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ABSTRACT

Asthma is a chronic inflammatory respiratory disease, which is involved in multiple
pathologic molecular mechanisms and presents a huge challenge to clinic nursing.
Emerging evidence suggests that N°-methyladenosine (m®A) plays critical roles in
respiratory system disease. Thus, present work tried to investigate the functions of
m®A reader YTHDF 1 in asthma. The results indicated that YTHDFI significantly
upregulated in platelet-derived growth factor (PDGF) induced airway smooth muscle
cells (ASMCs). Functionally, overexpression of YTHDF1 promoted the proliferation
and migration of ASMCs, while YTHDF1 knockdown repressed the proliferation and
migration. Mechanistically, there was a m®A modification site on cyclin D1 RNA
(CCND1 genome) and YTHDF1 combined with cyclin D1 mRNA, thereby enhancing
its mRNA stability via m6A-dependent manner. Collectively, these findings reveal a
novel axis of YTHDF1/m6A/cyclin D1 in asthma’s airway remodeling, which may
provide novel therapeutic strategy for asthma.

Subjects Biochemistry, Cell Biology, Genomics, Molecular Biology
Keywords N6-methyladenosine, Asthma, Airway smooth muscle cells

INTRODUCTION

Asthma is well known as a common respiratory disorder, hyper-responsiveness
accompanied by airway remodeling or chronic bronchial airway inflammatory (Ferry,
De Castro & Bragg, 20205 Kutlu ¢ Unal, 2019). In the pathophysiological process of
asthma, the airway structures are involved, including airway cells, cell components
and inflammatory substances (Lee, Lee ¢ Hong, 2020; MacDonald & Barrett, 2019). The
pathogenesis of asthma is predominantly attributed by immune cells’ excessive immune
response and substantial amounts of inflammatory cytokines production, e.g., interleukin
4/5/13. These cytokines mediate mucus and immunoglobulin E overproduction, airway
hyperresponsiveness and eosinophilic infiltration (Sdnchez et al., 2019). Thus, the most
effective way to deal with asthma is to discover its precise pathogenesis.
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N°-methyladenosine (m®A) methylation is a post-transcriptional RNA modification
epigenetically occurred on mRNAs, which regulates gene expression and affects the
RNA fate (Liu et al., 2021; Sweaad et al., 2021; Tuncel ¢ Kalkan, 2019). Presently, mA
methylation gains more and more attention about its function and mechanism. In the
asthma pathophysiological process, there is only primary probation and initiatory findings
(Wang et al., 2021; Wu et al., 2021). For example, Teng et al. (2021) found that dysregulated
or hypermethylated m®A peaks in 329 mRNAs and 150 hypomethylated m°A peaks in 143
mRNAs in asthmatic mice. In addition, Dai ef al. (2021) found that 5 candidate m°A
regulators (FMR1, KIAA1429, WTAP, YTHDEF2, ZC3HAV1) are in close contact with the
risk of childhood asthma. Therefore, these literatures inspire us that m®A may participate
in the asthma pathology.

In clinical nursing, the particularity of asthma brings great challenge to nursing work.
Some environmental factors can trigger or stimulate asthma, such as pollen, excessively
cold climate, strenuous exercise or pets (Sonney et al., 2022). Asthma can cause recurrent
episodes of wheezing, shortness of breath, chest tightness, and/or coughing (Yamada et al.,
2022). In addition, these emergencies often occur at night/morning. Therefore, this special
situation requires us to pay close attention to the patient’s changes during the course of
nursing.

Here, our research found that, in the cellular asthma model induced by PDGF-BB, the
m®A modification significantly varied and the m®A regulator key-enzymes also altered.
To investigate the potential roel of mPA in asthma, we focused on a critical m°A reader
YTHDF]1. Results indicated that YTHDF up-regulated in the PDGF-BB induced ASM cells.
Functionally, YTHDF1 posituvely promoted the proliferation and migration of ASM cells.
Interestingly, an important element cyclin D1 (CCND1) acted as the downstream target
of YTHDF1 via m®A-depedent manner. Mechanistically, YTHDFI significantly combined
with cyclin D1 mRNA, thereby enhancing its mRNA stability through m®A-depedent
pattern, which may provide novel therapeutic strategy for asthma.

MATERIALS AND METHODS

Asthmatic cellular model

As previously described (Ba et al., 2018), the primary cultured human ASM cells were
obtained from 2nd—4th generation mainstem bronchi of patients undergoing lung resection
surgery in accordance with procedures. Written informed consent was obtained from
every human participant. The assay had been approved by the Ethics Committee of Shanxi
Medical University (No. SXMU201905047). In brief, the mainstem bronchi segments were
cut into pieces and ASMCs were isolated from it. After digestion, ASMCs were placed
in DMEM medium containing 10% fetal bovine serum (Gibco, NY, USA) in humidified
incubator at 5% CO; 37 °C with. Cells from passages 4—7 were used for following assays,
ASMCs were treated with PDGF-BB (25 ng/ml) to mimic the asthma.

Transfection
For the transfection of YTHDF1, ASMCs were transfected with sequences following the
manufacturer’s instructions. For silencing of YTHDF1, the shRNA sequences of YTHDF1
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were synthesized by OBiOc (Shanghai, China) and the vectors containing shRNAs were
inserted into PLKO.1. The transfection of plasmids was performed using the Lipofectamine
3000 kit (Invitrogen) according to the manufacturer’s instructions. For the overexpression
of YTHDF], the full-length cDNA sequences of human YTHDF1 (gene ID: 54915) were
cloned into a pLentiEF1a-EGFP-Puro-CMV-MCS-3Flag lentivirus vector. The transfection
efficiency was evaluated with qRT-PCR or western blot.

Reverse transcription quantitative polymerase chain reaction

(RT- gPCR)

Total RNA was extracted according to the instruction of HiScript II 1st Strand cDNA
Synthesis Kit (Vazyme, Nanjing, China). Then, cDNA was synthesized using an PrimeScript
RT reagent kit (Takara, Dalian, China). Real-time PCR was performed on the 7900 Real-
time PCR System using Tagman RNA assay kit (Thermo Fisher Scientific, Rockford, IL,
USA). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acted as a control. The
primer sequences were listed in Table S1. The results of transcript levels were analyzed by
the 272ACt method.

Western blot analysis

Total protein in ASMC cells was extracted using radio immunoprecipitation assay (RIPA)
lysis buffer with phenylmethanesulfonyl fluoride (PMSF) (Solarbio, Beijing, No. R0010).
After incubation on ice and then concentration, the protein concentration was measured
by bicinchoninic acid (BCA) kit and adjusted by deionized water. Protein samples were
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10% SDS-PAGE)
and transferred to polyvinylidene fluoride membranes (PVDF) (Millipore, Billerica, MA,
USA). The transferred PVDF membranes (No. ISEQ00010; Millipore, Billerica, MA, USA)
was added with Tris-buffered saline tween (TBST) containing 5% dried dskimmed milk.
Then, PVDF membranes were incubated with the primary antibodies (anti-Cyclin D1,
ab16663; Abcam; anti-YTHDFI, 1:1000, ab220162; Abcam). Beta-actin (1:1,000; Abcam)
was used as an internal control. After washing with phosphate buffer five times containing
Tween-20 (PBST), PVDF membranes were incubated for 1 h at room temperature. Finally,
pierce ECL western blotting substrate was employed to develop the protein bands and
quantification was conducted by Image Lab software (Bio-Rad, Hercules, CA, USA).

Proliferation assays and cycle analysis

The proliferation of ASMCs was detected using CCK-8 assays using Cell counting kit-8 (8 11
of CCK-8; Dojindo, Kumamoto, Japan) with 100 ul serum free medium and incubated for
90 min. In brief, the transfected ASMCs (5x10° cells/well) was inoculated at into 96-well
plates at 24, 48, and 72 h of culture at 37 °C overnight. Eventually, the absorbance at 450
nm was detected by a microplate reader (Thermo Fisher Scientific, Waltham, MA, USA).
For the cycle analysis, Coulter EPICS XL flow cytometer (Beckman Coulter, Inc., Fullerton,
CA, USA) was performed by flow cytometry on flow cytometry with Modifit software (BD
Biosciences).
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Transwell migration assays and wound healing assay

The migration of ASMCs was detected by transwell assays. In brief, the transfected ASMCs
(1x10° cells/well) were suspended in serum-free medium upper transwell chamber (pore
size: 8 pm; Corning, Inc., Corning, NY, USA). In the bottom chamber, medium was
supplemented with 600 pl of 10% FBS. After being incubated for 24 h at 37 °C, the cells in
the top compartment were wiped off by cotton swabs and the migrated cells were fixed for
20 min with 4% paraformaldehyde and stained for 10 min with 0.1% crystal violet staining
solution (Sigma-Aldrich, Louis, MO, USA). Lastly, images were taken under the optical
microscope (Olympus, Tokyo, Japan). For the wound healing assay, the monolayer was
manually scraped by sterile pipette tip. After being 24 h incubation at 37 °C, the Images
of wound closure were evaluated by inverted microscope (Olympus, Tokyo, Japan). The
migration rate was calculated by the formula: migration rate = migration distance/original
distance.

RNA immunoprecipitation (RIP)-PCR

The interaction within RNA binding proteins and mRNA was identified using RIP-PCR.
In brief, the RIP experiment was carried out by EZ-Magna RIP Kit (Millipore) according
to the manufacturer’s protocol. ASMCs were lysed in complete RIP lysis buffer, and the
cell extract was incubated with protein A/G agarose beads conjugated by anti-YTHDF1
(ab220162, 1:30; Abcam) or control IgG (ab172730; Abcam) for 2 h at 4 °C. After being
washed, beads were incubated with Proteinase K to remove protein in complex. Lastly, the
purified RNAs were subjected to qRT-PCR analysis.

RNA stability assay

To detect the cyclin D1 mRNA stability, the ASMCs were treated with actinomycin (Act
D, 2 pg/mL) treatment for 0, 3 and 6 h. The relative remaining RNA level was detected
by qRT-PCR and the half-life of cyclin D1 mRNA was examined by transcript levels at

indicated time points relative to those before Act D treatment.

Luciferase reporter assay

The wild-type or mutant Cyclin D1 3’-UTR was synthesized and inserted into pmirGLO
reporter vector (Promega, Madison, WI, USA), and then co-transfected with WT- Cyclin
D1 or Mut- Cyclin D1 pcDNA 3.0 expressing plasmid into cells using Lipofectamine
3000. Cells were transfected with pGL3-Luc (1 pg) as a control for transfection efficiency
(Promega), according to the manufacturer’s instructions. The luciferase activity was tested
using a luciferase reporter commercial kit (Promega, Madison, WI, USA).

Statistical analysis

Experiments were repeated three times and data was presented as means =+ standard

deviation (SD) in this study. Variables between was compared by student’s -test and
Statistical analyses were performed using the SPSS 20.0 software (SPSS, Inc., Chicago,

IL, USA) and GraphPad Prism 8.0 software (GraphPad, San Diego, CA, USA). A two-sided

p-value of less than 0.05 was considered statistically significant.
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Figure 1 YTHDFI1 was up-regulated in the PDGF-induced ASMCs. (A) RT-qPCR analysis was per-
formed to detect the YTHDF1 mRNA level in the PDGF-induced ASMCs and control group. (B) Western
blot analysis was carried out to measure the YTHDF1 protein level in the PDGF-induced ASMCs. (C) The
cyclin D1 mRNA level was detected using RT-qPCR analysis in the PDGF-induced ASMCs. (D) The cyclin
D1 protein level was detected using western blot analysis in PDGF-induced ASMCs. **p < 0.01.

Full-size G DOI: 10.7717/peerj.14951/fig-1

RESULTS

YTHDF1 was up-regulated in the PDGF-induced ASMCs

To mimic the cellular asthma model, PDGF-induced ASMCs and blank control cells
were constructed. Firstly, we found that YTHDF1 mRNA was up-regulated in the PDGF-
induced ASMCs (Fig. 1A). Besides, the YTHDF1 protein level also up-regulated in the
PDGF-induced ASMCs (Fig. 1B). Moreover, we found cyclin D1 (CCND1), an essential
cell cycle control gene closely correlated to the development of asthma (Thun et al., 2013),
was up-regulated in the PDGF-induced ASMCs (Fig. 1C). Besides, the cyclin D1 protein
level also up-regulated in the PDGF-induced ASMCs (Fig. 1D). Overall, these findings
revealed that YTHDF1 was up-regulated in the PDGF-induced ASMCs.

YTHDF1 positively regulated the proliferation and migration of ASMCs
The bio-functional roles of YTHDF1 were explored in the PDGF-induced ASMCs with
YTHDF1 knockdown and overexpression. The transfection efficiency was detected using
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RT-PCR (Fig. 2A) and western blot (Fig. 2B). Proliferation analysis by CCK-8 assay unveiled
that YTHDF]1 silencing repressed the proliferative ability of ASMCs, while the YTHDF1
enforced overexpression up-regulated the proliferative ability (Fig. 2C). Furthermore, the
migrative ability of ASMCs was determined by transwell assay, and results illustrated that
YTHDF1 silencing repressed the migrative ability of ASMCs, while the YTHDF1 enforced
overexpression up-regulated the migrative ability (Figs. 2D, 2E). Overall, these findings
revealed that YTHDF]I positively regulated the proliferation and migration of ASMCs.

YTHDF1 positively facilitated the cell cycle progression and
migration

To detect the role of YTHDF1 on PDGF-induced ASMCs, flow cytometry cell cycle analysis
was performed. The results showed that YTHDF1 knockdown induced the cycle arrest
at G1/S phase, while YTHDF1 overexpression promoted the cycle progression of ASMCs
(Fig. 3A). Furthermore, the migrative ability of ASMCs was determined by wound healing
assay, and results illustrated that YTHDF1 knockdown repressed the migrative ability of
ASMCs, while the YTHDF1 overexpression up-regulated the migrative ability (Fig. 3B).
Therefore, these data showed that YTHDF1 positively facilitated the cell cycle progression
and migration.

Cyclin D1 acted as the target of YTHDF1

To discovery the potential downstream target of YTHDF1 in asthma, we utilized the
predictive tool (SRAMP, http:/www.cuilab.cn/sramp) to analyze the m°A site in these
targets (Fig. 4A). Moreover, we found that the exact site of m°A modification (ATGGACQ)
on the Cyclin D1 gene (Fig. 4B). The m®A motif on the Cyclin D1 mRNA was predicted
(https:/rna.sysu.edu.cnfrmbase/) (Fig. 4C). The molecular interaction within Cyclin D1
and YTHDF1 was determined by RIP-PCR, and results indicated that YTHDF1 closely
combined with Cyclin D1 (Fig. 4D). Moreover, further RIP-PCR analysis found that
YTHDF1 silencing repressed the combination within Cyclin D1 and YTHDF1, and
YTHDF1 overexpression enhanced the combination (Fig. 4E). Taken together, these
findings revealed that Cyclin D1 acted as the target of YTHDFI.

YTHDF1 enhanced the RNA stability of cyclin D1 mRNA via
m6A-dependent manner

Previous researches had revealed that YTHDF1 could recognize the m®A site on mRNA and
then enhance its stability (Chen et al., 2021; Xu et al., 2021). In our study, we found that
YTHDF1 might also target cyclin D1 mRNA to enhance its stability. Firstly, we detected
the cyclin D1 mRNA level in ASMCs with YTHDF]I silencing or overexpression, and
results showed that YTHDF1 silencing or overexpression didn’t significantly regulate the
cyclin D1 mRNA (Figs. 5A, 5B). RNA stability analysis revealed that YTHDF1 silencing
reduced the half life time (t; ;) of cyclin D1 mRNA upon Act D treatment, while YTHDF1
overexpression up-regulated the half life time (t;/2) of cyclin DI mRNA (Figs. 5C, 5D).
Luciferase reporter assay using wild-type (WT) cyclin D1 3'UTR or mutant (Mut) was
performed and results indicated that YTHDF1 accelerated the luciferase activity within
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Figure 2 YTHDF]I positively regulated the proliferation and migration of ASMCs. (A) The transfection
efficiency for YTHDF1 was detected using RT-PCR and (B) western blot. Results reflected the YTHDF1
mRNA and YTHDF1 protein after YTHDF]I silencing (sh-YTHDF1-1#/2#, sh-NC) and YTHDF1 enforced
overexpression (YTHDF], vector). (C) Proliferative ability of ASMCs was detected by CCK-8 assay after
YTHDEFI silencing (sh-YTHDF1-1#/2#, sh-NC) and YTHDF1 enforced overexpression (YTHDFI, vector).
(D, E) The migrative ability of ASMCs was determined by transwell assay. *p < 0.05; **p < 0.01.

Full-size G DOI: 10.7717/peerj.14951/fig-2
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Figure 3 YTHDF1 positively facilitated the cell cycle progression and migration. (A) Flow cytome-
try cell cycle analysis was performed in PDGF-induced ASMCs with YTHDF1 knockdown (sh-YTHDF1)
or control (sh-NC). (B) Wound healing assay was performed to determine the the migrative ability of
ASMC:s with YTHDF1 knockdown (sh-YTHDF1) or control (sh-NC). *p < 0.05; **p < 0.01.
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cyclin D1 wild type (Figs. 5E, 5F). In conclusion, we found that YTHDF1 enhanced the
RNA stability of cyclin DI mRNA via m®A-dependent manner (Fig. 6).

DISCUSSION

Currently, the pathophysiology of asthma is complex, including airway remodeling and
inflammatory cells invasion and so on. Airway remodeling refers to a series of structural
changes in airway structure in patients with asthma, including epithelial injury, increased
basement membrane thickness, airway smooth muscle thickening, goblet cell metaplasia,
and airway vascular and lymphatic proliferation (Xu et al., 2022). This study unveiled a
novel finding that m®A reader YTHDF1 play acritical role in asthma airway remodeling,
involving ASMCs proliferation and migration abilities.

N°-methyladenosine (m°®A) is the most abundant modification in mRNA, which is
regulated by m® A methyltransferases, demethylases and readers. In the respiratory diseases,
there are more and more literature reveal the important functions of m®A via variety of
evidence (Xu ef al., 2022). For instance, m®A writer METTL3 is up-regulated in PM2.5
exposured mice lung injury and METTL3 up-regulated the m®A modification of Interleukin
24 (IL24) through via METTL3/YTHDFI-coupled epitranscriptomal regulation (He et
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“tp < 0.01.

Full-size B8 DOIL: 10.7717/peerj.14951/fig-4

al., 2022). In lung ischemia/reperfusion injury, the m®A reader YTHDF3 or IGF2BP2
knockdown attenuates the hypoxia/reoxygenation-mediated inhibitory effects in BEAS-2B
cells, as well as the hypoxia/reoxygenation-induced cell apoptosis (Xiao et al., 2022). Thus,
these findings show the important function of m®A modification in respiratory diseases.

Here, present research indicated that a novel m®A reader YTHDFI also significantly
up-regulated in the asthma cellular model. In the PDGF-induced ASMCs, we found that
mPA reader YTHDF1 up-regulated and the functional assays suggested that YTHDF1
overexpression promoted the proliferation and migration of ASMCs. Thus, our assays’
data revealed the potential function of m®A reader YTHDF1 in asthma.

Moreover, we found that a important element cyclin D1 (CCND1) up-regulated in the
asthma cellular model (PDGF-induced ASMCs). Mechanistically, there were remarkable
mPA modified site on cyclin D1 mRNA. Then, RIP-PCR assays was performed and results
indicated that YTHDF1 significantly combine with cyclin D1 mRNA, thereby enhancing
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Figure 5 YTHDFI enhanced the RNA stability of cyclin D1 mRNA. (A, B) RT-PCR analysis was per-
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Full-size Gl DOI: 10.7717/peer;j.14951/fig-5

its mRNA stability through m°®A-depedent manner. Collectively, these findings reveal a
YTHDF1/cyclin D1 axis in asthma.

As regarding the role of cyclin D1 (CCND1), an essential cell cycle control gene,
convictive literature has revealed that CCND1 is closely correlated to the development of
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asthma (Thun et al., 2013). Besides, Li et al. (2021) reported that cell cycle regulation may
play a role in asthma initiation and development, and CCND1 rs9344 genotype serves as
an early detection marker for asthma. Overall, we could conclude that cyclin D1 (CCND1)
significantly participate in the asthma.

Asthma is a chronic inflammation; however, this inflammation is not primarily caused
by bacterial infections. Asthma attacks are mostly related to exposure to allergens, cold
air, physical and chemical stimulation, emotional changes, respiratory tract infection and
exercise (Zhou et al., 2021). Thus, the complex pathogenesis put forward higher request to
clinical nursing. For the clinical nursing of asthma, there are many situations that require
protection, such as the allergies. To eliminate allergens, we need to clean the house dust mite
thoroughly. Asthma can cause recurrent episodes of wheezing, shortness of breath, chest
tightness, and/or coughing. In addition, these emergencies often occur at night/morning.
Therefore, this special situation requires us to pay close attention to the patient’s changes
during the course of nursing.

In conclusion, our research utilized the PDGF-induced ASMCs to investigate the
function and mechanism of YTHDFI in asthma. These findings revealed the regulation of
YTHDF1 on ASMCs’ proliferation and migration. Mechanistically, YTHDF1 significantly
combined with cyclin DI mRNA, thereby enhancing its mRNA stability through m®A-
depedent manner (Fig. 6). Overall, this study may provide new insight for asthma.
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