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Dung beetles are considered to be habitat quality bioindicators. However, studies
regarding the Scarabaeinae diversity in remediated ecosystems previously affected by
hydrocarbon activity are null. We evaluated the diversity of dung beetles present in
remediated soils previously contaminated with hydrocarbons and heavy metals
(Agricultural soils and Sensitive ecosystems) and in non-contaminated soils (Natural forest
and Palm plantations) in the Ecuadorian Amazon. Four sampling sites within each type of
soil were established. At each site, six pitfall traps were installed and eleven samples were
carried out monthly over one year. Each month, the traps remained active for 24 hours
during a period of five consecutive days, resulting in a total sampling effort of 880
monitoring days with 330 trap-days per site. A total of 7,506 individuals belonging to 13
genera and 37 species of Scarabaeinae were captured. Mean values of abundance,
richness, and diversity differed between ecosystems within each month. The non-
contaminated soils ecosystems presented a higher abundance, richness, and diversity of
beetles than the remediated soils ecosystems. Natural forest and Palm plantations
presented higher abundance, richness, and diversity than Sensitive ecosystems and
Agricultural soils, respectively. It can be concluded that dung beetle diversity in soils non-
degraded (Natural forest and Palm plantations) do not only depend on the characteristics
of the ecosystems, but also on the month of sampling.
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21 Abstract

22

23 Biodiversity in remediated soil ecosystems previously affected by hydrocarbon activities is 
24 poorly understood. Therefore, bioindicators such as dung beetles could be a valuable tool to 
25 elucidate the benefits of remediation processes. We evaluated the diversity of dung beetles on 
26 remediated soil ecosystems (Agricultural soils and Sensitive ecosystems) and on non-
27 contaminated soils (Natural forests and Palm plantations) in Sucumbíos and Orellana provinces, 
28 Ecuadorian Amazon. The study was conducted at four sampling sites per ecosystem type (a total 
29 of 16 sites). At each sampling site, six pitfall traps were installed and monitored monthly for a 
30 120-hour period during one year. We collected 37 species and 7,506 individuals of dung beetles. 
31 We observed significant differences in mean species abundance, richness and diversity between 
32 non-contaminated soil ecosystems and remediated soil ecosystems, with Natural forests 
33 presenting the highest values, and Agricultural soils the lowest values. Regarding sampling 
34 month, we also found significant differences among ecosystems. It is remarkable that between 
35 the Agricultural soils (remediated soil ecosystems) and Palm plantations (non-contaminated 
36 soils) we found the highest species similarity (34.2%). Variation in dung beetle diversity among 
37 ecosystems may aid in decision making to improve remediation processes at sites affected by 
38 hydrocarbon activities.
39

40 Subjects Biodiversity, Ecology, Entomology
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42

43 Introduction

44 The extraction of hydrocarbon resources has led to the fragmentation of tropical forests around 
45 the world (Abrahams, Griffin & Matthews, 2015; Bogaert et al., 2011; Thomas, Brittingham & 
46 Stoleson, 2014). In addition, oil extraction processes often cause accidental spills, which result in 
47 contamination of soil and water sources, affecting the environment and hence all life forms 
48 (Sajna et al., 2015; Souza, Vessoni-Penna & De Souza Oliveira, 2014). In Ecuador, the Amazon 
49 Forest is the most affected site by hydrocarbon activities (Villacís, 2016; Villacís et al., 2016a; 
50 Villacís et al., 2016b), where crude oil spills of around 650,000 barrels have negatively impacted 
51 the diversity of flora and fauna (Yánez & Bárcenas, 2012; Ministerio del Ambiente, 2016). Due 
52 to this situation, the Ecuadorian government has remediated 1,200,098 m³ of contaminated soil 
53 (PETROAMAZONAS EP, 2018). The remediation process includes the collection and washing 
54 of solid waste; the suction and transport of fluids; the cleaning of contaminated soil; and the 
55 revegetation of intervened areas (García-Villacís, 2021). After remediation, each site is 
56 catalogued as either Agricultural soil or Sensitive ecosystem in accordance with specific 
57 permissible levels of hydrocarbons, cadmium, nickel, and lead established in environmental 
58 regulations (Ministerio de Energía y Minas, 2010). 
59 García-Villacís et al. (2021) analyzing the benefits of the remediation process in Ecuador 
60 included ecosystem variables such as acidification, terrestrial-, and freshwater-eutrophication, 
61 and freshwater ecotoxicity. However, organisms that serve as bioindicators of ecosystem 
62 alterations were not included. Changes in the abundance, diversity, and composition of these 
63 organisms can elucidate the effects of environmental disturbance (Kremen, 1992; Grand et al., 
64 2017). Among the most commonly used bioindicators are dung beetles (Coleoptera, 
65 Scarabaeinae), which are distributed across a wide range of geographical locations (Lumaret & 
66 Lobo, 1996; Herzog et al., 2013), have high levels of diversity (Espinoza & Noriega, 2018), and 
67 are sensitive to microclimatic changes caused by deforestation and forest fragmentation (Campos 
68 & Hernández, 2015; Davis & Sutton, 1998; Davis et al., 2001). Dung beetle communities are 
69 commonly decreasing under environmental changes that also affect overall ecosystem health 
70 (Otavo, Parrado-Rosselli & Noriega, 2013), since these organisms fulfill important ecological 
71 functions such as secondary seed dispersal, decomposition of organic matter, and nutrient 
72 cycling (Rangel-Acosta & Martínez-Hernández, 2017; Fernandes et al., 2019).
73 Several studies have been conducted to assess the diversity of dung beetles in degraded 
74 ecosystems (Andresen, 2005; Feer & Hingrat, 2005; Nichols et al., 2007; Sánchez-de-Jesús et al., 
75 2016). Therefore, dung beetle diversity could be a useful tool to better understand the impact of 
76 remediation activities on sites previously affected by hydrocarbon activities. It was hypothesized 
77 that sites with soil degradation (Sensitive ecosystems and Agricultural soils) decrease dung 
78 beetle diversity when compared to non-contaminated soils (Natural forests and Palm 
79 plantations). To address this hypothesis, changes in abundance, richness, and diversity of dung 
80 beetle communities were evaluated in two types of remediated ecosystems.
81

82 Materials & Methods

83

84 Ethics statement
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85 This study was authorized under research permit 016-2018-IC-DPAO/AVS and authorization for 
86 the mobilization of specimens 005-2019-MOV-FAU-DPAO/AVS, both issued by the Ministerio 
87 del Ambiente del Ecuador.
88

89 Study area
90 The study was performed in the Sucumbíos (0°  76°  and Orellana (0°  75°  
91 provinces in the Ecuadorian Amazon. The land use of the localities is distributed in 70% for 
92 natural forest, 22% for crops and pastures, and 8% for urban and industrialized areas (Ministerio 
93 de Agricultura y Ganadería, 2015). The predominant climate is Humid Tropical Rainforest 
94 according to the Holdridge climate classification (Holdridge, 1967), with a mean annual 
95 temperature of mean 24.5 º C and heavy rainfall throughout the year (4132 mm). Mean of 
96 climate variables during the study period are showed in table 1. 
97

98 Selection of collection sites
99 Sampling sites were established after the completion of the remediation process (~1 year) in 

100 ecosystems previously affected by hydrocarbon activities (Sensitive ecosystems and Agricultural 
101 soils). The designation as sensitive ecosystems or agricultural soils is based mainly on 
102 contaminant levels in accordance with environmental regulations (lower in Sensitive ecosystems) 
103 but also on the landscape characteristics of each site (Table 2). In addition, two types of non-
104 contaminated soil ecosystems used as controls (Natural forests and Palm plantations) were also 
105 included. Before the beginning of the study, a composite soil sample (5 per sampling site) was 
106 collected in order to determine the total petroleum hydrocarbon and polycyclic aromatic 
107 hydrocarbon concentrations (Table 2) using GC2 014 gas chromatographs (Shimadzu Scientific 
108 Instruments, Inc, Columbia, MD, USA). In addition, the concentration of cadmium (Cd), nickel 
109 (Ni), and lead (Pb) in soils (Table 2) was determined by using atomic absorption spectrometry 
110 (AA-6800; Shimadzu Scientific Instruments, Inc, Columbia, MD, USA) as indicated by the EPA 
111 SW-846 method (Le Blanc & Majors, 2001). The analyses were performed at the Soil 
112 Laboratory of the Universidad de las Fuerzas Armadas, Ecuador. 
113

114 Sampling design
115 Sixteen sample sites (four per each ecosystem type) were established. In each sample site, six 
116 pitfall traps baited with pig dung were placed 10 m apart. Pitfall traps consisted of plastic 
117 containers of 0.8 L (15 cm depth × 10 cm diameter) buried up to their rims in the soil and 
118 containing a solution 50:50 of water with alcohol. The traps remained active at the sites for 120 h 
119 per month during one year (February 2018 to January 2019). The amount of dung per trap was 
120 ~50 g and was replaced every 24-36 h. In April, 2019 the traps were not evaluated due to conflict 
121 with the landowners, who prevented the entrance to the sampling sites in La Joya de los Sachas 
122 locality.
123 Dung beetles were preserved in 70% ethanol, and some specimens were pinned and 
124 identified to species using dichotomous keys (Chamorro et al., 2018; Vaz-De-Mello et al., 2011) 
125 and comparing with voucher specimens from Museo de Historia Natural �Gustavo Orcés�, 
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126 (Escuela Politécnica Nacional, Quito, Ecuador). Vouchers were deposited in the Museum of 
127 Zoological Researches (Universidad de las Fuerzas Armadas, Sangolquí, Ecuador).
128

129 Data analysis

130 All analyses were performed using the software INFOSTAT (Di Rienzo et al., 2008) in interface 
131 with R (R Core Team, 2013). To detect the effectiveness of the inventories, species accumulation 
132 curves were created using the Clench method (Moreno & Halffter, 2000; Soberon & Llorente, 
133 1991). In addition, the richness observed in each type of ecosystem was evaluated using the non-
134 parametric estimator Chao 1 (Colwell & Elsensohn, 2014).
135 The monthly data were grouped to estimate the total species abundance, richness and 
136 Shannon diversity index of each plot (Magurran, 1998). Pooled data were used to compare the 
137 four types of ecosystems due to the homogeneity among the four sampling sites per ecosystem 
138 type.
139 Abundance, richness, and diversity were analyzed by using repeated measures (by 
140 month). Differences between ecosystems were analyzed using analysis of variance with mixed 
141 models for a complete randomized design with six replications. In addition, we performed 
142 orthogonal contrast for treatments. The first contrast evaluated differences in abundance, 
143 richness, and diversity between remediated soil ecosystems and non-contaminated soil 
144 ecosystems. The second contrast evaluated the differences between Agricultural soils and Palm 
145 plantations, and the third contrast evaluated the differences between Sensitive ecosystems and 
146 Natural forests. Furthermore, we tested for differences between ecosystems, months and 
147 interactions by using a DGC post hoc test (P < 0.05). The normality of the data was verified 
148 using the Shapiro-Wilks test, and the homoscedasticity was modeled using independent 
149 variances. 
150 The Sørensen index was used to compare the similarity of dung beetle species 
151 composition between each type of ecosystem evaluated. Finally, a dendrogram was prepared 
152 using this information (Beals, 1984).
153

154 Results

155 We collected 7,506 individual beetles of the Scarabaeinae subfamily, belonging to 13 genera and 
156 37 species (Table 3). Specific abundance varied greatly, ranging from one to 1,502 individuals 
157 (an average of 202.86 individuals ± 52.81 SE per species). Canthon aequinoctialis (20% of total 
158 abundance), Ontherus sulcator (13%), Dichotomius ohausi (10%), and Deltochilum howdeni 

159 (9%), accounted for 52% of all individuals collected. Fifty-one percent of the species were 
160 classified as rare, with a relative frequency of less than ten percent. Twenty-two percent of the 
161 total species collected were found in all four evaluated ecosystems, while 12 others were 
162 exclusive to one of them: 11 in the natural forest and one in the Sensitive Ecosystem. 
163 Canthidium aurifex, Eurysternus atrosericus, Ontherus sulcatur, Onthophagus osculatii, and O. 
164 nyctopus are new provincial records, whereas O. hircus is a new record for Ecuador (Table 3). 
165 As the sampling time increased, the accumulated richness of the dung beetle decreased 
166 from the seventh month in the Natural forests, whereas in the Sensitive ecosystems, Agricultural 
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167 soils and Palm plantations, the curves did not stabilize (Fig. 2). The non-parametric estimator of 
168 richness (Chao 1) showed that the efficiency of the inventories reached 99.20 % in natural forest, 
169 97.63 % in sensitive ecosystems, 94.34 % in agricultural soils, and 87.35 % in palm plantations.
170 The average values of abundance, richness, and the Shannon index differed between 
171 ecosystems within each month (Table 4).
172 The orthogonal contrast showed that non-contaminated soil ecosystems contained higher 
173 abundance, richness and diversity of beetles in comparison to remediated soil ecosystems (F1, 132 

174 = 313.51, P < 0.0001). Natural forest presented higher abundance, richness and diversity than 
175 Sensitive ecosystems (F1, 132 = 313.51, P < 0.0001) and Palm plantations presented higher 
176 abundance, richness and diversity than Agricultural soils (F1, 132 = 51.60, P < 0.0001; Fig. 3).
177 The highest monthly average values for abundance (January and November), richness (January, 
178 February, September, October and November) and Shannon's index (September and November) 
179 were recorded in the Natural forests (Fig. 4).
180 Cluster analysis showed that Agricultural ecosystems and Palm plantations presented a 
181 species similarity of 32.4%, and both were similar to the Sensitive ecosystems at 26.8%. The 
182 Natural forests were similar to other ecosystems only at 8.53% (Fig. 5).
183

184 Discussion

185 Our study provides the first quantitative data on dung beetle communities in ecosystems affected 
186 by hydrocarbon activities in the Ecuadorian Amazon. For all evaluated ecosystems, the richness 
187 of dung beetle communities was greater than 87%, which suggests that minimum changes in 
188 species inventories could exist if sampling effort is increased (Feinsinger, 2001).
189 The species presented in this study represent 17% of the 220 species of dung beetles 
190 registered in Ecuador (Chamorro et al., 2018) and more than 50% of previously registered 
191 species in the Orellana and Sucumbíos provinces. Five species are new for these provinces, 
192 whereas Ontophagus hircus was recorded for the first time in Ecuador. This demonstrates that 
193 beetle diversity must be studied to understand soil disturbance in tropical forests (Beiroz et al., 
194 2017).
195

196 Dung beetle diversity

197 The community structure in the non-contaminated soil ecosystems trends toward high 
198 abundance, richness, and diversity when compared to remediated soil ecosystems. The results are 
199 similar to those reported by Da Silva, Vaz-de-Mello & Di Mare (2013) and Batilani-Filho & 
200 Hernandez (2017), who also found higher values of abundance, richness, and diversity of dung 
201 beetles in remnant Atlantic forests (Southern Brazil) and lower values in soils affected by 
202 agriculture and deforestation. This could be because natural forests are the habitat of birds and 
203 mammals, which provide food resources for dung beetles (Campos & Hernández, 2015; Niero & 
204 Hernández, 2017).
205 Dung beetles are very sensitive to habitat disturbance (Audino, Louzada & Comita, 2014; 
206 Campos & Hernández, 2015; Da Silva, Vaz-de-Mello & Di Mare, 2013). Changes in dung beetle 
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207 community structure have been reported under low vegetation cover (Nichols et al., 2007) as a 
208 result of intense solar radiation on the soil surface, which accelerates the decomposition rate of 
209 food sources (Méndez et al., 2019). Moreover, chemical perturbations affect dung beetle 
210 communities in several ways such as changes in composition, diversity and population. (Hutton 
211 & Giller, 2003; Correa et al., 2022). Therefore, the presence of hydrocarbons and heavy metals 
212 in Agricultural soils and Sensitive ecosystems as well as landscape modifications at oil 
213 exploitation sites could influence abundance, richness, and diversity of dung beetle assemblages.
214 Similarly, cluster analyses showed an acute division between the Natural forests and 
215 other ecosystems evaluated. This could be because natural forest fragments within human 
216 modified landscapes constitute wildlife refuges (Blaum et al., 2009). This trend of decreased 
217 dung beetle diversity between the Natural forest and the other ecosystem types follows a general 
218 decreasing gradient of diversity and an increase in anthropomorphic disturbances due to 
219 contamination and land use (Aninta et al., 2019; McCain, 2005; Stevens & Gavilanez, 2015). For 
220 example, Scarabaeinae diversity in Palm plantations was similar to that found in Agricultural 
221 soils. This is consistent with previous studies of Fitzherbert et al. (2008) and Harada et al. 
222 (2020), which reported that agrochemicals could favor the degradation of soil and nutrients and 
223 hence diminish dung beetle diversity.
224

225 Temporal variation of dung beetle diversity

226 The diversity of dung beetles is determined by regional rainfall patterns (Novais et al., 2016). 
227 Our results indicated that the diversity of dung beetles in the Natural forests was higher during 
228 the month with lower levels of precipitation (October 238 mm month-1) which is consistent with 
229 the study of Ibarra-Polesel, Damborsky & Porcel (2015), who studied dung beetles in subtropical 
230 ecosystems. However, previous studies demonstrate that higher beetle diversity is linked to the 
231 months with elevated values of precipitation (Escobar et al., 2008; Nunes et al., 2016; Rangel-
232 Acosta & Martínez-Hernández, 2017).
233 Higher dung beetle diversity during the months with lowest levels of rainfall in the 
234 evaluated ecosystems may be due to the interference of factors other than rainfall. For example, 
235 alteration of microclimates and microhabitats (Medina, Escobar & Kattan, 2002; Noriega & 
236 Realpe, 2018; Sánchez-Hernández et al., 2022), changes in trophic structure (Novais et al., 
237 2016), as well as altitudinal gradient effects (Noriega & Realpe, 2018). These factors could 
238 affect mainly the mobility, displacement, and genetic flow of organisms between ecosystems 
239 (Harvey, Gonzalez & Somarriba, 2006). For example, the Natural forests in the provinces where 
240 the study was conducted are under a higher degree of environmental disturbance (deforestation, 
241 forest fragmentation, oil spills, population growth, etc.) (Rivera-Parra et al. 2020) and, in 
242 general, the entire Amazon basin is under massive degradation due to deforestation (Marin et al. 
243 2022).
244

245 Implications for the conservation
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246 The diversity of dung beetles provides a useful tool for assessing the temporary status of 
247 remediated sites previously affected by hydrocarbon activities. Although differences in beetle 
248 diversity were found between remediated ecosystems, similar recommendations for conservation 
249 measures can be made for both Agricultural soils and Sensitive ecosystems. Therefore, 
250 Agricultural soils and Sensitive ecosystems should not only be based on the levels of 
251 hydrocarbons and heavy metals but also on the diversity of bioindicators.
252 The presence of dung beetles in the remediation ecosystems provides a guideline for 
253 implementing strategies to conserve the existing diversity. However, the conservation of 
254 biodiversity in remediated ecosystems depends not only on remediation activities, but also on 
255 other anthropogenic activities in the Amazonian tropical forests.
256 Overall, dung beetle diversity could be used for conservation planning and 
257 management of hydrocarbon- and heavy metal-contaminated ecosystems. In addition, our study 
258 provides a baseline for future research that may include other environmental variables and 
259 activities that modify dung beetle diversity.
260

261 Conclusions

262 Our study shows that in sites where hydrocarbons and heavy metals were present, the abundance, 
263 richness and diversity of dung beetles were lower compared to non-contaminated sites. In 
264 addition, dung beetle diversity changed throughout the year and was significantly higher in 
265 months with low precipitation.

266
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Figure 1
Location of collection sites in the Sucumbíos and Orellana provinces
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Figure 2
Species accumulation curves of Scarabaeinae communities recorded in remediated soil
ecosystems and non-contaminated soil ecosystems in Ecuadorian Amazon
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Figure 3
Abundance, richness, and diversity of beetles that were collected in remediated soil
ecosystems and non-contaminated soil ecosystems in the Ecuadorian Amazonia

Bars represent means ± standard error (n = 44)
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Figure 4
Abundance (top), richness (middle), and diversity (bottom) of beetles that were
collected monthly on remediated soil ecosystems and non-contaminated soil
ecosystems in the in the Ecuadorian Amazon

Values are means ± standard error (n = 4). Different letters in each point indicate significant
differences (DGC, P < 0.05)
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Figure 5
Species similarity clusters based on the Bray-Curtis distance of the Sorensen similarity
percentage in remediated soil ecosystems and non-contaminated soil ecosystems in the
Ecuadorian Amazon
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Table 1(on next page)

Mean values of climatic variables in the ecosystems evaluated
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1

2

3 r= High rainfall, d= Low rainfall

4

Order Month/Year Rainfall 

mm

Temperature 

º C

Humidity 

%

1 February/2018 r 368.81 24.36 90.86

2 March/2018 r 429.65 24.2 92.14

3 May/2018 r 372.02 24.2 93

4 June/2018 r 381.61 23.5 91.43

5 July/2018 d 322.25 23.96 90

6 August/2018 d 293.75 24.08 89

7 September/2018 d 248.15 24.48 88.17

8 October/2018 d 238.49 24.93 89.14

9 November/2018 d 298.9 24.92 88.5

10 December/2018 r 350.52 24.46 89

11 January/2019  r 376.31 24.76 89.5
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Table 2(on next page)

Soil characteristics of the remediated soil ecosystems and non-contaminated soil
ecosystems in the Ecuadorian Amazon
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1

Remediated s��� ee�s�s���s
Non-contaminated soil 

ecosystems
Variable 

Sensitive 

ecosystems

Agricultural 

soils

Natural 

forest

Palm 

plantations

Application of air and water to the 

soils with compressors and high-

pressure pumps to release crude oil 

(Petroamazonas EP, 2018)

Remediation Activities Yes Yes No No

Plot size (ha) 1 1 1 1

Total hydrocarbons (mg kg-1) < 1 0000 < 2 500 No No

Polycyclic Aromatic Hydrocarbons 

(mg kg-1)
< 1 < 2 No No

Cadmium (mg kg-1) < 1 < 2 No No

Nickel (mg kg-1) < 40 < 50 No No

Lead (mg kg-1) < 80 < 100 No No

Agrochemical Use No No No
Yes (herbicides 

and fungicides)

Tree cover presence Yes No Yes No

Number of present strata 2 0 4 2

Most abundant tree species

Otoba parvifolia, 

Guarea sp., 

Pouroma sp.

No

Ceiba 

pentandra, 

Otoba 

parvifolia, 

Pouteria 

aubrevillei, 

Inga sp., 

Nectandra 

guadaripo. 

Cordia 

alliodora.

Elaeis guianensis

Mean number of trees DAP > 10 cm 

per ha 
3.6 - 21.47 143

DAP mean ± SE (cm) 44.13±1.69 - 45.72±1.61 35.45±4.54

Mean total height ± SE (m) 14.54±0.65 - 16.23±0.25 18.45±2.21

2
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Table 3(on next page)

Dung beetle species collected in remediated soil ecosystems and non-contaminated soil
ecosystems in the Ecuadorian Amazon
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1

NoN Species R��	
� type Agricultural soils Natural forest T	�
� Sensitive ecosystems T	�
� Palm plantations Assemblage

1 CantC�� aea����������� Harold, 1868 RE 1 490 12 1 502

2 OntCO��� sulcatur F��������  1775 NR-P 18 135 747 90 990

3 D��C���!��� oC���� LuederL�"#$  1923 RE 7 639 17 72 735

4 DO����C���! C�h%O�� MartM&'(  1955 NR-P 671 13 1 685

5 OntC�)C�*�� C�O!���)�� Harold, 1887 RE 493 7 500

6 EurE��O���� plebep�� Harold, 1880 RE 6 386 4 30 426

7 OntC�)C�*�� osculatii Guérin-Méneville, 1855 NR-P 395 7 402

8 CopropC��O�� telamon Erichson, 1847 RE 11 307 22 33 373

9 OntC�)C�*�� x���C�!O��� Bates, 1887 RE 246 22 5 273

10 D��C���!��� sp. 1 NA 232 1 233

11 D��C���!��� mamillatus Felsche,1901 RE 186 2 1 189

12 DO����C���! ama+�����! Kolbe, 1905 RE 175 3 178

13 EurE��O���� atrosericus Génier, 2009 NR-P 1 134 5 5 145

14 EurE��O���� sa��!���� Génier, 2009 RE 107 107

15 CantC�� luteicoliis Erichson, 1847 RE 92 1 1 94

16 EurE��O���� caribaeus Herbst, 1789 RE 4 76 13 93

17 EurE��O���� h���!O����! Martínez, 1988 RE 1 61 7 10 79

18 CantC�%��! cf. rufinum Harold, 1867 RE 76 76

19 OntC�)C�*�� C����� Billberg, 1815 NR-E 10 40 6 56

20 OntC�)C�*�� nE���)�� Bates, 1887 NR-P 52 2 54

21 D��C���!��� podalirius Felsche, 1901 RE 49 49

22 U��xE� sp. 1 NA 48 48

23 EurE��O���� foedus Guérin-Méneville, 1844 RE 3 30 1 6 40

24 PC��O�� cC����!O��� Perty, 1830 RE 28 3 1 32

25 S�E,��������C�� macullatus Schmidt, 1920 RE 31 1 32

26 OxE��O���� silenus d�Olsouefieff, 1924 RE 1 4 1 16 22

27 EurE��O���� C�!��������� Balthasar, 1939 RE 19 1 1 21

28 OntC�)C�*�� onore Zunino & Halffter, 1997 RE 15 15

29 CantC�%��! sp. 1 NA 10 3 1 14

30 Canthidium aurifex Bates, 1887 NR-P 9 3 12

31 OxE��O���� conspicillatum Weber, 1801 RE 8 8

32 DO����C���! carinatum Westwood, 1837 RE 7 7

33 OntC�)C�*�� marginicollis Harold, 1880 RE 6 6

34 S�E,��������C�� furvus Schmidt, 1920 NA 4 4

35 CantC�%��! onitoides Perty, 1830 RE 3 3

36 -���*���O��� astE���x Halffter, Pereira & Martínez, 1960 RE 2 2

37 CantC�� angustatus Harold, 1867 RE 1 1

Abundance 62 6 221 927 296 7 506
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Richness 10 35 23 19 37

2 Data in bold indicate species with greatest specific abundance by ecosystem type in the study.  RE = registered in the provinces studied, NR-P = newly registered in the provinces studied, NA = not evaluated, NRE = newly registered 

3 in Ecuador

4
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Table 4(on next page)

Analysis of variance for the abundance, richness, and diversity of beetles that were
collected monthly in remediated soil ecosystems and non-contaminated soil ecosystems
in the Ecuadorian Amazon

Ecosystems were considered fixed factor and months random factor
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Abundance Richness ShannonSource df

F P F P F P

Ecosystems types (3) 302.09 < 0.0001 462.21 < 0.0001 314.65 < 0.0001

Remediated soils ecosystems vs. 

Control ecosystems

1 374.32 < 0.0001 483.13 < 0.0001 313.51 < 0.0001

Agricultural soils vs. Palm plantations 1 991.54 < 0.0001 59.97 < 0.0001 51.60 < 0.0001

Sensitive ecosystems vs. Natural forest 1 289.20 < 0.0001 502.33 < 0.0001 427.16 < 0.0001

Months 10 26.09 < 0.0001 18.63 < 0.0001 9.56 < 0.0001

Ecosystems × Months 30 8.07 < 0.0001 2.41 0.0003 1.90 0.0073

1 df = degrees of freedom; F = result of F-Fisher value; P = result of probability.
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