.525, and 0.498, 

241 respectively. Figure 5a, 5b, 5c, and 5d depict the performance of the selected GAM, GLM, BRT 

242 model, and CART model, respectively.

243
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244 Table 3. Predictive performance of full (all six oceanographic factors) GAM, GLM, BRT model, 

245 and CART model.
246

247 Figure 5. Residual distributions and QQ plots for diagnostic analysis of the full (a) GAM and (b) 

248 GLM, both with predictor variables. Full (c) BRT and (d) CART model performance along with 

249 the decision trees of the final model.

250 Small differences in the coefficients (R, RMSE, and MAE) for the two randomly apportioned data 

251 sets (70:30) indicated no significant bias in any predictive (Table 4) models, and the predictions 

252 were mapped onto a 1° geographic grid.

253

254 Table 4. Validation of selected single-algorithm models through random splitting.
255

256 3.5. Ensemble Habitat Prediction

257 Because no discernible bias was detected on the basis of the R, RMSE, or MAE values for the 70% 
258 and 30% portions of the data, the produced ensemble was selected for final prediction (Table 5). 
259 Figure 6 presents the predicted CPUE (P.CPUE) and S.CPUE. A high annual S.CPUE was 
260 distributed primarily in the ranges of 119°E�121°E and 21°N�25°N, the coastal waters of Taiwan. 
261 Most S.CPUE values were >4 in these locations but <1 in the remaining study areas. P.CPUE 
262 displayed a pattern indicating expansion to 26°N. Both S.CPUE and P.CPUE were between 0.1 
263 and 5.
264

265 Table 5. Validation of ensemble model through random splitting.
266

267 Figure 6. P.CPUE from the ensemble habitat model, along with S.CPUE.

268

269 4. Discussion

270 The Kuroshio Current and coastal currents near Taiwan contribute to the diversity and productivity 

271 of marine species. As a result, the prevalence of fleet-based fishing operations has grown 

272 substantially throughout Taiwan�s waters over the past 40 years. The fishing gear used in this 

273 region includes purse seines, bottom and pelagic trawls, longlines, and gill and set nets (Fisheries 

274 Agency, 1949�2019). However, the trend of overfishing beginning in the 1950s caused catches to 

275 peak in 1980 and gradually decline afterward (Chen et al., 2018; Liao et al., 2019). Despite 

276 frequent acknowledgment of the problematic state of coastal and offshore fisheries in Taiwanese 

277 waters (Liu, 2013; Chen, 2006; Shao et al., 2011), few fish species have been studied. Notably, 

278 the P. niger stocks in the waters close to Taiwan have drastically decreased (Ju et al., 2020). 

279  

280 4.1 Spatial Distribution 

281 High annual S.CPUE values were observed primarily in the ranges of 119°E�121°E and 21°N�

282 26°N. The P.CPUE values displayed a comparable pattern, with extension to 26°N. This 

283 distribution pattern may result from various factors.

284 First, the Kuroshio Current and coastal currents have boosted species diversity and productivity in 

285 the waters near Taiwan (Naimullah et al., 2020a). The Kuroshio Branch Current (KBC), China 
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286 Coastal Current (CCC), and South China Sea (SCS) Current are three major currents that affect 

287 the TS, which is located in the tropical to subtropical western Pacific. These currents influence the 

288 fishing grounds and marine habitats of the East China Sea and SCS that border the TS to the north 

289 and south, respectively(Naimullah et al., 2022). The KBC provides a favorable environment for 

290 the diversified P .niger in the TS. The CCC offers a neritic water mass with low salinity and 

291 temperature but high nutrient content because of its connection to the rivers of the Chinese 

292 mainland (Shiah et al., 2000). Contrary to popular assumption, the KBC, which is derived from 

293 the Kuroshio Current, has high salinity and temperature and a nutrient level comparable to that of 

294 the CCC (Chung et al., 2001). These traits produce a water mass with physical characteristics 

295 distinct from those of the surrounding water. Properties such as temperature and salinity affect the 

296 distribution of P .niger.

297 Second, the KBC and CCC both contribute to upwelling. The bottom current in the TS flows 

298 upward from the continental slope, and the surface current is primarily driven by wind (Naimullah 

299 et al., 2020b). In addition, the eastern side of the TS receives occasional injections of water from 

300 the Kuroshio Current. The aforementioned upwelling forces nutrient-rich, typically chilly water to 

301 ascend to the surface. The nutrients �fertilize� the surface waters and thus support a high level of 

302 biological production. Consequently, these fertilized TS zones may serve as ideal P. niger fishing 

303 locations.

304 Third, the seafloor of the TS is intricate. The seabed topography and capes influence tidal currents, 

305 which form counterclockwise eddies (Hsu et al., 2021). High chlorophyll concentrations outside 

306 the estuary are transferred by these tidal currents to the ocean current and attract secondary 

307 producers, including fish, crustaceans, and mollusks, and draw out P. niger for harvest.

308

309 4.2 Habitat Modeling Approach for Sustainable Development

310 The detailed information provided by habitat or spatial distribution modeling may assist in the 

311 sustainable management of P. niger. The pervasive nature of the measurement error inherent to 

312 models of species and habitat distribution may render such models unable to contribute to spatial 

313 economic optimization for sustainable planning. However, SDMs can potentially serve as heuristic 

314 tools for addressing oceanic environmental challenges. We emphasize the contextual application 

315 of such models.

316 Identification of fishing grounds that are underutilized or only partially utilized can be made easier 

317 using habitat models. The predicted accuracy of single-algorithm models, however, can 

318 occasionally be impacted by data changes, leading to unduly optimistic or gloomy predictions. As 

319 a result, the current work used an ensemble modeling strategy. We merged and trained several 

320 single-algorithm models, often known as weak learners, to address the same issue. Weak learners 

321 ultimately produce ensemble models that are more accurate because, despite completing tasks 

322 poorly when working alone, they collaborate with other weak learners to become strong 

323 learners.The easy identification of fishing grounds crucially enhances fisheries revenue and 

324 reduces fishing effort, travel time, fuel consumption, and cost. However, the likelihood of such 

325 simplified identification of fishing grounds to result in overfishing highlights the relevance of the 
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326 SDGs. The adoption of SDG 14 has sparked discussion about ocean health and its importance to 

327 the future of the planet (Ntona & Morgera, 2018). In here the most important aspect is the 

328 conservation. Conservation measures can be taken in the overexploited areas and SDM can be 

329 used to identify initially the distribution zone of any particular species. Condition of these high or 

330 low catch zone can be examined through stock assessment to over or underexploited areas.  The 

331 SDG targets are intended address the major problems threatening ocean resources, such as 

332 overfishing and climate change, but doing so requires emphases on the socioeconomic dimensions 

333 of ocean politics and the distinct positions of the least developed countries and small island states. 

334 The SDGs have garnered institutional acceptance since their adoption (Friess et al., 2019; 

335 Sturesson et al., 2018). Understanding the habitat of P. niger in the TS may facilitate the 

336 sustainable management of the species. The primary aim of SDG 14.4 is biologically sustainable 

337 fish stock levels. Habitat modeling can play a crucial role in achieving this goal by identifying the 

338 P. niger habitat in the TS. Additionally, SDG 14.5 focuses on conservation in coastal and marine 

339 areas. Highly exploited areas can be declared protected areas through temporary fishing 

340 prohibition to promote stock sustainability. SDG 14.6 calls for an end to overfishing subsidies. 

341 Subsidies for fishing vessels traveling to less-exploited areas should be discontinued to avoid 

342 overfishing. The sustainability of the oceans and their resources can also be promoted through the 

343 enhancement of scientific understanding, research, and the transfer of marine technology. Related 

344 policies should consider the Criteria and Guidelines of the Intergovernmental Oceanographic 

345 Commission (SDG 14.a), support small-scale fisheries (SDG 14.b), and implement and uphold 

346 international maritime law (SDG 14.c). The modeling of species distribution or habitats may 

347 constitute the initial stage in sustainability research (Figure 7).

348

349 4.3 Importance of the Study

350 Fisheries management organizations have developed and embraced ecosystem-based management 

351 techniques in recent years, improving public awareness of the contribution of fisheries to the 

352 provision of marine ecosystem services (Kenny et al., 2018). The vital ecosystem services 

353 provided by ocean resources are fundamental to the future of the planet. Such services provide a 

354 considerable source of wealth and revenue, and their significance will continue to grow with the 

355 rising demand for land-based natural resources (Virto, 2018). However, the ability of oceans and 

356 their resources to meet the needs of their species is threatened (Neumann et al., 2017). Scientists 

357 lack a full understanding of the environmental impacts of overfishing, other destructive fishing 

358 practices, and ocean warming, which has caused rising sea levels and the expansion of ocean 

359 acidification and hypoxic or dead zones. Some of the greatest threats stem from the introduction 

360 of invasive species, primarily due to human activity. As new, capital-intensive methods of resource 

361 extraction gain popularity and less technologically advanced nations fall behind in the competition 

362 for limited maritime resources, the seas could become an arena that exacerbates global inequality 

363 (Griggs et al., 2017). As a result, many people may be forced to change or drastically reduce their 

364 demands on ocean ecosystems. Furthermore, scientists anticipate that ocean warming and 

365 escalating climate change will significantly influence the lives of millions worldwide.
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366 The current study identified the detailed habitat preferences and zones of P. niger to further the 

367 maintenance of ecologically acceptable levels of species stock (SDG 14.4). A proper 

368 understanding of habitat preferences and zones can help to prevent the overfishing of P. niger 

369 (SDG 14.6). We plan to conduct future research on the predicted effects of climate change on P. 

370 niger through habitat-based modeling and to offer recommendations for sustainability. 

371

372 Figure 7. Habitat modeling approach for sustainable development with SDG interactions.

373

374 5. Conclusion

375 This study used a variety of oceanographic characteristics to pinpoint the geographic range of P. 

376 niger in the TS. Due to the GLM approach's superior performance to other models, we chose it for 

377 standardization. Near the SST, SSC level, SSS, MLD, SSH, and EKE of 29.5°C, 0.36 mg/m3, 34.2 

378 PSU, 12 m, 0.67 m, and 0.661-0.724 m2/s2, respectively, the P. niger S.CPUE attained its highest 

379 value. According to the statistical analysis of our ensemble model, SST is the least important 

380 component and SSH and EKE are the key factors affecting the P. niger distribution. The largest 

381 yearly P.CPUE distribution followed by the largest annual S.CPUE distribution were found in the 

382 regions of 21°N-26°N and 119°E-121°E.
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Surface oceanographic data sources and their descriptions
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1 Table 1. Surface oceanographic data sources and their descriptions.

2

Environmental data Abbreviation Unit
Spatial 

resolution

Temporal 

resolution

Sea surface temperature SST °C

Sea surface salinity SSS psu

Mixed layer depth MLD

Sea surface height above 

geoid
SSH

m

Meridional velocity U

Zonal velocity V
ms−1

0.083° × 0.083° Monthly

Sea surface chlorophyll SSC mgm−3 0.25° × 0.25° Daily
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Table 2(on next page)

The performance of different oceanographic factors in approaches based on GAMs,
GLMs, BRTs, and CARTs
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1 Table 2. The performance of different oceanographic factors in approaches based on G���� 

2 G���� B���� and CA���C

SST SSC SSS MLD SSS E�E
Sin�	
�

Al�A�
���
Dev. Rank Dev. Rank Dev. Rank Dev. Rank Dev. Rank Dev. Rank

��� 7��� 6 19.4 3 13.7 5 13.8 4 33.5 1 21.6 2

GLM 1.41 5 12.27 2 0.01 6 11.76 3 31.34 1 10.74 4

BRT 9.3 6 20.9 3 14.1 5 16.1 4 34.6 1 22.1 2

RF 8.9 6 18.5 3 10.9 5 15.1 4 33.2 1 20.6 2

3
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Table 3(on next page)

The predictive performance of full models (with all oceanographic factors) of GAM, GLM,
BRT, and CART
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1 Table 3. The predictive performance of full modelm (���� all oceanoo������ factormf of GAM� 

2 GLM� BRT� and  !"#$

Single-Algorithm R2 Dev. %&') *+,

GAM 0.543 54.1

GLM 0.415 41.52

BRT 0.525 52.7

 !"# 0.498 49.5

-
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Table 4(on next page)

Validation of selected single-algorithm models through random splitting
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1 Table 4. V./02.4058 of s9/9:492 s08;/9<./;5=04>? models throu;> random s@/04408;D

70% (n = 39,115) 30% (n = 16,737)
Single algorithm

R2 RMSE MAE R2 RMSE MAE

GAM 0.479 1.452 1.344 0.482 1.448 1.343

GLM 0.361 1.454 1.331 0.345 1.455 1.332

BRT 0.528 0.503 0.373 0.527 0.502 0.371

FHIJ 0.496 0.516 0.387 0.521 0.504 0.372

2
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Table 5(on next page)

Ensemble habitat model’s validation through random splitting
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1 Table 5. KLMNOPQN habitat modelRM validation through random splitting.

70% (n = 39,115) 30% (n = 16,737)

R2 RMSE MAE R2 RMSE MAE

0.TUW XYZXX XYW[\ 0.TUX XYZZZ XYW]Z

2
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Figure 1
Study flowchart
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Figure 2
Catches from fishing with different gear
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Figure 3
Residual distributions and QQ graphs for the final GLM with predictor variables
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Figure 4
Environmental ranges of P. niger with SI values from 2014 to 2019
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Figure 5
Residual distributions and QQ plots for diagnostic analysis of the full (a) GAM and (b)
GLM, both with predictor variables. Full (c) BRT and (d) CART model performance along
with the decision trees of the final model.
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Figure 6
P.CPUE from the ensemble habitat model, along with S.CPUE.

(a) S.CPUE, (b) P.CPUE
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Figure 7
Habitat modeling approach for sustainable development with SDG interactions
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