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ABSTRACT
De novo synthesis of thiamine (vitamin B1) in plants depends on the action of
thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the
THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae,
where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1
is observed in Panicoideae that remains in many modern monocots, including
sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we
identified ScTHI1-2 alleles showing differences in their sequence, indicating
divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in
the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic
environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor.
The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start
codon ATG and has cis-regulatory elements that putatively bind to transcription
factors associated with development, growth, development and biological rhythms.
An experiment set to compare gene expression levels in different tissues across the
sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves
regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in
meristem and culm, which varied with the plant age. Finally, yeast complementation
studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b
isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken
together, the present work supports the existence of multiple origins of THI1
harboring genomic regions in Poaceae with predicted functional redundancy.
In addition, it questions the contribution of the levels of the thiazole ring in C4
photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.
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INTRODUCTION
The activity of thiamine thiazole synthase (THI1) is key for the biosynthesis of thiamine,
also known as a vitamin B1 (Ribeiro et al., 1996). In plants, thiamine is produced through
the condensation of two heterocyclic phosphate molecules named hydroxymethyl-thiazole
(HET-P) and hydroxymethyl-pyrimidine (HMP-P) (Kong et al., 2008; Jurgenson, Begley &
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Ealick, 2009; Goyer, 2010; Rapala-Kozik, 2011). As a co-factor of several enzymes, thiamine
participates in carbohydrate metabolisms (Rapala-Kozik, 2011; Fitzpatrick & Noordally,
2021) such as pyruvate dehydrogenases involved in the finetuning between glucose and
fatty acid oxidation (LeClere, Rampey & Bartel, 2004; Marsden, McMillan & Hanefeld,
2020), transketolase associated with photosynthesis in the Calvin cycle (Frank, Leeper &
Luisi, 2007; Rapala-Kozik, 2011; Rocha et al., 2014), and pyruvate decarboxylases that act
in alcoholic fermentation (Forlani, Mantelli & Nielsen, 1999). All these pathways and
enzymes are essential for maintaining homeostasis and cell functioning.

In addition, to the canonical pathway of the thiazole ring biosynthesis for thiamine
production, cumulative evidence in the literature has raised the hypothesis that THI1 plays
roles that are still unclear. Initial studies in bacteria and yeast associated THI1 to tolerance
to oxidative stress and DNA repair mechanisms (Machado et al., 1996, 1997;Medina-Silva
et al., 2006). In Arabidopsis thaliana, THI1 was suggested to have a protective function
against salt and osmotic stress linked with the abscisic acid (ABA) hormone signaling
(Rapala-Kozik et al., 2012). More recently, Li et al. (2016) have demonstrated that the
AtTHI1 protein interacts with Ca2+-dependent protein kinases and modulates stomata
closure through ABA signaling during drought stress. A single gene encodes the AtTHI1
protein (Machado et al., 1996) which has two signal peptides at the N-terminus of the
protein due to the presence of two initiation codons that targets each of the isoforms to
either chloroplasts or mitochondria (Chabregas et al., 2001, 2003).

As drought stress strongly constrains crop yield (Dietz, Zörb & Geilfus, 2021), we aimed
to understand the evolution and diversity of THI1 in Poaceae, where C4 and C3
photosynthetic plants co-evolved. Species of agricultural interest, such as rice, corn, wheat,
sorghum, and sugarcane, are all members of this important family. Sugarcane (Saccharum
spp.) attracts special attention due to its ability to accumulate higher levels of sucrose in the
stalk internodes (Whittaker & Botha, 1997). Sucrose is the cheapest and one of the most
accessible sources of carbon for human and livestock consumption, and sugarcane
provides the best ratio of sugar yield per cultivated area worldwide (Formann et al., 2020).
Sugarcane is a C4 high-yield photosynthetic crop with the potential for bioenergy. This
energy source is explored in Latin America in Brazil, Mexico, and Colombia. Yet, other
countries could also increase the contribution of sugarcane to their fuel and energy sectors
(Khan & Khan, 2019).

The complexity of the sugarcane genome has hindered its full sequencing and accurate
gene annotation. A steady and progressive effort worldwide has produced encouraged
several initiatives starting with an EST database for sugarcane (Vettore et al., 2003) and
subsequently, a sugarcane BAC collection (de Setta et al., 2014), a monoploid version
(Garsmeur et al., 2018) and an allele resolved version of a commercial cultivar (Souza et al.,
2019). In all these genomic resources, two AtTHI1 homologs are identified. Our synteny
studies revealed that C4 photosynthetic plants maintain multiple copies of the THI1 gene
however with unequal distribution of genomic loci across closely related species. THI1
gene sequence diversification using phylogeny in Poaceae and clustering in Saccharum
complex is revealed. Cis-regulatory elements in the promoter region, as well as differential
gene expression pattern of the gene copies along development support that all three
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variants are expressed. Furthermore, ScTHI1-1 and ScTHI1-2b were capable of genetically
complementing yeast THI4 mutants. Taken together, our findings provide information on
the evolution and divergence of the THI1 gene in Poaceae and shed light on biological
aspects of the ScTHI1 genes in sugarcane.

MATERIALS AND METHODS
Screening of sugarcane ScTHI1 homologs in the BAC library and in
other grasses sequence collection of THI1 genes in grasses
Based on a conserved region of the two SAS sequences from the SUCEST database (Vettore
et al., 2001) identified as putative THI1 homologs, a pair of primers (thi1_F: CAC CAT
GGC CGA GAA CAG; thi1_R: CGT ACG AGC TCT CCA AGG AC) was used to screen
for the presence of ScTHI1 in the sugarcane BAC library (de Setta et al., 2014). As a result,
nineteen BACs were selected for sequencing and assembly as described previously (de Setta
et al., 2014).

Phytozome database v13 (Goodstein et al., 2012) and PLAZA Monocots 4.5 database
(Van Bel et al., 2018) were screened using BLAST search to identify THI1 homologs in
Poaceae group plants with an E-value cutoff of 10−5 and coverage ≥70%. Only nucleotide
and protein sequences from species with complete sequenced genomes were selected.
Manual inspection was performed to verify all putative candidates using the online
software InterProScan (Blum et al., 2021) and Pfam (El-Gebali et al., 2019) to check the
presence of the full THI4 protein family domain (PF01946).

Phylogenetic and synteny analyses
Full-length protein sequences were aligned and inspected using MAFFT v7.450 (Katoh &
Standley, 2013). The topology of phylogenetic tree was generated using the Bayesian
analysis algorithm with MrBayes v3.2.6 (Ronquist et al., 2012). The node’s significance was
evaluated by one run of 1,000,000 generations with Metropolis-coupled Monte Carlo
Markov chains (MCMC). The Bayesian model parameters were nucmodel = 4by4, nst = 2,
and aamodel = mixed for amino acid alignments. Markov chains were sampled every
1,000,000 generations. The remaining trees were used to compute the majority rule
consensus tree, the posterior probability of clades and branches lengths. Both analyses
were performed in Geneious Prime (version 2021.0.3).

To evaluate synteny across species within THI1 gene region, a 200 kb region was
explored for conserved genes both upstream and downstream within the genome of 24
examined species. A. thaliana genome sequence was used as the reference, since it is
currently the best genome assembly with highest quality and the completest genome
annotation. tBLASTn and the best-fit results (E-value ≤ 2e−10 and identity ≥80%) were
selected to explore these genome assemblies. An R package was used to design genes in a
chromosome-scale (Anand & Rodriguez Lopez, 2022) with adjustments in Inkscape
Illustrator.

Moura Dias et al. (2023), PeerJ, DOI 10.7717/peerj.14973 3/27

http://dx.doi.org/10.7717/peerj.14973
https://peerj.com/


Saccharum spp. THI1 sequence diversity analysis
A network analysis approach was used to address the THI1 homologs sequence diversity in
the Saccharum complex. A pair of primers (thi1Conserved_F: CTC CTC AAG TCC TCC
TTC GC and thi1Conseved_R: TCA TGC CGA TGT CCT GGA G) was used to generate
sequences corresponding to a conserved region of ScTHI1. Genomic DNA from closely
related species S. spontaneum (Mandalay), S. spontaneum (IN84-58), Miscanthus sp.,
S. officinarum, Brazilian hybrids SP8032-80, SP7011-43, SP8132-50, RB835486, RB72454,
RB867515, and other cultivars (POJ-2878 from Java; NA56-79 from Argentina; NCo-310
from South Africa; and Co-290 from India) were used as template in the PCR as well as the
R570 nineteen BACs. Amplicons were cloned and sequenced using the ABI PRIS 3730
DNA ANALYZER (Applied BiosystemsTM, Waltham, MA, USA). Sequence quality and
assembly was performed with Phred-Phrap-Consed package (Ewing & Green, 1998;
Gordon, Abajian & Green, 1998; Gordon, 2003). Only bases with phred quality ≥20 were
used, resulting in primary sequences of about 330 bp. Homologous regions from SbTHI1,
ZmTHI1, MsTHI1 were retrieved by BLASTn from Phytozome v13 database (Goodstein
et al., 2012).

As described in Vieira (2018), ClustalOmega (Sievers et al., 2011) using default
parameters was used to align all sequences. DnaSP5 (Librado & Rozas, 2009) and
NETWORK 4.6.1.2 (Bandelt, Forster & Röhl, 1999) software with default parameters were
used to generate the network graph. Representative sequences from three R570 BACs were
selected as follows, 108_C04 BAC represents ScTHI1-1, the one found in the 017_B18 BAC
represents ScTHI1-2a and the 094_O04 BAC represents ScTHI1-2b.

Promoter characterization and distribution of cis-regulatory elements
in THI1 homologs
We performed a comparative analysis of the promoter regions of the different occurrences
of THI1 in: Zea mays, Miscanthus sinensis, Sorghum bicolor, Saccharum spontaneum
(monoploid), and Saccharum sp. var. R570. The THI1 gene sequences were identified via
tBLASTn on PLAZA database and in BACs of sugarcane (R570 variety), by using the
homolog protein sequence of A. thaliana, as a query. Upstream sequences of 2,000 bp from
the start codon were assessed for conserved features and motifs, by using MEME suite tools
(Bailey et al., 2009). Twenty motifs were allowed to be from 5 to 25 bp in length, with an
E-value less than 0.05, the default parameter for MEME (Powell et al., 2019). The retrieved
motifs were run through TomTom (Gupta et al., 2007), via the JASPAR Core Plants
database (Khan et al., 2018), and the respective Uniprot IDs results were collected, if
p-value was equal or smaller than 0.01. The Uniprot IDs were then used to collect
biological GO terms for functions assignment of each motif, and g:Profiler (Raudvere et al.,
2019) was used for statistical analysis of GO terms overrepresentation.

Subcellular localization prediction
According to Chabregas et al. (2003), we identified two start codons in the THI1 sequences.
The whole amino acids sequence of THI1 starting from the first start codon (1st ATG) and
second (2nd ATG) was used for prediction of signal peptide cleavage site with SignalP
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(Armenteros et al., 2019b). To subcellular localization prediction was used TargetP
(Armenteros et al., 2019a).

Plant growth conditions for evaluating the expression of ScTHI1
homologs
Sugarcane (Saccharum sp. var. R570) was vegetatively propagated from the GaTE-Lab
sugarcane collection (Instituto de Biociências, USP). The culms were disinfected with 1.5%
hypochlorite, germinated on vermiculite, and maintained in a greenhouse for 15 days.
The seedlings were then transferred to pots (50 L) with a mixture of substrate 3:1
(commercial substrate and vermiculite). Irrigation occurred systematically, with nutrient
supplementation 15 days before harvest. Plants were harvested at 3, 6, and 9 months after
sprouting, and separated into apical meristem, leaf, culm, and root.

Total RNA and cDNA synthesis
Total RNA was isolated from fine powder ground tissue with TRIzol (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s recommendations. RNA
quantity and purity were measured in an ND-1000 NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The quality and integrity of the RNA
were verified by electrophoresis on 1% agarose gels. Total RNA samples were treated with a
Turbo DNA-free kit (Invitrogen, Waltham, MA, USA). Super Script First III Strand System
for RT-PCR kit (Invitrogen, Waltham, MA, USA) was used for complementary DNA
(cDNA) synthesis from 500 ng/mL RNA samples.

RT-qPCR assay and gene quantification
Each cDNA sample was subjected to reverse transcriptase quantitative PCR (RT-qPCR)
reactions for all genes of interest in each using cDNA-specific TaqManGene Expression
Assays on QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems, Waltham,
MA, USA). Reaction mixture in a total 10 ml reaction is composed of 1 ml cDNA, 0.25 mL
(0.25 mM) TaqMan Probe, 0.3 mL (0.3 mM) of Forward and Reverse primers, 5 ml TaqMan
Fast Advanced Master Mix 2x (Applied Biosystems, Waltham, MA, USA) and 3.15 mL
nuclease free water. This allowed for the consistent use of standardized thermal cycling
conditions: 95 �C for 2 min, followed by 40 cycles of 95 �C for 1 s and 60 �C for 20 s.
The standard curve was generated using synthetic genes cloned in BlueHeron pUC
MinusMCS plasmid. The standard curve was generated using synthetic CDS of ScTHI1
genes cloned in BlueHeron pUC MinusMCS vector, serially diluted (10×). The transcripts
copy numbers were determined by interpolation of the standard curve. Each sample and
standard curve was run in triplicate to ensure reproducibility. Absolute expression data
(number of transcripts) were log-transformed to enable statistical analysis (ANOVA),
assuming the log normality of the data.

Yeast complementation assay
As previously described in Vieira (2018), three synthetic versions of ScTHI1 were
performed by Blue Heron� Biotech, LLC. Alternative versions of these CDS lacking the
N-terminal chloroplast transit peptide (DelN) were produced through PCR amplification
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on the synthetic CDSs, using a pair of primers (thi1.1DelN_F: GGA TCC ATG ACC CGC
CGC TA for ScTHI1-1; and thi1.2DelN_F: GGA TCC ATG ACC CGG CGG TA for both
ScTHI1-2a and ScTHI1-2b) and thi1DelN_R (GTC GAC TCA GGC GTC CAC) for all
corresponding to a transcript that includes the second initiation codon (amino acid 76 in
Fig. S2) up to the stop codon (amino acid 360).

A restriction enzyme BamH1-Sal1 fragment of the corresponding CDSs were inserted
into the yeast expression vector pG-1 (Schena, Picard & Yamamoto, 1991) using T4 ligase
(Promega, Madison, WI, USA) according to the manufacturer’s protocol. Two other
constructs were used as controls: the positive control A184V, which corresponds to the
A. thaliana tz-201mutant CDS and is able to complement the thiamine auxotrophy in the
thi4 yeast mutant (Papini-Terzi et al., 2003); and DelN as negative control, which is the
A. thaliana wild-type (WT) AtTHI1 lacking the N-terminal chloroplast transit peptide
(Papini-Terzi et al., 2003). All constructs were transformed into wild type strain W303
(mata, ade2-1, trp1-1, leu2-3-112, can1-100, ura3-1, his3-11-115) as a positive control
(Praekelt, Byrne & Meacock, 1994) and the thiamine auxotroph KBY5 mutant strain
(THI4::URA3) by the heat shock method (Schiestl & Gietz, 1989).

All transformant selection was on yeast nitrogen base (YNB) (BD Biosciences, Franklin
Lakes, NJ, USA) medium lacking tryptophan. Thiamine auxotrophy was examined by
growing cells overnight in liquid YNB without tryptophan, centrifuged, and re-suspended
in 10 mMMgSO4. From an OD = 1, three serial and tenfold dilutions were prepared. Yeast
complementation was assayed on minimal medium (YNB lacking both thiamine-HCL
(YNB-thia) and tryptophan, from USBiological) plates, either with or without thiamine
and tryptophan, incubated for 28 days at 30 �C, and analyzed every 4 days.

RESULTS
Gene synteny of THI1 homologs in sugarcane and Poaceae
As many Poaceae genomes are publicly available, we analyzed the THI1 by a comparative
genomic approach across a wide range of species. Sequences from Arabidopsis thaliana
and Joinvillea ascendens were included as outgroups. For sugarcane, besides the genome
from S. spontaneum (Zhang et al., 2018), additional 19 bacterial artificial chromosomes
(BACs) (Table S1) from the R570 cultivar (de Setta et al., 2014) containing THI1 homologs
were sequenced and annotated. All sequences containing the putative protein were
compared using PFAM and InterproScan databases to screen for the presence of the THI4
protein family domain (PF01946). After removing sequences with incomplete domains
and redundant sequences retrieved from this search, 49 THI1 homologs were identified in
23 Poaceae species (Table S2).

A Bayesian phylogenetic tree based on multiple alignments from these 49 protein
sequences and the two outgroups was built. The tree topology revealed that the THI1
homologs were separated into two distinct clades, Clade A and Clade B (Fig. 1A and
Table S2). Clade A is composed by THI1-homologue single copy sequences from
B. distachyum, B. hybridum, B. mexicanum, B. stacei, B. sylvaticum, H. vulgare,
T. aestivum, T. turgidum, T. intermedium. It also displays a diversifying branch from
Hordeum vulgare, Triticum aestivum, Triticum turgidum, and Thinopyrum intermedium

Moura Dias et al. (2023), PeerJ, DOI 10.7717/peerj.14973 6/27

http://dx.doi.org/10.7717/peerj.14973/supp-2
http://dx.doi.org/10.7717/peerj.14973/supp-3
http://dx.doi.org/10.7717/peerj.14973/supp-4
http://dx.doi.org/10.7717/peerj.14973/supp-4
http://dx.doi.org/10.7717/peerj.14973
https://peerj.com/


Figure 1 Phylogenetic relationships of THI1 (thiamine thiazole synthase) in Poaceae. (A) The tree containing 51 protein sequences is subdivided
into two major clades. Clade A (dashed line) comprises the C3 grasses (B. distachyum (Bd), B. hybridum (Bh), B. mexicanum (Bd), B. stacei (Bs),
B. sylvaticum (Bsy), H. vulgare (Hv), T. aestivum (Ta), T. turgidum (Tt), T. intermedium (Ti)) and Clade B (black line) the C4 grasses (E. coracana
(Ec), C. americanus (Ca), P. hallii (Ph), P. virgatum (Pv), M. sinensis (Ms), Saccharum sp. var. R570 (ScTHI1), S. spontaneum (Ss), S. italica (Si),
S. viridis (Sv), S. bicolor (Sb), and Z. mays (Zm)). The outgroups are represented by A. thaliana (At) and J. ascendens (Ja). The circle indicate species
and are colored according to the numbers of gene copies. Circles with dashed border show a THI1 homolog single copy. The triangle shows collapsed
BAC sequences. The scale shows the phylogenetic distance between protein sequences. For an expanded version with protein names and IDs see
Table S2. (B) Multiple sequence alignment of THI1 homologs from Saccharomyces cerevisiae, Arabidopsis thaliana, Saccharum sp. var. R570,
Hordeum vulgare, Triticum aestivum, Triticum turgidum, and Thinopyrum intermedium showing diversity at position 238 (stars).

Full-size DOI: 10.7717/peerj.14973/fig-1
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that has a previously described amino acid substitution at position 238 (Fig. 1B and
Table S2). The in-silico analyses of the R570 sugarcane BAC sequences revealed that there
are at least two gene variants of ScTHI1 supporting the two SAS previously described.
Those, alongside with S. spontaneum sequences, are distributed into two genomic
subgroups with a common ancestral node. The amino acid sequence from ScTHI1
copies derived from the SAS1 probe (ScTHI1-1) clustered with SbTHI1-1, ZmTHI1-1,
ZmTHI1-2, MsTHI1-1, MsTHI1-2, SsTHI1-1, and SsTHI1-2, while the sequences derived
from SAS2 (ScTHI1-2a and ScTHI1-2b) clustered with SbTHI1-2, MsTHI1-3, MsTHI1-4,
SsTHI1-3, and SsTHI1-4. Clade B (Cenchrus americanus, Eleusine coracana, Miscanthus
sinensis, Panicum hallii, Panicum virgatum, Saccharum sp., Setaria italica, Setaria viridis,
Sorghum bicolor, and Zea mays) present at least two THI1-homologues, with the exception
of Oryza sativa and Oryza brachyantha that have a single copy THI1 homologue.

To investigate the genomic context of ScTHI1 homologs, we selected their genomic
vicinities and compared them with TH1 phylogenetic relatedness. We identified five
different genomic regions (A–E) flanking THI1 genes (Fig. 2 and Table S3). S. bicolor THI1
genes were found on chromosomes 2 (SbTHI-2) and 3 (SbTHI1-2) while in Z. mays the
genes located on chromosomes 3 (ZmTHI1-2) and 8 (ZmTHI1-1). One copy of THI1 has
been identified in O. brachyantha, O. sativa, (both in chromosome 7) and P. hallii
(chromosome 4). Homologs of E. coracana (chromosome 7), C. americanus
(chromosomes 5 and 7), S. italica and S. viridis (both in chromosomes 2 and 4), and
P. virgatum (chromosome 4) are also included in the present analysis.

Sugarcane THI1 was found in two of these genomic loci (D and E) that by synteny are
grouped in different ScTHI1 clades. Two well-supported sugarcane clades (bootstrap 100
for ScTHI1-1 and 99 for ScTHI1-2) were found and the clade of ScTHI1-2 was divided into
two subclades. BAC clones 017_B18, 030_H05, 251_N23, and 092_F09 cluster with
ScTHI1-2a while BACs clones 094_O04, 109_G13, 183_N05, 184_N05, 190_F02, and
222_C03 with ScTHI1-2b, also with higher bootstrap values (Fig. 2).

Molecular structure of THI1 homologues
Exon-intron boundaries was examined for each of these 51 genes and the 19 BACs. While
AtTHI1 has two introns, all Poaceae species harbor only one intron with varying sizes (63
to 149 bp) (Fig. S1), suggesting high gene structure conservation. The protein length of the
THI1 homologs is also highly conserved (Fig. 3A), with amino acid sequences at least 67%
identical, including the less conserved region containing the previously described
organellar targeting to mitochondria and/or chloroplast (Chabregas et al., 2001, 2003).
Despite these features, the amino acid pre-sequence encoded by first start codon is
variable, in length and amino acid content among species. Although the sequence and
length of signal peptides can vary substantially, computational analyzes depict the
existence of a series of conserved aminoacids at given positions, probably resulting in
secondary structure conservation (see Fig. 3B). The signal peptide prediction results show
that all ScTHI1 proteins have a chloroplast targeting peptide when transcribed by the first
initiation codon (1st ATG), as seen in other Poaceae species. The differences among the
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Figure 2 Comparison of THI1 gene and its genomic flanking regions in sugarcane and other plants
through phylogenetic and synteny analyses. (A) Numbers at nodes are branch support values estimated
by the aLRT SHlike method implemented in PhyML3.0 (see Methods). The tree is based on the multiple
alignments of the two exons of the single THI1 copy from A. thaliana (AtTHI1), E. coracana (EcTHI1),
C. americanus (CaTHI1), O. sativa (OsTHI1), O. brachyantha (ObTHI1), S. italica (SiTHI1), S. viridis
(SvTHI1), S. bicolor (SbTHI1), M. sinensis (MsTHI1), S. spontaneum (SsTHI1) and BACs sequences of
R570 sugarcane (BAC 108_C04, BAC 017_B18, and BAC 094_O04 represent ScTHI1-1, ScTHI1-2a, and
ScTHI1-2b, respectively). (B) Synteny analysis was performed using blastx among sugarcane BAC
sequences and sequences from the other genomes obtained from the plant’s database (see Table S2).
Rectangles indicate genes. Full-size DOI: 10.7717/peerj.14973/fig-2
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Figure 3 Alignment of amino acid sequences of THI1. (A) 51 THI1 sequences alignment across various species of Poaceae, using J. ascendens and
A. thaliana as outgroups. The alignment was built with MAFFT v7. (B) WebLogo representation of multiple sequence alignment of N-terminal
protein region indicating the relative frequency of amino acids at a given position (height). Abbreviation: CTP, Chloroplast Transient Peptide.

Full-size DOI: 10.7717/peerj.14973/fig-3
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two sugarcane sequence subgroups lies at the 5′ region, where the Chloroplast Transit
Peptide (CTP) is predicted (Machado et al., 1996).

Due to their high similarity, only one version of each ScTHI1 was taken into
consideration for further detailed analysis of their nucleotide genomic sequence as
described, ScTHI1-1 sequence was retrieved from BAC 108_C04 and ScTHI1-2a, ScTHI1-
2b from BAC 017_B18, BAC 094_O04 respectively (Figs. S2A and S2B). When their CDS
sequences were compared, high nucleotide identity and similarity were found (>91%)
(Fig. 3B). Outside of the N-terminal region, only minor differences were detected mostly
resulting in synonymous amino acid substitutions (Fig. S2C). The ScTHI1-1 protein differs
from both ScTHI1-2 subgroups in one residue of MPS (Chabregas et al., 2003), and other
seven residues along the protein (Fig. S2C).

THI1 promoter region analysis
To understand the diversity of the ScTHI1 promoter region in sugarcane, we performed an
in-silico analysis of the 2 kb sequence preceding the start codon of the predicted genes
(region D and E, Fig. 2). First, we identified 20 conserved motifs with sizes between 5 and
25 bp among the five species with the highest genome conservation (i.e., M. sinensis,
S. bicolor, sugarcane, S. spontaneum, and Z. mays). Our analyses revealed different degrees
of conservation between the motifs (support statistical of p-value ≤ 0.05), in which a group
of seven motifs formed a standard portion among the species (Fig. 4A). The promoter
regions of these genes were highly conserved on the 300 bp next to the start codon, where
at least seven motifs were common among 15 analyzed sequences. Therefore, this region
was considered as the core promoter (Fig. 4B). The promoter regions of the three variants
of the sugarcane var. R570, ScTHI1-1, ScTHI1-2a and ScTHI1-2b, shared most cis-
regulatory elements (CREs). However, ScTHI1-1 presented a unique distribution and
organization, while ScTHI1-2a and ScTHI1-2b shared as many CREs as distribution,
supporting the presence of ScTHI1 in sugarcane along two genomic regions (Fig. 4A).

Next, transcription factors (TFs) with the potential to bind to CREs were identified in all
20 motifs (p-value ≤ 0.01), and GO terms association allowed us to understand the
biological processes in which they are involved (see Fig. 4C). The GO terms of the core
promoter (highlighted in blue in Fig. 4A) revealed enrichment on biological processes
related to: ‘Biological regulation’ (GO:0065007), ‘Developmental process’ (GO:0032502),
‘Post-Embryogenic development’ (GO:0009791), ‘Response to a stimulus’ (GO:0050896),
‘Response to a light stimulus’ (GO:0009416), ‘Rhythmic process’ (GO:0048511), ‘Circadian
rhythm’ (GO:0007623), and ‘Regulation of circadian rhythm’ (GO:0042752). Fitzpatrick &
Noordally (2021) reported the relationship between the genes of the thiamine pathway and
the influence of light/dark transitions, suggesting a daily transcription regulation of genes
involved in the synthesis of vitamin B1.

When considering only the genes from sugarcane, TFs with potential binding in the
CREs of the ScTHI1-1 and ScTHI1-2 promoters (highlighted in green in Fig. 4A), show
functional redundancy because both GO terms are related to ‘Response to stimulus’ (GO:
0050896), ‘Developmental process’ (GO:0032502), and ‘Biological regulation’ (GO:
0065007). These results reinforce the putative biological identity of THI1 regulation in the
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Figure 4 Promoter analysis and motif enrichment of THI1 genes. (A) Motif identification in promoter regions (2,000 bp upstream of ATG) at
THI1 genes. The following parameters were used: site distribution = zero or one occurrence per sequence (zoops); minimum width = 5; minimum
width = 25 bp; number of motifs = 20. The blue boxes showed conserved motifs among all grasses and the green boxes showed motifs present in
ScTHI1 paralogues. (B) Sequence logo of seven motifs (highly conserved) identified in the core promoter region of THI1 of grasses. (C) GO
enrichment analysis of motifs localized in the core promoter region of THI1 of grasses (blue boxes in A). (D) GO enrichment analysis of motifs
localized in the promoter region of ScTHI1 (green boxes in A). Full-size DOI: 10.7717/peerj.14973/fig-4
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thiamine pathway and its role in coordinating plant development processes. Additionally,
the enrichment of terms related to plant-microorganism interaction was observed, such as
‘Biological process involved in interspecies interaction between organisms’ (GO:0044419),
‘Immune system process’ (GO:0002376), and ‘Immune effector process’ (GO:0002252), in
as well as GO terms associated with ‘Signaling’ (GO:0023052) and ‘Cell communication’
(GO:0007154). Although these in silico observations still need to be confirmed
experimentally, studies in A. thaliana, rice, and other crops (tobacco, cucumber, and
tomato) have already demonstrated the participation of thiamine during the process of
infection by pathogenic microorganisms (Ahn, Kim & Lee, 2005) and response to oxidative
stress (Tunc-Ozdemir et al., 2009), Moreover, improvement in infection resistance was
described for mutants of A. thaliana and O. sativa (Dong, Stockwell & Goyer, 2015; Dong
et al., 2016).

THI1 sequence diversity in modern sugarcane cultivars
In order to address the haplotype sequence diversity of THI1 in the Saccharum complex,
we designed a primer pair in a conserved region between amino acids 49 to 161 (Fig. S2C).
This conserved region was amplified from the closely related species Miscanthus sp, S.
officinarum, S. spontaneum and 10 modern sugarcane hybrids cultivars. Table S4 describe
how many sequences of the copies of ScTHI1 were amplified for each of the genotypes/
varieties.

Amplicons varying between 321–330 bp each were sub-cloned and 197 were sequenced,
assembled and aligned against the 19 BAC sequences. A network analysis was performed
(Fig. 5), where two main clusters emerge that are not species- or cultivar-specific, but
ScTHI1 copy-specific (Table S4) (Vieira, 2018).

Developmental and tissue-specific expression profiles of sugarcane
ScTHI1 genes
To gain insights into how ScTHI1 genes are expressed in sugarcane we investigated
changes in their expression patterns in different tissues (meristem, root, culm, and leaf)
along the development of Saccharum sp. var R570. Our analysis revealed that all identified
variants were expressed in all tissues and ages (Fig. 6). Furthermore, differential expression
was detected when comparing different tissue (ANOVA p-value ≤ 0.01) and age, the latter
more significantly evidenced in the meristematic tissue for all ScTHI1 variants (Fig. 6).
In culm, a change in expression level was seen in the transition from 3 to 6 months,
corroborating previous findings (Partida et al., 2021).

Functional complementation assay
A Saccharomyces cerevisiae mutant strain, KBY5 (THI4::URA3), has a truncated THI4
gene, which impairs growth on a minimal medium without thiamine supplementation.
Machado et al. (1996) reported that A. thaliana homolog (AtTHI1) can restore the
thiamine auxotrophy of this strain. An analogous complementation assay using ScTHI1-1,
ScTHI1-2a, and ScTHI1-2b was performed. Two versions of each of the three CDSs were
synthesized and transferred to the yeast expression vector pG-1 (Vieira, 2018). One version
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represents the full ScTHI1-1, ScTHI1-2a, and ScTHI1-2b CDS and the second version is the
CDS lacking the N-terminal chloroplast transit peptide sequences, named ScTHI1-1/DelN,
ScTHI1-2a/DelN, and ScTHI1-2b/DelN. Two other constructs, A184V and DelN in the
same expression vector were used as controls. A184V is the cDNA of the THI1 gene from
the A. thaliana tz-201 mutant and was used as positive control. In fact, it served as a
control for partial complementation (Papini-Terzi et al., 2003). The negative control DelN
contains a cDNA of the wild-type AtTHI1 gene without the N-terminal chloroplast transit
peptide (Papini-Terzi et al., 2003). Growth was evaluated after 4 and 28 days of incubation
at 30 �C.

KBY5 strain transformed independently with the three sugarcane constructs and plated
on YNB medium supplemented with thiamine (thia) and tryptophan (W) could efficiently
grow (Fig. 7A). The inability of the wild-type strain W303a and KBY5 to grow on selective
[−W/+ thia] YNB medium shows that the transformation with the sugarcane constructs
was efficient and complemented W auxotrophy in the recipient strain (Fig. 7B). Only wild
type strain W303a and auxotrophic complemented strains by the recipient plasmid could
grow on plates supplemented with W only after four (Fig. 7C) and 28 (Fig. 7E) days of
incubation. None of the full-length ScTHI1 CDSs complemented KBY5 thiamine
auxotrophy, but both DelN versions of ScTHI1-1 and ScTHI1-2b did. However, this

Figure 5 Network analysis of THI1 gene in Saccharum complex. The network was built using the
NETWORK 4.6.1.3 software (Bandelt, Forster & Röhl, 1999) with default parameters (Median-joining
method). An alignment of a region of 539 bp of 210 sequences of varieties of sugarcane was used to
construct the network. The right part of the figure is a close-up of the entire network shown on the left.
The size of the circles is proportional to the number of sequences in the haplotype; the distance between
clusters is proportional to the number of substitutions observed between sequences.

Full-size DOI: 10.7717/peerj.14973/fig-5
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complementation was less efficient than the A. thaliana A184V allele (Papini-Terzi et al.,
2003), with yeasts forming smaller colonies and taking more time to develop.

DISCUSSION
Studying precursor genes for coenzymes has been of increasing interest in biology,
especially in plant crops (Pourcel, Moulin & Fitzpatrick, 2013; Strobbe et al., 2021).
For many years, plant science has focused on genes directly responsible for the increase in
biomass. More recently, several studies have looked at coenzymes and their impact on
metabolic pathways, especially on the carbohydrate (see review of Fitzpatrick & Noordally
(2021)). Here, we show an integrative view for understanding the biology of the THI1
genes Poaceae, especially in sugarcane. We aimed at elucidating this gene’s structure,
organization, and distribution in the genomes and clarifying aspects of the regulation of
THI1 expression, targeting, and gene diversity.

Sugarcane is an important tropical crop, cultivated for the production of sucrose and
bioethanol. Several efforts for sequencing its complex genome structure have been made

Figure 6 Expression analysis of ScTHI1 genes in different tissues and ages in the sugarcane cultivar
R570. Data are the means of three biological replicates; error bars indicate SD. Asterisks indicate sig-
nificant differences among compared groups using the ANOVA and p-adjust (Bonferroni method) <0.05
(�), 0.01(��), 0.001 (���), and 0.0001(����). Black and red lines represent statistically significant differ-
ences between tissues and ages. Full-size DOI: 10.7717/peerj.14973/fig-6
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and the most complete managed to cover 373,869 genes (99.1% of the sugarcane genome)
(Souza et al., 2019). The unavailability of the full genome poses a challenge in investigating
the genomic context of genes in this species. However, our study provides the first
complete overview of THI1 in Poaceae, including protein characterization, phylogeny,
gene structure, chromosome location, synteny, and gene expression patterns.

Figure 7 Functional yeast complementation assay. S. cerevisiae strain KBY5 was transformed with the
three versions of the ScTHI1 gene found in the sugarcane genome, with the positive control A184V and
the negative control and DelN, and plated in YNB media with or without tryptophan and thiamine.
W303a strain was used as positive control. W = tryptophan and “thia” = thiamine. Each column
represents one transformant. Lines represent dilution series. (A and B) are the experimental controls to
check if all strains can grow (A) and if all transformed ones can grow without tryptophan (B). (C and D)
show growth after 4 days of incubation, while (E and F) after 28 days of incubation, at 30 �C.

Full-size DOI: 10.7717/peerj.14973/fig-7
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Features of THI1 genes have been conserved during Poaceae
speciation
Our genome-wide investigation of THI1 genes include all Poaceae species sequenced to
date, which have at least one THI1 homologue gene. The aligned sequences displayed that
with the exception of the variable N-terminal region, most of the nucleotide changes have
resulted in synonymous substitution. The variability found at the N-terminal region could
be explained by its targeting function that depends on the classes of amino acids
(hydrophobic and positively charged) present rather than on specific amino acid sequences
(von Heijne & Gavel, 1988; Käll, Krogh & Sonnhammer, 2004). As a result, this region
could accommodate non-synonymous substitutions without loss of function.

In addition to the subgroups formed among ScTHI1, the homologous of the species
S. italica, S. viridis, C. americanus, P. virgatum, E. coracana and P. hallii form a group
(Paniceae) sister to the Andropogoneae tribe. Interestingly, members of Bambusoideae,
Oryzoideae, and Pooideae subfamilies (B.O.P) grouped together in the clade comprised by
B. distachyon, B. hybridum, B. mexicanum, B. stacei, B. sylvaticum, T. intermedium, T.
aestivum, and T. turgidum. Despite the species O. sativa and O. brachyantha being part of
this same clade (B.O.P), it is possible to see that the homologs of the genus Oryza are less
related. The topology of the evolutionary tree of the predicted amino acid sequences from
THI1 of Poaceae was similar to the one described by Soreng et al. (2015, 2017).
Furthermore, homologs of the same species clustered together, indicating that these
duplication events happened independently after speciation.

Despite the variation found in the N-terminal region, THI4 domains are reported to be
highly conserved (Hwang et al., 2014). The exceptions were THI1 homologs non-Cys
present in T. aestivum, T. intermedium, T. turgidum, and H. vulgare. The expression levels
of non-Cys variants were found to be lower than those with this cysteine residue conserved
(Joshi et al., 2020). Similar to Archaea species, such asMethanococcus igneus (Zhang et al.,
2016) andMethanocaldococcus jannashi (Eser et al., 2016), the obtention of thiazole ring is
accomplished by the use of the nicotinamide adenine dinucleotide, glycine and free sulfide.
This suggests that a THI1 isoform non-Cys is only restricted to those cereal species, which
possibly need a Cys containing THI1 isoform capable of donating a sulfur molecule to
form the thiazole ring.

THI1 has a central role in thiamine biosynthesis that in turn is an essential cofactor for
several metabolic pathways, such as amino acids metabolism (Duggleby, 2006; Duggleby,
McCourt & Guddat, 2008) and carbohydrate (Belanger et al., 1995). According to the
amino acid sequences analyzed, the residue (Cys205) required for the Fe2+-binding (Zhang
et al., 2016; Eser et al., 2016; Joshi et al., 2020) is fully conserved in THI1 from Poaceae. This
Cys residue is known to be the sulfur donor in yeast (Chatterjee et al., 2011), plants (Godoi
et al., 2006), and the Archaea species H. volcanii (Hwang et al., 2014). Our results indicate
that THI1 sulfur donation function is present at least in one gene copy and is suggestive of
its role in the thiazole ring formation in all Poaceae isoforms.

The molecular characterization of the THI1 gene revealed that gene duplication has not
only occurred in C4 plants and that THI1 genes are also positioned in different genomic
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regions in Poaceae, probably due to the number of genome duplications in those groups
(de Setta et al., 2012; Svačina et al., 2020; Lee et al., 2020). Recent studies based on
comparative genomics support the occurrence of whole-genome duplication in
angiosperms (Jiao et al., 2011) and early polyploidy in monocots (Tang et al., 2010).
Furthermore, our study shows that C3 species generally have a single copy of THI1.
However, this is not the case for wheat and barley, representatives of the Triticeae group
that are the most prominent example of duplication under the influence of the
domestication event (Qiao et al., 2019).

The comparative analysis identified five non-syntenic genomic regions among the
Poaceae genomes. Evidence of the THI1 gene duplications and translocations as well as
duplications of genomic regions containing this gene are presented. The common ancestor
of the Andropogoneae tribe (sugarcane, sorghum, and maize) has two loci carrying THI1
copies (THI1-1—present in region D and THI1-2—present in region E Fig. 2), which is
observed in high collinearity between sugarcane and sorghum chromosomes (Ming et al.,
1998; Vieira, 2018). S. italica and S. viridis have two THI1 copies, one in a region syntenic
to those of C. americanus, O. sativa, O. brachyantha, and E. coracana (region B). Another
copy is located in a different area shared among P. hallii, P. virgatum and other copy of the
C. americanus (region C). Z. mays duplicated the entire region E. Finally, the A. thaliana
THI1 region is non-syntenic to grasses genomic regions analyzed here (region A). These
results provide an overview of Poaceae THI1, including their gene numbers, evolutionary
relationship, and structural conservation locus.

ScTHI1 genes share conserved molecular features
We identified 19 BACs of sugarcane var. R570 containing THI1-like genes. Our genomic
characterization revealed at least two groups of ScTHI1 genes, nine alleles of ScTHI1-1 and
ten alleles of ScTHI1-2 (Vieira, 2018). Phylogenetic (Fig. 1B) and network analyses (Fig. 5)
of its sequences showed that, despite the similarity among ScTHI1-2 genes, a diversification
of ScTHI1-2 has occurred. Two subgroups were identified, including four alleles of the
ScTHI1-2a group and six alleles of the ScTHI1-2b group.

As shown in the synteny analysis, each paralogue of ScTHI1 is present in a different
genomic environment. In addition, the core promoter located 600 bp upstream the start
codon (ATG) is highly conserved, among the sugarcane ScTHI1 paralogs and Poaceae.
Further analysis of the promoter regions (2 kb upstream from ATG) revealed that
ScTHI1.1 and ScTHI1.2 have distinct sets of of CRE and TF binding sites conserved across
all Saccharum species, which contributed to the prediction of their potential function.
Together, these data support the idea of a gene duplication occurring in a common
ancestor of the Andropogoneae tribe, preserving the gene and its core promoter region
along the evolution.

The diversification of two ScTHI1-2 subgroups is supported by the Network analysis.
ScTHI1-2b sequences fall into one haplotype along with one S. spontaneum and four
modern cultivars sequences, whereas ScTHI1-2a sequences fall into two distinct
haplotypes, one comprised of several BACs (017_B18, 030_H05 and 251_N23) and a
second composed by 092_F09.
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Our data revealed that the expression pattern between the variants is very similar.
Looking only at the leaf tissue, where the three variants showed constantly higher
expression levels over the development, a 10-fold difference in expression of ScTHI1-1
compared to ScTHI1-2a and 5-fold compared to ScTHI1-2b is seen. Comparing the
different tissues, the leaf presents the largest number of transcripts while the root has the
lowest number, showing the relationship of ScTHI1 with photosynthetic tissues, as
previously reported for Alnus glutinosa (Ribeiro et al., 1996), Arabidopsis (Papini-Terzi
et al., 2003; Ribeiro et al., 2005), and the crops species cassava (Mangel et al., 2017), wheat
(Joshi et al., 2020), and barley (Joshi et al., 2020). In addition, our results of CREs in the
promoter region of ScTHI1 reveals potential binding sites to TFs related to development
process corroborating the expression data.

Our complementation assays revealed that the three full-length copies of ScTHI1 could
not complement the KBY5 strain. Papini-Terzi et al. (2003) also presented that this strain
grows poorly after 4 days of cultivation when bearing the A184V construction.
The ScTHI1-1 DelN and ScTHI1-2b DelN transformants were partially complemented but
took longer (28 days) to develop, suggesting that the chloroplast transit peptide at the
N-terminus of THI1 from sugarcane somehow interferes with the complementation
efficiency in the KBY5 yeast strain. ZmTHI1-1 and ZmTHI1-2 can restore thiamine
prototrophy in yeast (Belanger et al., 1995).

CONCLUSIONS
Taken together, the study of the sugarcane THI1 supports the existence of multiple
independent rounds of gene duplication events involving THI1 orthologs. Each tribe
presents its unique genomic THI1 environment except maize which shares the same
environment for the two gene copies. Expression of sugarcane THI1 is redundant across
tissues and developmental stages where the leaf presents the higher expression level and
the root the least. This is consistent with the similarity observed at the core promoter of the
paralog genes; however, subtle intensity changes demand dissecting the expression
differences in more detail. Sugarcane gene copies are redundant at the transcription level,
and two of the three copies are functionally redundant. Further studies are needed to
explore the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues
or potentially the relevance of the THI1 protein activity.
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