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ABSTRACT
PGAM1 plays a critical role in cancer cell metabolism through glycolysis and different
biosynthesis pathways to promote cancer. It is generally known as a crucial target
for treating pancreatic ductal adenocarcinoma, the deadliest known malignancy
worldwide. In recent years different studies have been reported that strived to find
inhibitory agents to target PGAM1, however, no validated inhibitor has been reported
so far, and only a small number of different inhibitors have been reported with limited
potency at the molecular level. Our in silico studies aimed to identify potential new
PGAM1 inhibitors that could bind at the allosteric sites. At first, shape and feature-based
models were generated and optimized by performing receiver operating characteristic
(ROC) based enrichment studies. The best query model was then employed for
performing shape, color, and electrostatics complementarity-based virtual screening
of the ChemDiv database. The top two hundred and thirteen hits with greater than 1.2
TanimotoCombo score were selected and then subjected to structure-based molecular
docking studies. The hits yielded better docking scores than reported compounds,
were selected for subsequent structural similarity-based clustering analysis to select the
best hits from each cluster. Molecular dynamics simulations and binding free energy
calculations were performed to validate their plausible bindingmodes and their binding
affinities with the PGAM1 enzyme. The results showed that these compounds were
binding in the reported allosteric site of the enzyme and can serve as a good starting
point to design better active selective scaffolds against PGAM1enzyme.

Subjects Biochemistry, Bioinformatics, Computational Biology, Pharmacology
Keywords MPGES-1 enzyme, Shape and color based screening, Docking and MD simulations

INTRODUCTION
In metabolic pathways of cellular respiration, glycolysis is considered as the main step to
produce energy in the form of adenosine triphosphate (ATP). The eighth step of glycolysis
is catalyzed by a glycolytic enzyme called phosphoglycerate mutase 1 (PGAM1). PGAM1
reversibly isomerizes 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG) through 2,
3-bisphosphoglycerate (2BPG) intermediate in order to proceed aerobic glycolysis (Hitosugi
et al., 2012; Liu et al., 2017). Glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) has
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potential stimulating roles in a number of human cancers. In cancer cells, PGAM1 is highly
up regulated that cause rapid production of cancer cells and tumor growth (Xu et al., 2016;
Zhang et al., 2017).

Human genome contains two PGAM genes thereby two iso-types of dPGM genes exist,
which includes PGAM1 or PGAM-B and PGAM2 or PGAM-M. Their encoded products
share high degree of homology with 81% identity, similar length of 254 and 253 amino
acids respectively. Moreover, they form homodimers and heterodimer that are functionally
identical. The PGAM1 is present in different body parts such as liver, brain, kidney, red
blood cells (RBCs), and early fetal skeletal muscle, whereas PGAM2 can be found in adult
skeletal muscles andmyocardium (cardiac muscles). TheMB heterodimer is found in heart
and in the late fetal or neonatal muscle (Xu et al., 2014).

In humans the active enzyme exists in the form of dimer which is formed by the C
strands of two monomers with antiparallel alignment. In the center of the dimer chloride
ion is located which strengthens the interactions of the two monomers. Low concentration
of chloride ion accelerates dPGM activity. Whereas its higher concentration inhibits dPGM
activity, as chloride ion binds at the enzyme’s active site which is rich with positively
charged residues and compete with the substrate thereby inhibit enzyme’s activity (Xu et
al., 2014).

Currently PGAM1 has only few reported classes of inhibitors that include MJE3, PGMI-
004A, and a natural chemical epigallocatechin gallate (EGCG), the major polyphenol
derived from Camellia sinensis (green tea) (Evans et al., 2005) and xanthone derivatives.
MJE3 was initially identified as PGAM1 inhibitor but it also inactivates PGAM1 by
covalently modifying its K100 residue, because of its spiroepoxide substructure (Li et al.,
2017). PGMI-004A is a verified PGAM1 inhibitor; it exhibits anticancer properties in
mice models carrying human xenograft tumors. These two reported inhibitors have low
molecular potency (Liu et al., 2017). Although PGAM1 third inhibitor EGCG has 30 times
higher molecular potency than PGMI-004A but due to its polyphenol structure and the off-
target effect, it cannot be considered as a good inhibitor (Li et al., 2017). Recently xanthone
derivatives (24 N -xanthone benzene sulfonamides) have been designed and synthesized
as PGAM1 inhibitors. Most of them exhibit high potency against PGAM1 as compared
to PGMI-004A and their anti-proliferation activity was moderate on different cancer cell
lines (Ma et al., 2014;Wang et al., 2018b). Due to few reported PGAM1 inhibitors, there is
a need to design and identify better active compounds that can bind to PGAM1 enzyme to
block its metabolic activity.

MATERIALS AND METHODS
Preparation of active, decoys and database compounds
The reported inhibitors of PGAM1 were selected as active compounds dataset. Decoys
dataset was prepared using physicochemical properties of the PGMI-004A co-crystal
ligand. The criteria such as HBA<9, HBD<3, molecular weight and logP value
± 463.38 g/mol,± 4 respectively was used to fetch the decoys [18] from ChEMBL database
https://www.ebi.ac.uk/chembl/. Decoy molecules exhibit the similar physicochemical
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properties like active molecules; however, they are chemically distant and act as false
positive results in validation studies. Chemdiv database was prepared by implementing
drug like filter criteria to remove unwanted chemical structures, duplicates and salts.
Stereoisomers of molecules were checked and tautomeric states were generated at pH 7.0.
OMEGA tool was used to generate one hundred conformers per molecule.

Query model generation and optimization
Shape and color based query models were built using vROCS tool (Poongavanam &
Kongsted, 2013) implemented in OpenEye scientific software (https://www.eyesopen.com/)
(Grant, Gallardo & Pickup, 1996). PGMI-004A co-crystal ligand was used for generating
query models which were validated by plotting receiver operating characteristic (ROC)
curve (Poongavanam & Kongsted, 2013). The ROC curves usually discriminate true
positive and false positive compounds in the dataset. In our experiments, the graphs
were represented by fraction of the active on Y -axis and fraction of the decoy dataset on
X-axis. Different features were iteratively added and removed to obtain the best query
model that can distinguish true actives from inactive compounds during virtual screening.

ROCS shape and electrostatic potential similarity-based screening
ROCS shape and color-based screening method was used to align the best query model
with chemical database compounds on the basis of shape and color matching, the best
match was selected based on TanimotoCombo scoring function. Screened hits possessed
higher TanimotoCombo score were subjected for electrostatic potential similarity matches
using the EON software implemented in OpenEye software. It calculates the partial charges
similarity between database and query molecule, and then calculates the ET-Combo score
which is the combination of shape-Tanimoto and PB-electrostatic similarity coefficient.
Hits having ET-Combo >1 were selected for further screening (Imran et al., 2020).

Protein and ligand structure preparation for molecular docking
Human PGAM1 structure (PDB-ID: 5Y2I) was retrieved from protein data bank
(https://www.rcsb.org/) (Berman, Henrick & Nakamura, 2003). The crystal structure of
PGAM1 in complex with ligand PGMI-004A was in dimeric form consisting of two chains
(Chain A and B). Protein preparation wizard embedded in Schrödinger’s Maestro tool
(Sastry et al., 2013) was used for preprocessing of structure. All water molecules and other
co-crystal ligands were removed and structure was minimized using OPLS2005 forcefield
to remove all steric clashes. Similarly, for molecular docking studies compounds were
prepared using Ligprep tool embedded in Schrodinger software (Guasch et al., 2013).
Different ionization states and tautomeric forms were generated at pH 7.0 (Li, Robertson
& Jensen, 2005).

Grid generation and glide docking
Before docking studies, a Grid box was generated around the allosteric site of the PGAM1
structure. The size of the outer box was adjusted up to 17Å and size of inner box was fixed
to 12Å, 12Å, and 15Å for X , Y and Z axis respectively. The receptor grid generation panel
was used to generate the grid at the allosteric sites of the prepared protein. At the end by
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using Glide SP docking (precision tool from Schrodinger software) (Friesner et al., 2004)
prepared ligands were docked within generated grid.

Identification of toxicological and pharmacokinetics properties
Toxicological and pharmacokinetics studies were conducted on virtually screened
compounds mined from Chemdiv database by using online tool PreADMETv.2.0 (https:
//preadmet.bmdrc.kr/adme/) (Lee et al., 2004; Lee et al., 2003). ADME data i.e., toxicity,
absorption, and distribution were calculated by means of selected following parameters:
toxicological in Ames test, carcinogenicity for rats and mouse, absorption in human
intestinal absorption, cell permeability, cell permeability Maden Darby canine kidney, in-
vitro P-glycoprotein inhibition, permeability in Caco2 cells and distribution in blood–brain
barrier, plasma protein binding (Araújo et al., 2020).

Identification of biological activity of screened compounds
Biological activities were predicted in order to test the possibility of the biological effects
of the selected compounds. Activity predictions were made using the online PASS server
(http://www.pharmaexpert.ru/passonline/) (Lagunin et al., 2000) which is the freely available
software to predict the biological effects of the compounds based on their chemical
structures. PASS server suggests the activity of the compounds based on their chemical
formula using multi-level atom neighbors (VMA) descriptors. Activities of compound
with following effects had been selected: antiallergic, antiasthmatic, Alzheimer’s disease
treatment, and antidiabetic.

Molecular dynamic (MD) simulation method
Molecular dynamic simulation (MD) was carried out using the NAMD software
(https://www.ks.uiuc.edu/Research/namd) based on Charm run and molecular dynamic
force fields. The parameters of the inhibitors were described by General Amber Force
Field (GAFF) and atomic charges were calculated through the Antechamber package of
Amber tools 21 (https://ambermd.org/AmberTools.php) (Macke et al., 2010). Subsequently,
protein structures of PGAM1 in complex with inhibitors were prepared for simulation
using the tLeap module of amber tools 21. The ff14SB force field and TIP3P water model
were described for solvent-solvent simulation. Protein ligand complexes were immersed
in 10Å octahedral water box and then neutralize by adding Na+/Cl− ions. After that,
we initialize the system for simulation includes: energy minimization of the complexes by
removing undesired contacts between non-bonded adjacent atoms then, the temperature of
the system is increased gradually from 200k to 250k to 300k in order to stabilize the system
(de Oliveira et al., 2019; Jorgensen et al., 1983). This step is done in three further steps with
each steps ran for about 5,000 steps, at each integration step velocities are reassigned and
the temperature is increased. In the final step, the simulation was run in the production
phase at 310K temperature and 1 atm pressure by using the NPT ensemble, for 50 ns in
order to study the behavior of proteins after binding with the ligands.

Binding free energy calculation
Binding free energies of the protein-ligand complexes were calculated using molecular
mechanics Poison Boltzmann calculations MMGBSA free energy algorithm (Sun et al.,
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2014). The 1Gtotal was calculated using following equation:

1Gtotal =1Gcomplex−[1Gprotein+1Gligand]

1Gtotal is the sum of interaction energy of the gas phase in between protein-ligand complex.
However free energy calculation per residue was calculated by following equation:

1GMMGBSA=1GvdW +1Gele+1GGB+1GSurf

Residues free energy decomposition
In order to find the key residues involved in the binding of protein and ligand, MMGBSA
free energy decomposition program of Amber21 was also applied to the complexes. The
interaction of ligand and protein can be described by the following equation:

1Ginhibitor_residue =1GvdW +1Gele+1Gele,sol+1Gnonpol,sol

Computational alanine scanning
The key residues involved in the protein-ligand binding free energy weremutated to alanine
to find their role in the total binding free energies of the complexes. Themutated complexes
were subjected to recalculate the binding free energy. The total binding free energy of the
two systems (wild type and mutant) can be calculated by the following equation:

11Gbind =1Gmutant
bind −1Gwildtype

bind

The flowchart of overall study is shown in Fig. 1.

RESULTS AND DISCUSSION
Molecular docking of reported compound
Different classes of PGAM1 inhibitors have been reported which include xanthone
derivatives, anthraquinone derivative, MJE3 and epigallocatechin (EGCG) (Evans et al.,
2005; Wang et al., 2018a). Molecular docking studies were performed to find the sites in
PGAM1 protein at which reported compounds are binding. The analyses showed that
among all reported classes xanthone derivatives are binding at the allosteric site with
reasonably good glide score values. The binding interactions of protein residues such as
hydrogen bonding, pi-pi stacking, etc. with xanthone derivatives were observed as reported
in co-crystalized structure. The key residues involved in the interactions are Phe22, Arg90,
Tyr92 and Arg191 (Wen et al., 2019).

ROCS query model generation and virtual screening
Since the co-crystal ligand 8kx (xanthone derivative) showed good binding score among
other reported compounds. Therefore, it was selected for the development of query model.
Finest ROCS query models were produced and optimized in four phases, in first phase,
all pharmacophore features were applied for model building. In second phase model was
generated by reducing the number of pharmacophoric features to 5A and 4R (A: hydrogen
bond acceptor, R: ring), phase 3 have 4A and 3R pharmacophoric features and in the last
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Figure 1 The flowchart of the study.
Full-size DOI: 10.7717/peerj.14936/fig-1

phase query model was built on 3A, 3R features as shown in Fig. 2A. The query models
were sequentially validated to observe their ability to discriminate the active compounds
from the decoys. The dataset used for the validation contained fifteen active compounds
and six hundred decoys retrieved from ChEMBL database. The query-1 showed the poor
enrichment with an area under curve (AUC) value of 0.78, whereas query 2 and 3 showed
better screening performance and yielded AUC 0.84 and 0.83 respectively. The query 4
discriminated the active and decoys significantly better than other three queries with an
AUC value of 0.87. The ROC plots shown in Fig. 2B are representing the fraction of active
ligands (the true positives) on the y-axis and the fraction of decoys (the false positives) on
the x-axis.

After generating optimized query model, the Chemdiv database was screened by
matching the query features with its compounds. Since the query contains both shape
and color features, therefore it was speculated that unknown compounds having similar
characteristics with query will show the biological activities (Kearnes & Pande, 2016). Shape
and color Tanimoto scores were used to rank the overlaying compounds. TanimotoCombo
score ranges from 0 to 2 was used to select the hits, which means hits with value closer
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Figure 2 Query model optimization. (A) Multiple ROCS queries on co-crystal ligand. The green color is
indicating hydrophobic regions i.e., four aromatic rings, four red regions are showing acceptors and a sin-
gle blue region is representing donor. (B) Validation of multiple query model of co-crystal ligand 8kx rep-
resented by AUC curve.

Full-size DOI: 10.7717/peerj.14936/fig-2

to 2 will exactly overlay its shape and features to query model, while the value closer to 0
indicates shape and chemical-features are not matching (Kearnes & Pande, 2016; Li et al.,
2018). Using this scoring scheme, 540 compounds were obtained with TanimotoCombo
score ranges from 1.20−1.53. Then these hits were subjected to compare their partial
charges complementarity with cocrystal ligand using PB Electrostatic Tanimoto and shape
Tanimoto (ET_Combo score) implemented in EON (Rush et al., 2005).

Molecular docking based virtual screening and clustering
To further narrow down the size of initially screened hits from ROCS and EON based
approaches, hits were docked at the allosteric site of PGAM-1 target protein. All the hits
were sorted based on the glide score and the compounds having glide score comparative to
the binding affinity of co-crystal ligand were selected for their structural clustering analysis.
The purpose of structure based clustering was to classify the compounds into groups based
on structure similarity (Mangiatordi et al., 2017). Based on the glide scores and structural
diversity, five compounds (C1 = 6144-0309, C2 = E470-1348, C3 = C301-8900, C4 =
F540-0157 and C5 = L464-0403) were selected from each cluster. Among the top five
compounds, C2 exhibit the good binding pose having highest glide score of −6.902 Fig. 3.
On comparison, docking score of virtually screened top hits compounds were relatively
equal to the selected ligands of PGAM1. Selected compounds also indicated the greater
binding interaction within the allosteric site residues. Compound C1 formed one hydrogen
bond and salt bridge with Lys100 and pi interaction with Phe22. The oxygen of sulfonamide
group of C2 was involved in two hydrogen bonds with Arg90, Arg191 while NH group
formed one hydrogen bond with Tyr92. Additionally, a pi interaction was observed with
Phe22. Similarly, Arg191 and Tyr92 weremaking hydrogen bonds with sulfonamide oxygen
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Figure 3 The best virtual screen hits. C1= 6144–0309, C2= E470–1348, C3= C301–8900, C4= F540–
0157, C5= L464–0403 from Chemdiv database with their chemical structures, ROCS TanimotoCombo
scores (TC) and glide docking scores (GS).

Full-size DOI: 10.7717/peerj.14936/fig-3

and NH group of compounds C3, while Phe22 was involved in pi-pi stacking. In complex
of PGAM1-C4, Phe22 was involved in two types of interactions. It made a hydrogen bond
with carbonyl oxygen and pi-pi stacking with the benzene ring. The C5 compounds was
also making the hydrogen bonds with Tyr92 and Arg191 and pi-pi stacking with Phe22
as shown in Fig. 4A. All these interactions of the screened compounds demonstrated that
these were bound to the reported key residues of the allosteric pocket of PGMA1 enzyme
(Wen et al., 2019). The binding poses of these compounds were also analyzed by comparing
with the binding pose of the co-crystal ligand 8kx, which showed that these compounds
have similar plausible binding modes as the reference ligand as shown in Fig. 4B.

Analysis of toxicological and pharmacokinetic properties
Toxicological and pharmacokinetics properties of the selected hits were assessed using
online server PreADMET (https://preadmet.bmdrc.kr/adme/). First the absorption levels
of the compounds were predicted using different parameters like HIA (%), CaCo-2
(nm/sec), PMDCK (nm/sec), P-gp inhibition. All the compounds showed high value of
HIA>94%, which is believed the most important ADME properties. CaCo-2 permeability
also showed significant results, value greater than two showed easy absorption of the
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Figure 4 Docked poses of hit compounds. Protein-ligand complexes (C1, C2, C3, C4, C5 and 8kx) with
best screened compounds and co-crystal ligand in the binding site. (A) 2D interactions of hits with the al-
losteric site residues. (B) The binding poses of the best selected hits in the allosteric site with reference to
cocrystal ligand 8kx.

Full-size DOI: 10.7717/peerj.14936/fig-4

compound. Compound C1 showed highest 22.2815 nm/s absorption rate in all reported
inhibitors. Moreover, PMDCK permeability value of C1 has also seen substantially increased
204.401nm/s and C4 have moderate and ideal value of 4.13987nm/s. Other important drug
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Table 1 ADME properties calculation of virtually screened compounds using PreADMET (https://
preadmet.bmdrc.kr/adme/).

Compound Human
intestinal
absorption

Cell
permeability

Cell
permeability
maden darby
canine kidney

In-vitro
p-glycoprotein
inhibition

Permeability
of blood-brain
barrier

HIA (%) CaCo-2
(nm/sec)

PMDCK

(nm/sec)
P-gp
inhibition

BBB (%)

C1 100.000 22.281 204.401 Non 1.499
C2 96.912 14.758 2.171 Non 0.154
C3 97.039 19.580 1.510 Non 0.181
C4 97.063 4.271 4.139 Inhibitor 0.736
C5 97.276 11.180 0.667 Non 1.564

absorption barrier in the cell is P-glycoprotein (P-gp). Data showed that it assists in the
intestinal penetration of compounds except C4 which dropped the efflux method due to
its passive permeability. The Distribution parameter of BBB% was referred to characterize
the distribution of the compounds in various tissues in vivo. Compounds have BBB%
>0.3 can cross the blood–brain membrane easily (Clark, 1999). According to data, all
compounds were predicted to be good to cross the blood–brain barrier. It was observed
the compounds C2, C3, and C4 have showed BBB (%) values less than one which means
that these compounds have no activity on central nervous system (CNS) shown in Table 1.

Data in Table 2 illustrates that the values of possibility of biological activity of compounds
are higher as compare to possibility of inactive (Pa >Pi) generally in term of antineoplastic,
antiallergic and antidiabetic responses. The selected compounds showed Pa>Pi values,
indicating the relation with reported biological activities. C1 possess best value for
proteasome ATPase inhibitor (Pa = 0.784) and insulysin inhibitor (Pa = 0.637), C2
(Pa = 0.863) have good activity value as omptin inhibitor, C3 (Pa = 0.338) shows better
inhibition against antineoplastic, C4 (Pa = 0.808) as an anti-obesity and C5 (Pa = 0.734)
for nootropic disease. All the candidate compounds have good biological activity values for
different diseases and can be performed as potential inhibitors against different targets.

MD simulation studies
Molecular dynamic studies of best identified compounds were performed to evaluate
the binding modes and stability of selected compounds with PGAM1. MD-simulations
studies help to understand the dynamic movement of the protein ligand complex and to
calculate their binding free energy. The best fitted compounds (C1 = 6144-0309, C2 =
E470-1348, C3= C301-8900, C4= F540-0157, C5= L464-0403) in complex with PGAM1
were subjected to MD simulation for 50 ns time scale. Trajectory analysis were performed
by calculating RMSD of back bone atoms, RMSF, and the radius of gyration of all the
five compounds in complex with PGAM1. Figures 5, 6 and 7 showed that all compounds
(except C4) in simulation system were stable, compact and well fitted in the allosteric site.
The protein backbone RMSD helps to analyze the protein-ligand complex stability over the
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Table 2 Pharmacokinetics properties and biological activities of top five virtually screened
compounds (C1, C2, C3, C4, and C5), as determined by web server PASS ( http://www.pharmaexpert.ru/
passonline/).

COMPOUND Possibility of
activity (pa)

Possibility of
inactive(pi)

Biological
activities

C1 0.150
0.162
0.784
0.637

0.141
0.153
0.006
0.018

Antipruritic, non-allergic
Antibacterial
Proteasome ATPase inhibitor
Insulysin inhibitor

C2 0.411
0.863
0.253
0.142

0.049
0.004
0.093
0.131

Antiallergic
Omptin inhibitor
Alzheimer’s disease treatment
Antineoplastic (renal cancer)

C3 0.243
0.338
0.090
0.140

0.196
0.016
0.073
0.010

Insulysin inhibitor
Antineoplastic
Lipoxygenase inhibitor
Sulfonylureas

C4 0.808
0.650
0.290
0.258

0.005
0.009
0.070
0.138

Ant obesity
Antidiabetic
Alzheimer’s disease treatment
Antineoplastic (Multi myeloma)

C5 0.231
0.379
0.734
0.169

0.021
0.049
0.031
0.162

Osteoarthritis treatment
Antidiabetic
Nootropic
Diabetic nephropathy treatment

simulation time (Sargsyan, Grauffel & Lim, (2017)). The RMSD values of the complexes
range from 0 Å 3 Å shown in Fig. 5. It can be observed that all complexes showed stability
as the RMSD of all complexes remained in the range of∼2.5 to 3 Å after being equilibrated
at 5 ns. A small deviation in the RMSD value of PGAM1-C1 complex was observed during
35 to 40 ns but it gained stability towards the end of simulation. The overall behavior of
all complexes showed that protein was remained stable during the simulation. Further,
the different snapshots of protein-ligand complexes (Fig. 6) were extracted from 0, 5,
10, 15, 20, 25, 30, 35, 40, 45, and 50 ns and aligned to detect the position of the docked
compounds and analyze the mobile regions of the protein. The aligned snapshots depicted
that C4 compound did not remain at docked site (Fig. 6D) while the other compounds
were tightly bound to the allosteric site. The elasticity and fluctuations in protein amino
acid residues are calculated by measuring the root mean square fluctuations. The higher
RMSF value shows that the protein is more flexible and vice versa (Martínez, 2015). In
RMSF analysis, the C and N terminal and the loop regions gave higher fluctuation in all five
complexes as shown in Fig. 7. The protein residues did not show major fluctuations during
simulation however residues range from 100 to 150, showed some minor fluctuations. This
region contained the binding sites of protein as well as some loop regions. Besides these,
no significant fluctuations were observed at the ligand binding site of PGAM1. Overall
PGAM1 in complex with the ligands found stable and no abrupt deviations have been
observed during whole simulation. Similarly, no uncertain behavior of the complexes was
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Figure 5 The RMSD(Å) vs. time(ns) plots. PGAM-1 enzyme backbone atoms in complex with C1 (red),
C2 (blue), C3 (green), C4 (orange), and C5 (pink) hits.

Full-size DOI: 10.7717/peerj.14936/fig-5

seen during the 50 ns MD simulation which indicated that the virtual hit compounds were
well fitted at allosteric site of PGAM1 enzyme.

Binding free energy studies
Molecular mechanics generalized born surface area (MMGBSA) method was used to
calculate the total binding free energy (1Gtotal) for all five complexes. 1Gtotal value is
usually used to estimate the stability of protein-ligand complex. The lower values of
1Gtotal indicates that the complex is more stable (Wang et al., 2021) and vice versa. It was
computed as a sum of protein-ligand complex and the difference of PGAM1 protein and
its ligands free energies. The total binding free energy estimated using MMGBSA model
is the outcome of the contribution of various protein-ligand interactions such as van der
Waals energy (VDWAALS), electrostatic energy (EEL), EGB (electrostatic contribution to
solvation free energy by Generalized Born).

The 1GVDW of C2, C3 and C5 complexes were found to be −37.42 ± 0.26, −42.36
± 0.19 and−35.96± 0.32 kcal/mol respectively and contributed more in binding affinities.
C1 and C4 had limited contribution of −29.61 ± 0.17 and −17.79 ± 0.35 respectively. In
the case of 1GELECthe energy component was −21.66 ± 0.57 in C1, −19.64 ± 0.29 in
C2, −21.39 ± 0.34 in C3, −13.24 ± 0.72 in C4 and −15.17 ± 0.50 in C5. 1GELECenergy
contribution of C1 is highest among all other complexes. After those surface energies were
analyzed, C3 complex exhibited highest surface energy binding affinities of −5.18 ± 0.01
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Figure 6 The superimposed snapshots of the MD trajectories of C1 to C5 complexes. (A) PGAM1- C1
(B) PGAM1-C2 (C) PGAM1-C3 (D) PGAM1-C4 (E) PGAM1-C5.

Full-size DOI: 10.7717/peerj.14936/fig-6

while C4 showed lowest energy. The energy contribution of each energy function of all
complexes is shown in Table 3.

The 1Gtotal of C2 (−37.11 ± 0.36), C3 (−41.53 ± 0.39) and C5 (−36.79 ± 0.62)
were quite better and similar compared to C1 and C4 hit. The differences in the binding
energies were due to the difference in the contribution of electrostatic, van der Waal, and
surface energies in the protein-ligand complexes. In order to observe the major energy
contribution and favorable interactions of residues with selected hits, the total binding free
energy was decomposed for each residue of the complexes (Chohan et al., 2016), shown in
Fig. 8. The decomposition analysis showed that hits were interacting with various PGAM1
residues. The residues like Phe22, Tyr92, Arg90, Lys100, Arg116, Asn188, and Arg191
showed favorable contribution in total binding free energy of all complexes except for C4
complex where Asn20 and Phe22 contribution was very minor. However, Glu19 and Glu89
residue showed unfavorable interactions with C2, C3, and C5 hits, as these interactions had
positive binding free energy values. The interactions of C2, C3, and C5 compounds with
the PGAM1 allosteric site residues before and after MD simulations are shown in Fig. 9.
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Figure 7 The RMSF (Å) plots of complexes. The RMSF (Å) plots of residues of PGAM-1 enzyme in
complex with C1 (red), C2 (blue), C3 (green), C4 (orange), and C5 (pink) hits.

Full-size DOI: 10.7717/peerj.14936/fig-7

Table 3 Binding free energy (kJ/mol) calculation of complex C1, C2, C3, C4, and C5 determine by
MMGBSA.

Interactions PGAM1-C1 PGAM1-C2 PGAM1-C3 PGAM1-C4 PGAM1-C5

1GvdW −29.61± 0.17 −37.42± 0.26 −42.36± 0.19 −17.79± 0.35 −35.96± 0.32
1Gele −21.66± 0.57 −19.64± 0.29 −21.39± 0.34 −13.24± 0.72 −15.17± 0.50
1GGB 38.31± 0.49 25.04± 0.29 27.41± 0.25 25.98± 0.71 19.33± 0.28
1Gsurf −4.09± 0.02 −5.09± 0.02 −5.18± 0.01 −2.16± 0.04 −4.99± 0.04
1Ggas −51.27± 0.55 −57.06± 0.32 −63.76± 0.33 −31.04± 0.55 −51.13± 0.74
1Gsolv 34.21± 0.48 19.94± 0.29 22.22± 0.25 23.81± 0.73 14.34± 0.26
1Gtotal −17.05± 0.23 −37.11± 0.36 −41.53± 0.39 −7.22± 0.34 −36.79± 0.62

Distance and hydrogen bond analysis
The distances of hit molecules with key residues (Phe22, Tyr92, Arg191) that majorly
contributed to the binding free energy, was measured in all trajectories. It was observed
that the nitrogen (N1) of Borazine group of C2 was away from the amino group hydrogen
(H) of Phe22 in first 20 ns but after that both maintained an average distance of ∼4 Å till
the end of simulation. Similarly, the distance between sulfur atom (S1) of thiophene ring
of C3 and benzene hydrogen (H4) of Phe22 was in the range of ∼4−4.5 Å throughout
the simulation while the distance between Isoxazolidine ring of C5 and benzene ring of
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Figure 8 Total binding free energy decomposition of all five hits-PGAM-1 complexes. Key residues
with major contribution (Phe22, Arg90, Tyr92, Arg116, and Arg191) are shown in peaks.

Full-size DOI: 10.7717/peerj.14936/fig-8

Phe22 was ∼3.5–6 Å for whole simulation time. The distance between amine group (N2)
of C2 and hydroxyl group (OH) of Tyr92 was less than 4 Å throughout the simulation.
Similarly, the distance between amine group (N3) of C3 and hydroxyl group (OH) of
Tyr92 was ∼2−2.5 Å all the time except for some frames where the distance increased to
∼5 Å. The distance between the amine group (N2) of C5 and hydroxyl group (OH) of
Tyr92 was less than 2 Å till 20 ns and then increased to 4 Å at 22 ns. The distance remained
in this range until 49 ns. The distance increased to ∼6 Å towards the end of simulation.
Moreover, the distance between sulfonamide group oxygen (O3) of C2 and amine group
(NH2) of Arg191 was <4 Å till 18 ns and exceed to 10 Å after 20 ns for some time and
then attained an average distance of ∼7 Å till 50 ns except for small deviations at 43 to
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Figure 9 The interactions patterns of finally selected hits before and after MD simulations. (A) The in-
teractions showed at 0 ns (first frame). (B) The interactions at 50 ns (last frame). (C) The binding modes
of hits before and after MD simulations. The red sticks are showing poses (first frame) while the green
sticks are indicating the poses in last frame.

Full-size DOI: 10.7717/peerj.14936/fig-9

45 ns. The similar trend was also observed in the distance between sulfonamide group
oxygen (O3) of C3 and amine group (NH1) of Arg191. However, the distance between
sulfonamide group oxygen (O1) of C5 and amine group (NH1) of Arg191 was in the range
of ∼2–5 Å throughout the simulation (Fig. 10). Further, hydrogen bond analysis was
performed to observe the hydrogen bond patterns between the protein binding pocket
and selected ligands. Hydrogen bond formation or distortion is a principal factor during
simulation so large number of hydrogen bonds show stronger affinity between the ligand
and protein (Surti et al., 2020). The hydrogen bonding plots of the three complexes are
shown in Fig. 11. The average number of hydrogen bonds between C2 and protein in first
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Figure 10 Distance plots among key residues and selected hits.Distance between the key residues
(Phe22, Tyr92, Arg191) and selected hit compound throughout the MD simulation. Cyan plots indicate
the distance between Phe22 and hit compounds, Magenta shows the Tyr92-Hits distances,while black
plots show the distances between hits and Arg191.

Full-size DOI: 10.7717/peerj.14936/fig-10

25 ns were 1.60 while in the second half, the average number of hydrogen bonds were
1.18. Similarly, the average number of hydrogen bonds between C3 and protein were 1.45.
Among the three hits, the average number of hydrogen bonds of C5-PGAM1 were higher
than other two hits with a value of 2.21. The hydrogen bonding analysis showed that the
selected hits made strong and stable complexes with protein.

Alanine scanning of selected complexes
The three complexes (C2, C3 and C5) showed maximum binding free energies were
further investigated to identify the key role of Phe22, Tyr92, and Arg191 residues in
the total binding free energy of protein-ligand complexes using computational alanine
scanning. This method helps to calculate the energy contribution of individual residue in
total binding free energy of protein-ligand complex (Liu et al., 2018). One speculation of
the computational alanine scanning is the effect of mutation on the structural perturbation
of system is so small that the binding free energy of mutated system can be obtained from
the wildtype trajectory. So, three complexes were selected based on the better binding free
energies and the contribution of Phe22, Tyr92, and Arg191 in total binding free energy
was estimated one by one. The change in the binding free energy of three complexes and
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Figure 11 Hydrogen bond analysis of hits with key residues. The number of hydrogen bonds formed
between the binding site of protein and selected hits (C2, C3, C5) during simulation. The plots show the
consistent hydrogen bonding among all complexes.

Full-size DOI: 10.7717/peerj.14936/fig-11

entropy changes can be observed in Table 4. In PGAM1-C2 complex, the mutation of
Arg191 to alanine played a significant role in the loss of binding free energy as total energy
reduced to −30.70 ± 0.29 with an energy loss of −6.41 ± 2.52 as compared to the other
two mutations where energy loss of Tyr92 and Phe22 mutations was −3.74 ± 1.40 and
−4.49± 1.08 respectively. Similarly, the contribution of Arg191 was higher in PGAM1-C3
complex as this mutation lead to an energy loss of −6.67 ± 4.26 that was higher than
−5.56 ± 1.49, and −4.49 ±1.44 for mutations of Tyr92 and Phe22 respectively. In case of
PGAM1-C5 complex, same trend was observed as Arg191 mutation caused a loss of −5.72
± 2.90 energy while the energy loss for Phe22 and Tyr92 mutation caused an energy loss of
−5.19± 1.72 and−4.41± 2.58 respectively. The major difference in binding free energies
was due to the mutation of Arg191 which indicates that Arg191 have critical role in binding
with the ligands.
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Table 4 Binding free energy (kcal/mol) calculation of mutant complexes C2, C3 and C5.

Interactions PGAM1-C2
R191A

PGAM1-C2
Y92A

PGAM1-C2
F22A

PGAM1-C3
R191A

PGAM1-C3
Y92A

PGAM1-C3
F22A

PGAM1-C5
R191A

PGAM1-C5
Y92A

PGAM1-C5
F22A

1GvdW −35.62± 0.27 −33.90± 0.23 −33.50± 0.24 −41.48± 0.18 −38.57± 0.17 −38.53± 0.17 −35.22± 0.33 −33.16± 0.30 −32.08± 0.28

1Gele −11.10± 0.29 −19.35± 0.29 −19.11± 0.28 −8.63± 0.29 −19.58± 0.34 −20.77± 0.35 −4.13± 0.29 −12.60± 0.44 −14.51± 0.51

1GGB 20.83± 0.28 25.11± 0.30 24.63± 0.28 20.22± 0.20 27.04± 0.23 26.99± 0.24 13.04± 0.20 17.98± 0.29 19.41± 0.31

1Gsurf −4.81± 0.02 −4.82± 0.02 −4.64± 0.02 −4.96± 0.01 −4.83± 0.01 −4.72± 0.01 −4.75± 0.04 −4.60± 0.03 −4.40± 0.04

1Ggas −46.72± 0.28 −53.65± 0.31 −52.61± 0.31 −50.11± 0.34 −58.15± 0.35 −59.31± 0.34 −39.35± 0.53 −45.76± 0.67 −46.60± 0.71

1Gsolv 16.01± 0.28 20.28± 0.30 19.98± 0.28 15.25± 0.20 22.21± 0.23 22.27± 0.24 8.28± 0.21 13.38± 0.27 15.00± 0.29

T 1S −22.62± 0.84 −22.62± 0.84 −22.62± 0.84 −20.23± 1.26 −20.23± 1.26 −20.23± 1.26 −24.62± 1.15 −24.62± 1.15 −24.62± 1.15

W 1Gtotal −37.11± 0.36 −37.11± 0.36 −37.11± 0.36 −41.53± 0.39 −41.53± 0.39 −41.53± 0.39 −36.79± 0.62 −36.79± 0.62 −36.79± 0.62

M 1Gtotal −30.70± 0.29 −33.37± 0.34 −32.62± 0.34 −34.86± 0.25 −35.94± 0.41 −37.03± 0.40 −31.06± 0.56 −32.37± 0.55 −31.59± 0.57

11Gbind −6.41± 2.52 −3.74± 1.40 −4.49± 1.08 −6.67± 4.26 −5.58± 1.49 −4.49± 1.44 −5.72± 2.90 −4.41± 2.58 −5.19± 1.72

Notes.
T 1S, The entropy changes; W 1Gtotal, Binding free energy of Wild type complex; M 1Gtotal, Binding free energy of Mutant complex; 11Gbind, Difference in mutant and wild type energy values.
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CONCLUSIONS
In this study the optimized shape and structure-based approaches yielded the five
hit compounds having the sulfonamide as linking group to attach different chemical
fragments. Molecular docking studies reveal that among finally selected hits, C3 binds at
PGAM1 allosteric site better than other screened virtual hits. Further molecular dynamics
simulations and binding free energies calculations suggest that C2, C3 and C5 hits are
tightly binding at the allosteric binding site of PGAM1 enzyme with−37.11 ± 0.3, −41.53
± 0.39 and −36.79 ± 0.62 Kcal/mol binding free energies respectively with no structural
distortions throughout the simulations time. Computational alanine scanning suggests that
Phe22, Tyr92 and Arg191 residues are playing important role in binding interactions of
these hits with PGAM1 enzyme, which is in agreement with the experimental findings (Wen
et al., 2019a). The predicted ADMET properties also suggest that these compounds can be
used as lead compound after performing the biological assays for further optimization.
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