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Drug resistance is a primary barrier to effective treatments of HIV/AIDS. Calculating
quantitative relations between genotype and phenotype observations for each inhibitor
with cell-based assays requires time and money-consuming experiments. Machine learning
models are good options for tackling these problems by generalizing the available data
with suitable linear or nonlinear mappings. The main aim of this paper is to construct drug
isolate fold (DIF) change-based artificial neural network (ANN) models for estimating the
resistance potential of molecules inhibiting the HIV-1 protease (PR) enzyme. Throughout
the study, seven of eight protease inhibitors (PIs) have been included in the training set
and the remaining ones in the test set. We have obtained 11803 genotype-phenotype data
points for eight PIs from Stanford HIV drug resistance database. Using the leave-one-out
(LVO) procedure, eight ANN models have been produced to measure the learning capacity
of models from the descriptors of the inhibitors. Mean R2 value of eight ANN models for
unseen inhibitors is 0.732, and the 95% confidence interval (CI) is [0.613,0.850]. Predicting
the fold change resistance for hundreds of isolates allowed a robust comparison of drug
pairs. These eight models have predicted the drug resistance tendencies of each inhibitor
pair with the mean 2D correlation coefficient of 0.933 and 95% CI [0.930,0.938]. A
classification problem has been created to predict the ordered relationship of the PIs, and
the mean accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC)
values are calculated as 0.954, 0.791, 0.791, and 0.688, respectively. Furthermore, we
have created an external test dataset consisting of 51 unique known HIV-1 PR inhibitors
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and 87 genotype-phenotype relations. Our developed ANN model has accuracy and area
under the curve (AUC) values of 0.749 and 0.818 to predict the ordered relationships of
molecules on the same strain for the external dataset. The currently derived ANN models
can accurately predict the drug resistance tendencies of PI pairs. This observation could
help test new inhibitors with various isolates.
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30 Abstract

31 Drug resistance is a primary barrier to effective treatments of HIV/AIDS. Calculating quantitative relations 

32 between genotype and phenotype observations for each inhibitor with cell-based assays requires time and money-

33 consuming experiments. Machine learning models are good options for tackling these problems by generalizing 

34 the available data with suitable linear or nonlinear mappings. The main aim of this paper is to construct drug 

35 isolate fold (DIF) change-based artificial neural network (ANN) models for estimating the resistance potential 

36 of molecules inhibiting the HIV-1 protease (PR) enzyme. Throughout the study, seven of eight protease inhibitors 

37 (PIs) have been included in the training set and the remaining ones in the test set. We have obtained 11803 

38 genotype-phenotype data points for eight PIs from Stanford HIV drug resistance database. Using the leave-one-

39 out (LVO) procedure, eight ANN models have been produced to measure the learning capacity of models from 

40 the descriptors of the inhibitors. Mean  value of eight ANN models for unseen inhibitors is 0.732, and the 95% �2

41 confidence interval (CI) is [0.613,0.850]. Predicting the fold change resistance for hundreds of isolates allowed 

42 a robust comparison of drug pairs. These eight models have predicted the drug resistance tendencies of each 

43 inhibitor pair with the mean 2D correlation coefficient of 0.933 and 95% CI [0.930,0.938]. A classification 

44 problem has been created to predict the ordered relationship of the PIs, and the mean accuracy, sensitivity, 

45 specificity, and Matthews correlation coefficient (MCC) values are calculated as 0.954, 0.791, 0.791, and 0.688, 

46 respectively. Furthermore, we have created an external test dataset consisting of 51 unique known HIV-1 PR 

47 inhibitors and 87 genotype-phenotype relations. Our developed ANN model has accuracy and area under the 

48 curve (AUC) values of 0.749 and 0.818 to predict the ordered relationships of molecules on the same strain for 

49 the external dataset. The currently derived ANN models can accurately predict the drug resistance tendencies of 

50 PI pairs. This observation could help test new inhibitors with various isolates.

51 Keywords: Machine learning; Artificial neural networks; HIV/AIDS; Drug resistance; Protease 

52 inhibitors

53 Introduction

54 Acquired immunodeficiency syndrome (AIDS) disease caused by the human immunodeficiency 

55 viruses, HIV-1 and HIV-2, began to spread in the 1970s and came into focus in the early 1980s as 

56 one of the most severe public health threats in history [1]. Detection of reverse transcription 
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57 activity in cultures of lymph node cells from AIDS patients in the early 1980s revealed that AIDS 

58 was caused by a retrovirus later called human immunodeficiency virus (HIV) [2]. Zidovudine 

59 (AZT), the first nucleotide reverse transcriptase inhibitor (NRTI) that inhibits the reverse 

60 transcription enzyme of HIV, was approved in 1987, and today there are nearly thirty approved 

61 drugs [3]. HIV-1 has affected approximately 38 million people today, and just about 26 million 

62 people are receiving "Highly Active Antiretroviral Treatment" (HAART) [4]. The HAART 

63 therapy proposed in the mid-1990s was defined as the procedure of using three or four different 

64 drugs that act on various targets in the virus's life cycle [5]. With HAART therapy, the death rate 

65 fell to 47% in 1997, just ten years after the first AIDS case was detected [6].

66 Drug resistance is the primary barrier to the effective treatment of HIV/AIDS [7,8]. Single-drug 

67 treatments for HIV yield rapid resistance due to the high genetic diversity and error-prone 

68 replication of the virus [8,9]. Hence, the use of drug combinations through the HAART protocols 

69 increases the efficacy of the treatment [10]. However, cross-resistant isolates for available drugs 

70 encourage researchers to find novel inhibitors [11-15]. To combat drug-resistant isolates, novel 

71 drug design methodologies have been adopted for HIV-1 protease enzyme such as phosphonate-

72 mediated solvent anchoring [11], lysine sulfonamide-based molecular core [12], 

73 allophenylnorstatine containing inhibitors [13], nonpeptic inhibitor GRL-02031 [14], bis-

74 tetrahydrofuranylurethane containing nonpeptidic inhibitor UIC-94017 [15]. Testing novel 

75 inhibitors with various drug-resistant isolates need experimental or computational mechanisms.

76 HIV protease enzyme plays a vital role in forming infectious viruses by regulating immature 

77 viruses' synthesized gag and gag-pol polyproteins [16]. Protease inhibitors are generally included 

78 in the scope of HAART therapy, and eight approved drug molecules are used effectively today 

79 [17]. Dose-response curves of protease inhibitors were shown that they have higher Hill coefficient 

80 values than the fusion (FI), integrase (II), nucleoside reverse transcriptase (NRTI), and non-

81 nucleotide reverse transcriptase (NNRTI) inhibitors [18]. Even if a person is infected with the 

82 wild-type virion, resistant variants may emerge with dosing disruptions or the use of inappropriate 

83 combinations in the HAART therapy [19]. The success rate of HAART therapy can be increased 

84 by measuring the efficacy of existing and novel inhibitors over resistant genotypes [20-21]. 

85 Observing drug-efficacy relations with cell-based assays is expensive and time-consuming in the 

86 presence of genotype information. Mathematical models are essential to tackle this important 

87 problem [22-24].
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88 Various mathematical models have been calibrated using genotype-phenotype change data 

89 proposed in the Stanford HIV database to predict mutational effects on viral dynamics in the 

90 literature [25-40]. The life span of patients can be considerably extended by constructing reliable 

91 mathematical models that accurately predict suitable drugs for existing isolates. Most existing 

92 prediction models are knowledge-based and require predetermined rules on mutations and drugs 

93 [25-28]. The most commonly used genotype interpretation algorithms have been observed to be 

94 Stanford HIVdb [25], HIV-grade [26], REGA [27], and ANRS [28]. In addition to these genotype 

95 interpretation algorithms, various machine learning models have recently been proposed to predict 

96 genotype-phenotype change relationships in the presence of a predetermined inhibitor [29-40]. 

97 Artificial neural network [29-34], random forest algorithm [35-41], support vector machine 

98 [37,41-42], decision trees [43], k-nearest neighbors (kNN) [36], restricted Boltzmann machine 

99 [44], support vector regression [40] and linear regression [45] are the methods used in the literature 

100 to model the efficacy of different drugs against HIV-1 variants. All the works mentioned above 

101 focus on predicting the fold change of mutant fitness under a single drug. Fold change values for 

102 each molecule are treated as disjoint and used to construct a drug-specific model. Those type of 

103 models does not need to take molecular descriptors of a drug as input, hence are indifferent to 

104 chemical structure. Such models cannot predict the effects of resistance mutations for a novel drug. 

105 Therefore, a model that predicts fold change of mutant fitness for multiple molecules is needed.

106 Here, a machine learning model was constructed that simultaneously takes molecular fingerprints 

107 and mutational information jointly as inputs to estimate the fold change values. For training and 

108 testing sets, we used data from eight approved protease inhibitors atazanavir (AZT), darunavir 

109 (DRV), fosamprenavir (FPV), indinavir (IDV), lopinavir (LPV), nelfinavir (NFV), saquinavir 

110 (SAV) and tipranavir (TPV) in the Stanford HIV drug resistance database. By imposing leave one 

111 out (LVO) test procedure, our drug-isolate-fold (DIF) change-based artificial neural network 

112 (ANN) models are seen to have the ability to learn both from inhibitor descriptors and mutational 

113 genotype information to predict fold-change values. The model can predict the fold change of 

114 hundreds of isolates. To that end, the learned hundreds of predictors (fold-change of isolates) can 

115 be successfully used to assess the resistance potential of inhibitors. We used pairs of drugs to 

116 predict the more resistance-prone molecule. We called these pairwise comparisons the resistance 

117 tendencies. Our DIF-based ANN models predicted each protease inhibitor (PI) pair's drug 

118 resistance tendencies accurately, and these quantitative results support our central arguments.
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119

120 Methods and Material

121 Dataset Description

122 Filtered genotype-phenotype data on the Stanford HIV drug resistance database was retrieved for 

123 PIs [2]. We have organized this dataset with respect to isolates and inhibitors, and 498 protease 

124 mutations have been observed. For the HIV-1 PI: 1218 isolates for atazanavir (ATV), 678 isolates 

125 for darunavir (DRV), 1809 isolates for fosemprenavir (FPV), 1860 isolates for indinavir (IDV), 

126 1562 isolates for lopinavir (LPV), 1907 isolates for nelfinavir (NFV), 1861 isolates for saquinavir 

127 (SQV) and 908 isolates for tipranavir (TPV) have been analyzed for PI susceptibility.  In the 

128 dataset, 436, 336, 480, 483, 472, 486, 489 and 409 different mutations have been observed for 

129 ATV, DRV, FPV, IDV, LPV, NFV, SQV, and TPV, respectively. 

130

131 Representation of Isolates

132 Four hundred ninety-eight unique mutations were observed in the eight protease inhibitors dataset. 

133 The binary barcoding technique was applied here to represent the isolates that occurred in the 

134 dataset, as also used in several studies of modeling genotype-phenotype data for various HIV-1 

135 inhibitors [3]. Thus, a 498-dimensional vector of binary entries with 0s and 1s uniquely 

136 representing any existing isolates is considered. Assume that the 498 unique mutations produce 

137 the vector  where  is a mutation pattern that occurred in the dataset. For � = [�1, �2, �,�498] ��
138 instance,  denotes the occurrence of the mutation A22S or   denotes the occurrence of the �1 �478

139 mutation V82A. For example, the isolate  can be barcoded as �� = [A22S ,V82A]

140  in which only the first and four hundred seventy-eighth position take value � = [1,0,�,0,1,0,�,0]

141 one, and the remaining entries have value zero. Any isolate can be obtained from any combination 

142 of these mutations, and the isolate  can be defined as  with� �� = {�1, �2, �,��}

143  �� = { 1,   �� �� ∈ ��0,  ��ℎ������. �
144 In this way, each isolate can be transformed into a unique 498-dimensional input vector used for 

145 the machine learning. The binary barcoding approach has the advantage of representing two or 

146 more mutational changes in the amino acids since each mutation has a unique position in the 498-

147 dimensional input vector. For example, assuming that  and  denotes mutations V82F and �480 �481

148 V82I, the isolate  can be represented as . It is important � = [V82F ,V82I] � = [0,0,�,0,1,1,0,�,0]
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149 to note that, the genotype-fold change measurements are made on population of viruses, so that it 

150 is possible to find two separate mutations for a single residue.

151

152 Representation of Inhibitors

153 To construct a drug-isolate-fold change model for the HIV-1 protease inhibitors, the molecular 

154 representations of the inhibitors have been built with binary Morgan fingerprints. The Morgan 

155 fingerprints provide an effective way of the vector representations of molecules and are widely 

156 used in machine learning models [4]. The RDKit environment of the Python program has been 

157 used to convert the smile representations of ATV, DRV, FPV, IDV, LPV, NFV, SQV, and TPV 

158 inhibitors to a binary 512-bit vector representation. 234 out of 512 bits have been seen to provide 

159 unique characteristics for 8 PI. Thus, the molecular representation of each PI needs 234-

160 dimensional vectors.

161

162 Artificial Neural Network (ANN) Model for Regression 

163 An ANN model has been constructed with isolate-inhibitor inputs and fold change outputs with 

164 the Machine Learning and Deep Learning toolbox of the MATLAB program. Since isolates and 

165 inhibitors are uniquely represented by 498- and 234- dimensional vectors, the ANN model has 

166 732-dimensional input. The ANN architecture includes 732-dimensional input, five hidden layer 

167 neurons, and one output neuron with hyperbolic tangent-sigmoid and linear activation functions. 

168 Logarithms of fold-change values in the dataset are taken as output variables of the neural network 

169 models.  In the training process, the scaled conjugate gradient algorithm with MATLAB built-in 

170 function �trainscg� is utilized over GPU [5]. 

171

172 Ensemble Processing                                                                         

173 Since we have only eight inhibitors, measuring the molecular learning capacity of our ANN model 

174 is crucial. In this way, an ensemble learning procedure is used to improve the molecular learning 

175 performance of the model. For each PI, the 100×50 model has been trained with the data of the 

176 remaining seven inhibitors. From every  models, a model is chosen that yields the minimum 50

177 mean square error for the interior test set of the corresponding PI data. Thus, 100 optimal models 

178 are obtained, and the final model is calculated as the average of these models.

179
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180 RESULTS

181 Regression performance of molecular learning models

182 Eight feed-forward neural network models have been constructed with drug-isolate-fold- change 

183 (DIF) data by excluding one of the drugs from training in each case. The ANN model was trained 

184 with the remaining seven DIF data predicted the excluded results. The sizes of the training and test 

185 sets were changed according to the excluded PIs (mean values are 10328 and 1475 for training and 

186 test sets, respectively). The regression performances of each model are illustrated in Figure 1 with 

187 corresponding  values (square of the linear correlation coefficient). The best and worst results �2

188 are obtained by predicting the outcomes of the drugs LPV and TPV with   and  �2
= 0.837 �2

=

189 , respectively. Similarly, predicting the fold-change results of the inhibitor TPV was 0.393

190 observed to be the worst in the literature [23]. The mean  value of all predictions is  and �2
0.732

191 the 95% confidence interval is . The DIF-based ANN model provides accurate [0.613, 0.850]

192 estimations even if the test data consists of unseen drugs. This observation implies that our ANN 

193 models accurately learn molecular information from the Morgan fingerprints. The detailed 

194 performance results of our DIF-based ANN models are presented in Table 1. 

195 An inevitable question is how molecular information changes the regression and classification 

196 performance of our ANN models. To clarify this, we trained isolate-fold-change (IF) based ANN 

197 models for each inhibitor and compared them with the current DIF-based models. In Figures S1-

198 S2, the model performances have been compared by measuring  and area under the curve (AUC) �2

199 values for each PI. Table S1 also shows the accuracy, sensitivity, specificity, and Matthews 

200 correlation coefficient (MCC) scores of both DIF-based and IF-based models. These findings 

201 suggest that the DIF-based ANN model performs slightly better in terms of regression and 

202 classification for six of the eight PIs. The two models are compatible with the remaining two 

203 inhibitors (DRV and TPV). Therefore, the molecular information used by the DIF-based model 

204 provides a better predictive capability. It is very important to note that IF-based models can never 

205 predict fold-change values for novel molecules. The real distinction between DIF and IF-based 

206 models is that the DIF-based model can predict fold-change values for a novel drug. Hence, the 

207 DIF-based ANN model has both better learning capability from mutant information (by comparing 

208 to the IF-based model) and the ability to test novel molecules for a given isolate.

209

210 Prediction of drug resistance tendencies for each PI pair
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211 The inhibition potential of each PI in the presence of various genotypes is known to be variable. 

212 Tendencies of the logarithmic fold change values for each PI pair provide valuable information 

213 about the resistance profiles of the inhibitors, as seen in Figure 2. Prediction of these tendencies 

214 by the DIF-based ANN models and the corresponding 2D correlation coefficients are presented in 

215 Figure 2 in a comparative way for each PI pair. For each PI, prediction has been made with the 

216 ANN model trained by the data of the remaining seven inhibitors with an ensemble learning 

217 approach. This procedure shows the molecular learning capacity of our ANN models from the 

218 Morgan fingerprints. The minimum and maximum 2D correlation coefficients are 0.892 and 0.954 

219 for TPV-DRV and LPV-DRV couples (95% CI [0.930, 0.938]), respectively. Thus, the current 

220 DIF-based ANN models can distinguish the inhibitory potentials of each PI pair.

221

222 Classification of PIs with respect to possible common isolates

223 Our DIF-based ANN models can distinguish the fold change values of each PI in the presence of 

224 any isolate. In this way, a classification problem measuring the relationship 

225  has been constructed, where ���(���� �ℎ���� [�,�������]) > ���(���� �ℎ���� [�,�������])
226 A and B are possible protease inhibitors. These relations take values 0 and 1 depending on the 

227 inhibitors and isolates. Therefore, our ANN models have been trained with the data from seven 

228 inhibitors, with the exception of one particular inhibitor considered as test data. The corresponding 

229 receiver operating characteristic (ROC) curves are illustrated in Figure 3. Area under the ROC 

230 curve (AUC) values are included in the figure. The best and worst AUC values have been obtained 

231 for the IDV-LPV and DRV-LPV pairs with  and   (95% CI: [0.950, 0.978]), 0.992 0.818

232 respectively. In this context, the current DIF-based ANN models have ability to capture the binary 

233 relations between any PI pair with high approximation performance.

234 Performance metrics of the current ANN models for capturing binary relations of PI pairs are 

235 presented in Table 2. As indicated in the table, the DIF-based ANN models have a high rate of true 

236 prediction for each PI pair. The mean accuracy, sensitivity, specificity and Matthews correlation 

237 coefficient (MCC) values have been computed as 0.954, 0.791, 0.791 and 0.688 (95% CI [0.932, 

238 0.952], [0.719, 0.863], [0.719, 0.863] and [0.600, 0.776]), respectively. The most conspicuous 

239 result here is that the neural network models can classify the inhibitors for resistance profiles, even 

240 if that model did not see the corresponding inhibitors in the training process.

241
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242 Testing the molecular learning model with the external data set

243 For the external dataset, we conducted a search for compounds that were comparable to the eight 

244 HIV PIs that were already available in the ChEMBL database [46]. An initial set of 1305 

245 compounds and their biological activity values were extracted. First, compounds having 70% or 

246 less similarity to each drug were filtered out. Then, molecules with determined  values in ��50

247 mutant viruses were collected. The compounds with determined  values in mutant viruses ��50

248 were then gathered. Furthermore, the maximum Tanimoto similarities of these molecules to the 

249 current eight PIs were computed (using 512-bit Morgan fingerprints), and molecules with 40% or 

250 less structural similarity were filtered out. Finally, molecules with 1s in the discarded 278-

251 dimensional fingerprint vectors, that is, molecules with information loss, were filtered out. A final 

252 dataset of 87 genotype-phenotype relationships involving 51 different molecules was obtained (see 

253 Supplemental Data S1). Only six of these molecules are in the existing PI set (DRV, IDV, NFV, 

254 ATV, LPV) and only 20 of 87 genotype-phenotype relations belong to these six PIs. In the presence 

255 of eight distinct strains, there is a fold change difference in  values for these molecules. ��50

256 Fortunately, the data includes different molecules tested on the same protein, so we can evaluate 

257 the efficiency of our ANN model on ranking of these molecules.

258 We have used the eight existing PIs (see Figure 4 for chemical structures) to construct an ANN 

259 model as described in the Methods and Material section. The main difference is the consideration 

260 of all molecules rather than the LVO procedure. The Morgan fingerprints of the new 51 molecules 

261 were determined, and then the similar mapping was used to reduce the 512-dimensional vectors 

262 into 234-dimensional inputs. It should be noted that the molecules were chosen in such a way that 

263 there are no 1s in the discarded 278 bits. This condition was specifically designed into the external 

264 dataset. In this approach, we ensure that no meaningful information for novel molecules is lost 

265 during the machine learning process. 

266 Two different classification performances of our ANN model were observed to test its molecular 

267 learning potential. The first is the classification of resistant and susceptible strains for a given PI, 

268 with a threshold fold chance value of 3 [36]. The goal of this classification task is to evaluate the 

269 resistance labeling performance of the current model for diverse molecules. As demonstrated in 

270 Table 3, the accuracy, sensitivity, specificity, MCC, and AUC metrics of our model for labeling 

271 the resistance in external data are 0.678, 0.536, 0.935, 0.468, and 0.843, respectively. Our ANN 

272 model performs satisfactorily statistically on the external dataset as a result.
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273 Our major point is that the built ANN model is capable of ranking the efficiency of PIs for a given 

274 strain. The external dataset contains 853 pair of resistance scores for 51 different molecules. Our 

275 ANN model predicted these 853 pair of resistance scores as well, and we measured the ranking 

276 performance of the model. This testing approach is identical to the previously described tendency 

277 and ranking assessments of the eight existing PIs. For this classification task, the accuracy, 

278 sensitivity, specificity, MCC, and AUC scores have been 0.749, 0.767, 0.730, 0.497, and 0.819, 

279 respectively (see Table 3). As a result, our ANN model appropriately ranks the compounds based 

280 on their resistance profiles (see Figure 5 for a representative example). The ROCs for both 

281 resistance classification and ranking classification performances of the ANN model can be seen in 

282 Figure 6. The ANN model learned considerable information from the molecular structure of the 

283 eight PIs, according to the ROCs. In summary, if the external PIs have no information loss (no 1s 

284 in the discarded 278 bits within 512 bits) in comparison to the existing eight PIs, our ANN model 

285 has a high ability to rank these PIs.

286 One method for reducing and visualizing high-dimensional data is principal component analysis 

287 (PCA). It is widely used to describe the chemical space occupied by a set of molecules. When the 

288 descriptors of the compounds are used for analysis, it allows for the clustering of similar molecules 

289 as well as the distinguishing of diverse molecules. To verify the applicability of our model in terms 

290 of chemical similarity and diversity, we have performed the PCA on the external set molecules 

291 using 234-dimensional vectors employed for fold-change prediction. We only evaluated the 

292 unique molecules in the external set, and for molecules that were tested in several strains and had 

293 multiple fold-change prediction values, we have taken the values with the largest absolute 

294 prediction error (AE). As the first two components, PC1 and PC2, were able to represent more 

295 than half of the variance in the data and accurately depict the correlations between the similarities 

296 of the molecules, 234-dimensional vectors for each unique molecule were projected to 2D-space. 

297 Figure 7 displays the PCA plot for both training and external set compounds and colored according 

298 to the AE for fold-change prediction or training compound name. According to the figure, other 

299 training compounds other than the IDV were not involved in cluster formation with external set 

300 molecules. Though the same external set molecules were not forming clusters, still there were three 

301 clusters that contain three or more molecules. For each of these cluster, we have selected one 

302 representative structure and additionally we have found the maximum common substructure 

303 (MCS) using the FMCS algorithm implemented in RDKit. We discovered that for all compounds 
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304 in the cluster with the representative structure A in Figure 7, the fold-changes were predicted with 

305 low errors (AE < 1.0). The compounds in this cluster have certain substructures with HIV 

306 inhibitors, such as a sulfonamide group, a bis-THF alcohol moiety, and a benzodioxole group [46]. 

307 The only structural difference in this cluster of compounds was observed on the side chain 

308 connecting to the phenoxy group. Our model, on the other hand, did not perform well for another 

309 cluster of compounds represented by structure B in Figure 7. Despite the fact that the MCS for 

310 three compounds in this cluster were similar to the preceding cluster, represented by structure A, 

311 there were subtle differences that caused compounds to be in distinct clusters. For these, the 

312 cyclohexyl hydroxy or cyclopentyl hydroxy group was attached to the N of the sulfonamide group. 

313 Furthermore, the varying side group of the phenoxy group in the first cluster was shorter in the 

314 second cluster since there was only phenyl group. Compounds having structure C are represented 

315 in another cluster, as seen in Figure 7. These compounds had a high resemblance to the IDV (see 

316 Figure 4 for a 2D representation of the IDV), and the fold-change was predicted with minimal 

317 errors (AE < 1.0). These compounds, like the IDV, have substructure groups such as 

318 piperazinecarboxamide, indenol derivative, and phenyl group. However, the compounds in this 

319 cluster have different attachment groups connected to piperazine ring instead of pyridine group in 

320 the IDV. We have also discovered that for the compound where the fold change estimation error 

321 above the threshold (AE ≥ 1.0), the exact value was 1.01, indicating that it is negligible. It should 

322 be noted, however, that this compound contains a Fluorine substituent, which is known to cause a 

323 significant increase in the inhibitory activity of compounds [47] and it may not be easily learnt 

324 using our model. This chemical similarity analysis revealed that our model can predict the fold 

325 change for similar compounds with low error, despite the fact that some of the external set 

326 molecules based on our descriptors were not similar (or in close proximity in the PCA plot in 

327 Figure 7) to internal set molecules. 

328

329 Discussions

330 This paper presents a machine learning approach for predicting fold-change values using HIV-1 

331 protease inhibitor and isolate characteristics. The filtered PhenoSense assay results made 

332 accessible in the Stanford HIV drug resistance database have been used training and 

333 testing machine learning models. Seven of the eight inhibitors have been used to train drug-isolate-

334 fold change-based feed-forward artificial neural networks, with the remaining one serving as test 
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335 data (LVO). In this context, the LVO procedure produces an objective testing approach for 

336 determining the learning capacity of models from the descriptors of the inhibitors. Both inhibitors 

337 and isolates have been encoded using binary mappings, which have been shown to be 

338 computationally effective. Because of their acknowledged advantages in molecular machine 

339 learning models, the Morgan fingerprints have been exploited as binary mappings of protease 

340 inhibitors [41-43]. An efficient ensemble process has been proposed and verified through various 

341 quantitative experiments to handle the overfitting trouble. 

342 The most significant contribution of this research is the construction of drug-isolate-fold change 

343 (DIF)-based ANN models, as opposed to the widely studied isolate-fold change (IF)-based models 

344 [29-40]. Because the IF models do not take the molecular fingerprints as input, they are insensitive 

345 to molecular structure. This study shows the possibility of achieving such a generalized model by 

346 feeding models with adequate data from various PIs in the presence of isolates. With the use of the 

347 LVO procedure throughout our investigation, the current DIF-based models have been shown to 

348 be capable of predicting the drug resistance profiles of unknown inhibitors. Even though the 

349 Stanford HIV database only has eight available inhibitors, having many isolates for each inhibitor 

350 has contributed to the learning process, and reasonable predictions have been found in the 

351 regression performance of remaining inhibitors.

352 The prediction of drug resistance tendencies for each PI pair is an unavoidable expectation from 

353 our DIF-based ANN models. Our generalized models can predict resistance trends with high 2D 

354 correlation scores, as demonstrated here. The DIF-based models have provided satisfactory 

355 accuracy, sensitivity, specificity, and MCC values by creating classification problems from the 

356 tendency relations of each PI pair. The DIF-based ANN model utilizes valuable information from 

357 the Morgan fingerprints to predict the fold change values of hidden inhibitors, according to our 

358 all-quantitative observations.

359 We have shown that our ANN model can categorize resistant and susceptible strains as well as 

360 rank inhibitors based on resistance profiles for an external dataset. The external dataset is designed 

361 in such a way that the unique molecules are comparable enough to any of the primary eight PI and 

362 there is no bit loss in the reduction procedure of the Morgan fingerprints from 512 to 234 

363 dimensions. Thus, whenever a molecule satisfies these conditions, our DIF-based model has ability 

364 to compare this molecule with existing PIs in terms of their resistance scores.
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365 Instead of building independent separate models for each inhibitor, this study offers a fresh 

366 viewpoint on the field by incorporating inhibitor characteristics on the input side of machine 

367 learning models. The most obvious drawback of our model is the dearth of protease inhibitors with 

368 sufficient genotype-phenotype information. Nevertheless, our encouraging findings have 

369 demonstrated that including genotype-phenotype information of novel protease inhibitors will help 

370 build more generic drug-isolate-fold change-based machine learning models. Additionally, 

371 feeding the DIF-based models with data from many conventional and nonconventional inhibitors 

372 may result in a unified model for forecasting drug resistance tendencies for any PI pair in the 

373 presence of known genotypes. The drug development process for evolvable diseases, such as HIV, 

374 bacterial infections, and cancer should be fundamentally different from diseases such as blood-

375 pressure regulators. A drug needs to be effective and stay effective through the test of evolution. 

376 Predicting resistance potentials for drugs is becoming a necessity. 

377

378 Conclusions

379 This study has revealed the advantages of developing DIF-based models to predict drug resistance 

380 profiles. Instead of IF-based models, the current approach has allowed us to investigate a new 

381 model that can predict the drug resistance tendencies of PI pairs. Even with only eight PIs 

382 available, internal and external test results show that the DIF-based model takes significant 

383 information from inhibitor descriptors and leads to satisfactory regression performance. As a 

384 result, after finishing this study, it is highlighted on the research agenda to train ANN models with 

385 more inhibitors by expanding the existing dataset. In this context, it will be feasible to track the 

386 drug resistance profiles of any novel protease inhibitor, and it is strongly believed that these 

387 insightful forecasts will be a right direction for moving forward.
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Table 1(on next page)

Predictive performance of DIF-based ANN models.

Mean square error (MSE) and R2 values of the DIF-based ANN models for predicting the
logarithmic fold change values of eight PIs are presented. Drug-isolate-fold change models
are constructed as a general neural network model taking drug fingerprints and mutation
information as inputs. For each row, the corresponding drug has not been included in the
training process. The test set performance of each model has been evaluated with respect to
the excluded drugs. 100*50 simulations with random weights have been done, and 100
neural network models that yield minimum MSE for interior test set among 50 trials are
obtained. The final neural network model is achieved by taking the mean of 100 models.
Abbreviations: ATV, atazanavir; DRV, darunavir; FPV, fosamprenavir; IDV, indinavir; LPV,
lopinavir; NFV, nelfinavir; SQV, saquinavir; TPV, tipranavir.
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1 Table 11 Mean square error (MSE) and  values of the DIF-based ANN models for predicting �2
2 the logarithmic fold change values of 8 PIs are presentedb.�2 MSE

ARVsa Whole dataset Test set Whole dataset Test set

ATV 0.865 0.778 0.087 0.166

DRV 0.857 0.736 0.092 0.227

FPV 0.849 0.738 0.097 0.160

IDV 0.861 0.811 0.090 0.131

LPV 0.852 0.822 0.096 0.188

NFV 0.845 0.757 0.101 0.215

SQV 0.833 0.731 0.109 0.283

TPV 0.821 0.359 0.116 0.560

3 a Abbreviations: ATV, atazanavir; DRV, darunavir; FPV, fosamprenavir; IDV, indinavir; LPV, lopinavir; NFV, 

4 nelfinavir; SQV, saquinavir; TPV, tipranavir.

5 b Drug-isolate-fold change models are constructed as a general neural network model taking drug fingerprints and 

6 mutation information as inputs. For each row, the corresponding drug has not been included in the training process. 

7 The test set performance of each model has been evaluated with respect to the excluded drugs.  simulations 100 × 50

8 with random weights have been done, and 100 neural network models that yield minimum MSE for interior test set 

9 among 50 trials are obtained. The final neural network model is achieved by taking the mean of 100 models.

10

11
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Table 2(on next page)

Accuracy, sensitivity, specificity and MCC values of the DIF-based ANN models for
predicting the drug resistance tendencies for each couple of ARVs.

Accuracy, sensitivity and specificity values represent the rate of true predictions, true
positive rate and true negative rate, respectively. The common genotype data is used for
each PI pair by eliminating the observations satisfying |log⁡(A)-log⁡(B)|≤log2 where A and B are
the fold change values of drugs A and B for a specified genotype.
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1 Table 22 Accuracy, sensitivity, specificity and MCC values of the DIF-based ANN models for 

2 predicting the drug resistance tendencies for each couple of ARVsa. 

ARVs ATV DRV FPV IDV LPV NFV SQV TPV

Accuracy - 0.970
(224/231)

0.932
(438/470)

0.923
(264/286)

0.913
(303/332)

0.948
(361/381)

0.896
(301/336)

0.983
(404/411)

Sensitivity - 0.500
(7/14)

0.772
(78/101)

0.850
(85/100)

0.978
(178/182)

0.986
(291/295)

0.720
(90/125)

0.000
(0/6)

Specificity - 1.000
(217/217)

0.976
(360/369)

0.962
(179/186)

0.833
(125/150)

0.814
(70/86)

1.000
(211/211)

0.998
(404/405)

ATV

MCC - 0.696 0.791 0.829 0.828 0.856 0.786 0.000

Accuracy 0.970 
(224/231)

- 0.968
(184/190)

0.917
(222/242)

0.960
(215/224)

0.976
(321/329)

0.936
(206/220)

0.897
(156/174)

Sensitivity 1.000
(217/217)

- 0.972
(172/177)

0.966
(198/205)

0.982
(214/218)

1.000
(308/308)

0.972
(173/178)

0.714
(40/56)

Specificity 0.500
(7/14)

- 0.923
(12/13)

0.649
(24/37)

0.167
(1/6)

0.619
(13/21)

0.786
(33/42)

0.983
(116/118)

DRV

MCC 0.696 - 0.792 0.662 0.162 0.777 0.788 0.761

Accuracy 0.932
(438/470)

0.968
(184/190)

- 0.936
(677/723)

0.952
(511/537)

0.964
(878/911)

0.930
(705/758)

0.932
(369/396)

Sensitivity 0.976
(360/369)

0.923
(12/13)

- 0.993
(552/556)

0.996
(465/467)

0.996
(817/820)

0.975
(502/515)

0.511
(24/47)

Specificity 0.772
(78/101)

0.972
(172/177)

- 0.749
(125/167)

0.657
(46/70)

0.670
(61/91)

0.835
(203/243)

0.989
(345/349)

FPV

MCC 0.791 0.792 - 0.816 0.771 0.782 0.838 0.630

Accuracy 0.923 
(264/286)

0.917
(222/242)

0.936
(677/723)

- 0.952
(399/419)

0.952
(498/523)

0.929
(562/605)

0.957
(404/422)

Sensitivity 0.962
(179/186)

0.649
(24/37)

0.749
(125/167)

- 0.989
(270/273)

0.994
(468/471)

0.874
(221/253)

0.280
(7/25)

Specificity 0.850
(85/100)

0.966
(198/205)

0.993
(552/556)

- 0.884
(129/146)

0.577
(30/52)

0.969
(341/352)

1.000
(397/397)

IDV

MCC 0.829 0.662 0.816 - 0.895 0.702 0.854 0.518

Accuracy 0.913
(303/332)

0.960
(215/224)

0.952
(511/537)

0.952
(399/419)

- 0.944
(526/557)

0.929
(509/548)

0.982
(429/437)

Sensitivity 0.833
(125/150)

0.167
(1/6)

0.657
(46/70)

0.884
(129/146)

- 0.979
(375/383)

0.836
(173/207)

0.632
(12/19)

Specificity 0.978
(178/182)

0.982
(214/218)

0.996
(465/467)

0.989
(270/273)

- 0.868
(151/174)

0.985
(336/341)

0.998
(417/418)

LPV

MCC 0.828 0.162 0.770 0.895 - 0.869 0.850 0.755

Accuracy 0.948 
(361/381)

0.976
(321/329)

0.964
(878/911)

0.952
(498/523)

0.944
(526/557)

- 0.935
(735/786)

0.966
(477/494)

Sensitivity 0.814
(70/86)

0.619
(13/21)

0.670
(61/91)

0.577
(30/52)

0.868
(151/174)

- 0.451
(41/91)

0.188
(3/16)

Specificity 0.986
(291/295)

1.000
(308/308)

0.996
(817/820)

0.994
(468/471)

0.979
(375/383)

- 0.999
(694/695)

0.992
(474/478)

NFV

MCC 0.846 0.777 0.782 0.702 0.869 - 0.639 0.268

Accuracy 0.896
(301/336)

0.936
(206/220)

0.930
(705/758)

0.929
(562/605)

0.929
(509/548)

0.935
(735/786)

- 0.898
(359/400)

Sensitivity 1.000
(211/211)

0.786
(33/42)

0.835
(203/243)

0.969
(341/352)

0.985
(336/341)

0.999
(694/695)

- 0.146
(7/48)

SQV

Specificity 0.720 0.972 0.975 0.874 0.836 0.451 - 1.000
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(90/125) (173/178) (502/515) (221/253) (173/207) (41/91) (352/352)

MCC 0.786 0.788 0.838 0.854 0.850 0.639 - 0.361

Accuracy 0.983
(404/411)

0.897
(156/174)

0.932
(369/396)

0.957
(404/422)

0.982
(429/437)

0.966
(477/494)

0.898
(359/400)

-

Sensitivity 0.998
(404/405)

0.983
(116/118)

0.989
(345/349)

1.000
(397/397)

0.998
(417/418)

0.992
(474/478)

1.000
(352/352)

-

Specificity 0.000
(0/6)

0.714
(40/56)

0.511
(24/47)

0.280
(7/25)

0.632
(12/19)

0.188
(3/16)

0.146
(7/48)

-
TPV

MCC 0.000 0.761 0.630 0.518 0.755 0.268 0.361 -

3
a Accuracy, sensitivity and specificity values represent the rate of true predictions, true positive 

4 rate and true negative rate, respectively. The common genotype data is used for each PI pair by 

5 eliminating the observations satisfying  where and  are the fold |log (�) ‒ log (�)| ≤ ���2 � �
6 change values of drugs A and B for a specified genotype.

7
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Table 3(on next page)

Classification performance of the ANN model on the external test data.

In resistance classification procedure, the ANN model is used to classify the genotypes as
drug resistant (Fold Change >=3) and susceptible (Fold Change<3) for each external test
data. On the other hand, for ranking classification procedure, the ANN ranks the drugs for a
given genotype in terms of their logarithmic fold change values.

PeerJ reviewing PDF | (2022:11:79376:1:2:NEW 19 Jan 2023)

Manuscript to be reviewed



1 Table 3. Classification performance of the ANN model on the external test data. In resistance 

2 classification procedure, the ANN model is used to classify the genotypes as drug resistant (

3 ) and susceptible ( ) for each external test data. On the other ���� �ℎ���� ≥ ���� �ℎ����
4 hand, for ranking classification procedure, the ANN ranks the drugs for a given genotype in terms 

5 of their logarithmic fold change values.   

M���� / M����� A��A���	 S�
�������	 S
��������	 M�� A��

R������
�� �������������
 0.678 0.536 0.935 0.468 0.843

Ranking Classification 0.749 0.767 0.730 0.497 0.819

6

7
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Figure 1
Data versus the predicted fold change values from DIF-based ANN models.

DIF-based ANN regression models are constructed with the LVO testing methodology. For
each figure, the fold-change results are estimated by an ANN model, which is trained with the

remaining data of the seven PIs. The R2 values correspond to the square of the linear
correlation coefficient of the data and prediction.
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Figure 2
Prediction of the fold-change tendencies with the DIF-based ANN model for each PI pair.

The common isolate data of each PI pair and the corresponding DIF-based ANN model
predictions are illustrated with 2D correlation coefficients. For each PI, the prediction is
constructed using the DIF-based ANN model, which is trained with the remaining seven PI
data. The illustrations show the tendencies of the drug resistances for each PI pair for
common genotypes.
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Figure 3
Classification performances of the DIF-based ANN models

The DIF-based ANN classification models are constructed with the LVO methodology. For
each PI, the classification of resistant and non-resistant isolates is estimated by an ANN
model trained with the remaining data of the seven PI. The AUC values correspond to the
area under the ROC curves, and the accuracy is evaluated with the true estimation rate.
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Figure 4
Chemical structures of eight PIs utilized in the DIF-based ANN model training.
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Figure 5
Resistance classification for two compounds having similar structures.

A ranking classification example for two compounds that have similar structures with
different resistance profiles for the same strain (L10I, L19Q, K20R, E35D, M36I, S37N, M46I,
I50V, I54V, I62V, L63P, A71V, V82A, L90M, E28K, K32E, V35I, T39T, E40DV, M41L, K43E,
Y181Y).
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Figure 6
The ROCs corresponding to resistance and ranking classifications for the test data.

The DIF-based ANN model has been used to (A) classify the resistance and susceptible
strains (B) classify the rankings of 853 pair of resistance scores, for various molecules
existing our external data. The AUC ratings associated with the ROC curves measure how
threshold probabilities affect FPR-TPR pairs in classification tasks.
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Figure 7
PCA plot for external set molecules obtained using the unique characteristic 234 bits
fingerprint descriptors.

PCA plot for external set molecules produced with the unique 234-bit fingerprint descriptors.
The absolute error (AE) for fold change prediction using the model is calculated for each
molecule. Molecules are classified with respect to corresponding AE values (AE=1 is selected
as threshold). The data points in black are for the existing eight PIs, which have their names
indicated. As demonstrated, example structures from clusters are exhibited and designated
A, B, and C. In the 2D depiction, the most prevalent substructures in the same clusters have
been highlighted in dark blue.
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