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ABSTRACT
Background: In the last decade, the use of copper has reemerged as a potential
strategy to limit healthcare-associated infections and to control the spread of
multidrug-resistant pathogens. Numerous environmental studies have proposed that
most opportunistic pathogens have acquired antimicrobial resistance in their
nonclinical primary habitat. Thus, it can be presumed that copper-resistant bacteria
inhabiting a primary commensal niche might potentially colonize clinical
environments and negatively affect the bactericidal efficacy of Cu-based treatments.
The use of copper in agricultural fields is one of the most important sources of Cu
pollution that may exert selection pressure for the increase of copper resistance in soil
and plant-associated bacteria. To assess the emergence of copper-resistant bacteria in
natural habitats, we surveyed a laboratory collection of bacterial strains belonging to
the order Rhizobiales. This study proposes that Methylorubrum extorquens AM1 is
an environmental isolate well adapted to thrive in copper-rich environments that
could act as a reservoir of copper resistance genes.
Methods: The minimal inhibitory concentrations (MICs) of CuCl2 were used to
estimate the copper tolerance of eight plant-associated facultative diazotrophs
(PAFD) and five pink-pigmented facultative methylotrophs (PPFM) belonging to the
order Rhizobiales presumed to come from nonclinical and nonmetal-polluted natural
habitats based on their reported source of isolation. Their sequenced genomes were
used to infer the occurrence and diversity of Cu-ATPases and the copper efflux
resistome of Mr. extorquens AM1.
Results: These bacteria exhibited minimal inhibitory concentrations (MICs) of CuCl2
ranging between 0.020 and 1.9 mM. The presence of multiple and quite divergent
Cu-ATPases per genome was a prevalent characteristic. The highest copper tolerance
exhibited byMr. extorquens AM1 (highest MIC of 1.9 mM) was similar to that found
in the multimetal-resistant model bacterium Cupriavidus metallidurans CH34 and in
clinical isolates of Acinetobacter baumannii. The genome-predicted copper efflux
resistome ofMr. extorquensAM1 consists of five large (6.7 to 25.7 kb) Cu homeostasis
gene clusters, three clusters share genes encoding Cu-ATPases, CusAB transporters,
numerous CopZ chaperones, and enzymes involved in DNA transfer and persistence.
The high copper tolerance and the presence of a complex Cu efflux resistome suggest
the presence of relatively high copper tolerance in environmental isolates of
Mr. extorquens.
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INTRODUCTION
According to The World Health Organization (WHO), the increase in antibiotic-
multiresistant bacteria and the limited therapeutic options to treat infections by these
microorganisms are worldwide health problems that need urgent solutions (https://www.
who.int/news-room/fact-sheets/detail/antimicrobial-resistance). In the last decade, the use
of copper has reemerged as a potential antimicrobial agent in preventing
healthcare-associated infections and controlling the spread of multidrug-resistant
pathogens. The antimicrobial properties of ionic copper have been complemented with the
“contact killing” approach using copper-coated surfaces to reduce bacterial transmission
(Grass, Rensing & Solioz, 2011). The introduction of copper nanoparticles in textiles, latex,
and other polymers used in healthcare environments has shown significant biocidal
efficacy (Arendsen, Thakar & Sultan, 2019). Another promising therapeutic approach is
the use of copper in combination or in complex with antibiotics, which increases its
bactericidal efficacy (Poole, 2017).

The long-term success of these copper-based treatments requires information on the
level of copper tolerance, the mechanisms conferring resistance, and its spread through
horizontal gene transfer (HGT) not only among nosocomial pathogens but also within
bacterial populations in their natural environments. This issue is particularly noteworthy
since most opportunistic pathogens acquire multidrug resistance from their nonclinical
primary habitat (Samreen et al., 2021; Sanz-García et al., 2021; Thummeepak et al., 2020;
Virieux-Petit et al., 2022).

Whereas worldwide antibiotic resistance began in the mid-1950s with the excessive use
of antibiotics for treating infectious diseases (Hutchings, Truman & Wilkinson, 2019), the
selection pressure exerted by copper started two billion years ago, during the great
oxidation event that increased the bioavailability of copper. Since then, bacteria have
evolved different mechanisms to maintain intracellular copper at trace concentrations and
avoid toxicity (Borkow & Gabbay, 2009; Coombs & Barkay, 2005; Dupont, Grass &
Rensing, 2011). Copper extrusion from the cytoplasm is the most prevalent and crucial
mechanism for maintaining the homeostasis of copper (Fig. S1). This copper translocation
is performed mainly by inner membrane P1B-1-type ATPases (Cu-ATPases) also known as
CopA (Argüello, Raimunda & Padilla-Benavides, 2013). In some bacteria, in addition to
Cu-ATPases, the extrusion of copper from the cytoplasm to the periplasm requires two
Cu-chaperones CopZ and CusF. CopZ is a cytoplasmic protein that binds Cu+ and delivers
it to Cu-ATPases. Later, Cu-ATPases transfer Cu+ to the periplasmic Cu-chaperon CusF.
Finally, CusF delivers Cu+ to the proton-cation antiporter (RND) CusCBA a three-protein
transport system that pumps Cu+ out of the cell (Giachino & Waldron, 2020).
In Rhizobium etli and R. tropici the disruption of Cu-ATPases-encoding genes produces
copper-sensitive mutants indicating that these copper-efflux pumps are the core
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component of the homeostasis system (Elizalde-Díaz et al., 2019; González-Sánchez et al.,
2018). Homologous cytoplasmic and periplasmic CopZ and CusF are poorly conserved
and the presence of a CusCBA system has not been demonstrated (Cubillas et al., 2017).

In the last two centuries, the natural dissemination of copper through geochemical
cycles was surpassed by anthropogenic industrial and agricultural activities that have
polluted air, soil, and aquatic environments (Elguindi et al., 2011; Vardhan, Kumar &
Panda, 2019). The use of copper-based pesticides, insecticides and fertilizers is a very
important source of pollution in agricultural fields (Briffa, Sinagra & Blundell, 2020). This
uncontrolled copper pollution has been presumed to exert a progressive selection pressure
increasing the diversity and dispersion of copper resistance genes (Shaw et al., 2020). This
overlooked resistance would negatively affect the effectiveness of copper-based therapies.
Studies in Acinetobacter baumannii revealed the presence of highly conserved
copper-resistance genes in clinical, wastewater, and nonpolluted environmental isolates
(Irawati et al., 2021; Thummeepak et al., 2020; Williams et al., 2016).

There are few studies on copper tolerance in bacteria of agricultural relevance.
The order Rhizobiales (a-Proteobacteria) is a cosmopolitan group of bacteria that include
plant-associated facultative diazotrophs (PAFD) that can live freely in the rhizosphere or
as intracellular symbiotic nitrogen-fixing legume-nodulating bacteria (Wang et al., 2020).
This order also includes pink-pigmented facultative methylotrophs (PPFM) that can use
one-carbon compounds (C1, lacking C-C bonds), such as methanol, as the sole source of
carbon and energy. The genera Methylobacterium (Mb) and Methylorubrum (Mr) have a
cosmopolitan lifestyle and inhabit plant leaves and stems, aquatic sediments, dust, air,
water, and soil. Plant-associated species contribute to plant growth producing
phytohormones, secondary metabolites, and several nitrogen-fixing species supply
ammonia (Dourado et al., 2015; Green & Ardley, 2018). The copper tolerance of species
potentially exposed to copper-based pesticides and fertilizers in agricultural fields has not
been reported. Several species with resistance to multiple antibiotics have been found in
municipal water distribution systems or hospital tap water (Furuhata et al., 2006; Gallego,
García & Ventosa, 2006). Their chlorine resistance, biofilm formation, desiccation
tolerance, and high-temperature resistance have raised concerns about their potential risk
as emerging pathogens (Szwetkowski & Falkinham, 2020). Such concerns are supported by
several reports indicating that multidrug-resistant Methylobacterium species are
opportunistic pathogens that cause infections in immunocompromised patients
(Cordovana et al., 2019; Kovaleva, Degener & van der Mei, 2014; Lai et al., 2011). Despite
its medical relevance, there is no information available on the copper tolerance of PPFM
isolated from clinical and nonmetal-polluted environments.

To assess the emergence of copper-resistant bacteria in natural habitats, in this study,
we present a functional and genomic analysis of copper tolerance in eight plant-associated
facultative diazotrophs (PAFD), and five pink-pigmented facultative methylotrophs
(PPFM) belonging to the order Rhizobiales maintained in a laboratory collection and
presumed to come from nonclinical and nonmetal-polluted natural habitats based on
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reports on their source of isolation (Table 1). Their copper tolerance varies between 0.020
and 1.9 mM. PPFM exhibit higher MICs than PAFD. The presence of multiple and quite
divergent Cu-ATPases per genome is a predominant characteristic in both bacterial
groups. The genome-predicted copper efflux resistome of Mr. extorquens AM1, the strain
with the highest MIC to CuCl2 (1.9 mM), consists of five large (6.7 to 25.7 kb) Cu
homeostasis gene clusters (Cu-HGCs), three clusters shared genes encoding Cu-ATPases,
CusAB transporters, numerous CopZ chaperones, and enzymes involved in DNA transfer
and persistence. These findings provide clues on the emergence of a bacterial reservoir that
may contribute to disseminating antimicrobial resistance genes.

MATERIALS AND METHODS
Relevant characteristics of PAFD and PPFM
The strains analyzed in this work (Table 1) are model PAFD and PPFM, presumed to come
from niches not polluted with metals, widely used in laboratory and field studies. All the
strains were kindly donated by Professor Esperanza Martínez Romero (Centro de Ciencias
Genómicas, UNAM, México City, México), and were carefully maintained in 20% glycerol
stored at −70 �C. All the PAFD were isolated from the inside of root nodules of different
species of leguminous plants growing in a variety of habitats in different countries

Table 1 Strains, sources or hosts, and genome structure.

Strainsa Abbreviated
name

Source/Host Reference Number of
repliconsb

PAFDs Chro Mp P

Rhizobium etli CFN42T Ret Nodules of bean plants, México. Segovia, Young & Martínez-Romero
(1993)

1 0 6

Rhizobium tropici CIAT899T Rtr Nodules of bean plants, Colombia. Martínez-Romero et al. (1991) 1 1 1

Rhizobium freirei PRF81T Rfr Nodules of bean plants, Brazil. Dall’Agnol et al. (2013) 1 0 2

Rhizobium leguminosarum bv viciae
3841

Rle UK/Peas and broad beans Johnston & Beringer (1974) 1 0 7

Sinorhizobium meliloti 1021 Sme Australia/nodules of Alfalfa Galibert et al. (2001) 1 2 0

Sinorhizobium fredii NGR234 SfrNGR Nodules of Lablab purpureus, New
Guinea

Trlnlck (1980) 1 1 1

Sinorhizobium fredii GR64 SfGR Nodules of bean plants, Spain. Herrera-Cervera et al. (2006) 1 0 2

Mesorhizobium loti MAFF303099 Mlo Nodules of Lotus japonicum, Japan Saeki & Kouchi (2000) 1 0 2

PPFMs

Methylorubrum extorquens AM1 MeAM Airborne contaminant, UK. Peel & Quayle (1961) 1 1 3

Methylorubrum extorquens TK0001T MexTK Soil, Poland. Urakamit & Komagata (1984) 1 0 0

Methylobacterium radiotolerans
JCM2831T

Mra Rice-grains Gamma- irradiated, Japan. Ito & Iizuka (1971) 1 0 8

Methylobacterium organophilum
DSM760T

Mor Lake bottom mud, USA. Patt, Cole & Hanson (1976) 1 0 0

Methylobacterium nodulans
ORS2060T

Mno Nodules of Crotalaria podocarpa,
Senegal.

Jourand et al. (2004) 1 0 7

Notes:
a Type strains according with the list of prokaryotic names with standing nomenclature (LPSN; Parte et al., 2020).
b Chro, chromosome; Mp, megaplasmids (size >1,000 kb); P, plasmid (size <1,000 kb).
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(Dall’Agnol et al., 2013; Galibert et al., 2001; Herrera-Cervera et al., 2006; Johnston &
Beringer, 1974; Martínez-Romero et al., 1991; Saeki & Kouchi, 2000; Segovia, Young &
Martínez-Romero, 1993; Trlnlck, 1980). The studied PPFM are cosmopolitan freestyle
bacteria isolated from different environments around the world. This group includes two
Mr. extorquens strains and three Mb. species. Mb. nodulans ORS2060T is a facultative
methylotroph and diazotroph isolated from the inside of root nodules of Crotalaria
podocarpa in Senegal. Although it is a non-pigmented species, to simplify the results, it was
included in the PPFM group (Ito & Iizuka, 1971; Jourand et al., 2004; Patt, Cole & Hanson,
1976; Peel & Quayle, 1961; Urakamit & Komagata, 1984). The ability of these bacteria to
grow from methanol as the sole carbon source and the pink-pigmented phenotype were
verified in this study. The sequenced genomes of PAFD and PPFM can be freely accessed
through NCBI genome resources (https://www.ncbi.nlm.nih.gov/home/genomes/). A list
of accession numbers is included in Table S1.

Media cultures
Bacterial cells maintained at −70 �C were propagated in peptone-yeast (PY)-agar medium
containing 5 g/L peptone, 3 g/L yeast extract, and 15 g/L agar. After sterilization, 10 ml/L
0.7 M CaCl2 was added.

Minimal medium (Mm) is a chemically defined medium prepared from three solutions
(A, B, and C) and sterilized separately. Solution A contained 1.620 g/L sodium succinate
hexahydrate as a carbon source, 0.534 g/L NH4Cl as a nitrogen source, 0.219 g/L K2HPO4,
and 0.1 g/L MgSO4, and its pH was adjusted to 6.8 before sterilization. Agar (15 g/L) was
added and then sterilized in an autoclave. Solution B contained filter-sterilized 0.025 g/5 ml
FeCl3·6H2O, and solution C contained 0.7 M CaCl2·2H2O (autoclaved). One milliliter of B
solution and two milliliters of C solution were added to one liter of previously sterilized A
solution.

Estimation of minimal inhibitory concentrations (MICs) of CuCl2
We followed the definition and standardized dilution method set by the British Society of
Antimicrobial Chemotherapy and updated by Andrews (2001), and by the European
Committee for Antimicrobial Susceptibility Testing (EUCAST, 2000) to estimate the MICs
of an antimicrobial agent. Based on these studies, the MIC for each strain was defined as
the lowest concentration of CuCl2 that consistently prevented visible growth in at least
three independent assays. Based on this definition, our raw data were images of a solid
medium with increasing millimolar (mM) concentrations of CuCl2 with or without the
growth of resistant or susceptible strains. Representative examples of growth monitored
photographically at 2, 4, and 6 days post-propagation are shown in Fig. S2. In this example,
the PPFM M. sp. able to grow in 2 mM CuCl2 was excluded from this study because its
genome sequence is not available. Numerous images were used to construct a table of
permissive and inhibitory concentrations of CuCl2 for each strain (Table S2). The
workflow used to assess MICs is shown in Fig. S3.
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Medium, CuCl2 solutions, inoculation of plates, and reproducibility of
MICs
To maintain the reproducibility of MICs in different assays we used agar plates with
chemically defined medium instead of solid PY-rich medium. The variation observed in
PY plates may be due to the high binding affinity of Cu(I) for amino acids.

To maintain repeatability among assays, the range of CuCl2 concentrations evaluated
(0–2 mM) was added to the mm from a 50 mM stock solution of CuCl2-2H2O (Sigma‒
Aldrich, St Louis, MO, USA) prepared in Milli–Q water and filter sterilized. The stock
solution of CuCl2-2H2O was used on the day of preparation and then discarded.

Preparation of the inoculum, in the same way, was also important to avoid variation
among MIC assays. Each strain was propagated in solid PY medium. After 3 days at 30 �C,
the cultured bacteria were inoculated into 3 ml of PY broth. After overnight growth,
cultures were adjusted to OD620 = 0.3, washed twice with 10 mM MgSO4, and tenfold
serially diluted (10−1–10−6). Twenty microliters from each dilution were spotted on solid
Mm supplemented with increasing millimolar (mM) concentrations of CuCl2.

Occurrence of copper translocating P1B-type ATPases (Cu-ATPases)
encoded in the genomes of PAFD and PPFM
Cu-ATPases encoded in the PAFD and PPFM genomes were searched by BLASTP
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). The sole Cu-ATPase encoded in the genome of
R. etli CFN42 was used (WP_011427866.1) as a query protein, because of functional
evidence previously demonstrated by the copper sensitivity phenotype of a mutant actP::Ω
Sp (González-Sánchez et al., 2018). Cu-ATPases containing eight transmembrane helices
(TMHs) typical for Cu-ATPases were filtered from metal-ATPases using TOPCONS
(http://topcons.net/). Additionally, we used CD-Search (https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi) to verify the presence of the P-type ATPase Cu-like domain
cd02094 (NCBI) containing three invariant amino acid signature motifs involved in Cu(I)
binding and translocation: two cysteine residues CXC in TMH6; one tyrosine, one
asparagine, and one proline YN(X4)P residue in TMH7; and one methionine followed by
serine residue MXXSS in TMH8 (Arguello, 2003). The multiple sequence alignment of
Cu-ATPases performed with Clustal Omega version 1.2.4 at MBL-EBI (https://www.ebi.ac.
uk/Tools/msa/clustalo/) shows the signature motifs shared in 28 Cu-ATPases (Fig. S4).
To verify that we did not miss Cu-ATPases by BLASTP searches, we retrieved all the metal
translocating P-type ATPases annotated in the target genomes from the Bacterial and Viral
Bioinformatics Resource Center (https://www.bv-brc.org/) formerly Pathosystems
Resources Integration Center (https://patricbrc.org). The Cu-ATPases were filtered by
searching the signature motifs with CD-Search. The occurrence analysis is summarized in
Table 2. The 28 amino acid sequences obtained are shown in the Table S3 (Cu-ATPase
sequences).
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Evolutionary divergence among Cu-ATPases encoded in the genomes
of PAFD and PPFM
The 28 amino acid sequences, obtained as described above, were used to infer their
phylogeny. Four sequences were used as an outgroup: two putative zinc transporters
encoded in the genomes of Mr. extorquens AM1 (WP_012752954.1) and Mb.
organophilum DSM760 (PVZ05212.1), as well as two Cu-ATPases encoded in the genome

Table 2 Occurrence of Cu-ATPases in the genomes of PAFDs and PPFMs with different CuCl2 tolerance.

PAFDs MIC CuCl2(mM) Number of Cu-ATPases Genome location NCBI RefSeq

Rhizobium freirei PRF81 0.100 Rfr1Ch Chromosome WP_037155004.1
WP_004111316.1Rfr2Ch Chromosome

Sinorhizobium fredii NGR234 0.090 SfrNGR1Mpb MpNGR234b ACP22182.1
ACP22198.1
ACP22696.1

SfrNGR2Mpb

SfrNGR3Mpb

Sinorhizobium meliloti 1021 0.030 Sme1Mpa MpSma WP_162471698.1
WP_010967529.1Sme2Mpa

Sme3Mpb MpSmb WP_010975861.1

Mesorhizobium loti MAFF303099 0.025 MloCh Chromosome WP_010913136.1

Rhizobium tropici CIAT899 0.025 RtrCh Chromosome WP_015341555.1

Sinorhizobium fredii GR64 0.02 SfrGR1 Draft genome WP_192817378.1
WP_040959567.1SfrGR2

Rhizobium leguminosarum bv viciae 3841 0.02 Rle1Ch Chromosome WP_011651514.1

Rle2Pl11 pRL11 WP_011654772.1
WP_011655075.1Rle3Pl11

Rhizobium etli CFN42 0.02 Retpe pCFN42e WP_011427866.1

Total Cu-ATPases 5 Chromosome

9 Mp/p

PPFMs MIC CuCl2(mM) Number of Cu-ATPases Genome location NCBI RefSeq

Methylorubrum extorquens AM1 1.9 MeAM1Ch/CopA1 Chromosome WP_012753106.1
WP_158022369.1
WP_238231531.1

MeAM2Ch/CopA2

MeAM3Ch/CopA3

MeAM4Mp/CopA4 Mp ACS43114.1
ACS43019.1MeAM5Mp/CopA5

Methylobacterium organophilum DSM760 0.800 Mor1Ch Chromosome PVZ04141.1
PVZ07231.1Mor2Ch

Methylobacterium radiotolerans JCM2831 0.150 Mra1Ch Chromosome WP_012320523.1

Methylobacterium nodulans ORS2060 0.125 Mno1Ch Chromosome ACL55831.1

Mno2p2 pMNOD02 WP_012631078.1
WP_012631108.1Mno3p2

Methylorubrum extorquens TK0001 0.075 MexTK1Ch Chromosome WP_101475842.1

Total Cu-ATPases 7 Chromosome

4 Mp/p

Note:
Genome location indicates occurrence in chromosomes, megaplasmids (Mp), and plasmids (p).
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of Acidithiobacillus ferrivorans ACH (WP_215894663.1) and (WP_215895207.1).
Multiple sequence alignment, phylogenetic reconstruction analyses, and visualizations of
phylogenetic data were performed using the pipeline of ETE3 at GenomeNet (https://www.
genome.jp/tools/ete/). The workflow was as follows: clustalo_default-trimal001-
prottest_default-phyml_default_boostrap. Branch support was computed using 100
bootstrapped trees. The Cu-ATPase sequences used to infer the phylogeny are available in
Table S4 (Cu-ATPases for phylogeny).

Contextual information from conserved gene neighborhood (GN)
analysis
This analysis was performed using TREND (Gumerov & Zhulin, 2021), a freely
available bioinformatic tool for the tree-based exploration of neighborhoods and domains
(http://trend.evobionet.com/). The five Cu-ATPases (CopA1-CopA5) encoded in the
genome of Mr. extorquens AM1 (Table S5, CopA sequences for TREND) were used as
input information in the neighborhoods pipeline. As a result, we obtained a phylogenetic
tree combined with interactive gene neighborhoods that showed predicted operons based
on the distance between genes, provided domains and features of gene products, and
identified homologous proteins. Unexpectedly, the copA2. gene neighborhoods could not
be obtained using the neighborhoods pipeline of TREND. These data were manually
obtained at NCBI using CopA2 NCBI Refseq as input (WP_158022369.1) (see the
workflow in Fig. S5).

Inference of the genome-based Cu efflux resistome in the PPFM
Mr. extorquens AM1
The thoughtful curation of the contextual information obtained for the five copA genes was
used to infer five different Cu-Homeostasis Gene Clusters (Cu-HGCs). Their gene
organization is listed in Table S6, (Cu-HGCs). Their potential mobility was inferred by the
presence of proteins whose predicted function has been associated with mobile genetic
elements (MGEs) and horizontal gene transfer (HGT). The proteins encoded in each
Cu-HGC are listed in Table S6, (Cu-HGCs).

RESULTS
Comparison of CuCl2 MICs between PAFD and PPFM revealed
hypertolerance of Mr. extorquens AM1
Based on the MIC of copper reported for bacteria isolated from mineral deposits, polluted
environments and clinical samples we defined the range of high tolerance between 1- and
20-mM (Cusick et al., 2021; Watkin et al., 2009; Yik et al., 2018). In the present study, the
MIC for each strain was obtained as described in the Material and Methods. Figure 1
shows the MIC of CuCl2 that consistently prevented visible growth of the PAFD and
PPFM strains in three independent assays. Figures 1A and 1B show that PPFM are
more tolerant to CuCl2 than PAFD. The highest CuCl2 MIC observed in Mr. extorquens
AM1 (1.9 mM) was similar to the MICs reported for bacterial strains isolated from mines,
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industrial wastewater, and clinical samples, such as S. meliloti CCNWSX0020 (1.8 mM),
C. metallidurans CH34 (2 mM), and A. baumannii (1.5 mM) (Li et al., 2014; Wiesemann
et al., 2013; Williams et al., 2016).

Several PAFD and PPFM harbor multiple Cu-ATPases
Copper extrusion from the cytoplasm to the periplasm is the most prevalent and crucial
mechanism for maintaining the homeostasis of copper. It is performed mainly by P1B-1-
type ATPases known as CopA (Argüello, Raimunda & Padilla-Benavides, 2013). Since the
presence of multiple CopA is a characteristic highly conserved in the genome of
Rhizobiales (Cubillas et al., 2017), we performed an occurrence analysis to investigate the
possibility of a correlation between the number of Cu-ATPases in the genomes of PAFD
and PPFM and their MICs. Table 2 indicates that the number of Cu-ATPases per genome
varied from 1 to 5, and their role in copper translocation was supported by the presence of
amino acid motifs CXC, YN(X4)P, and M(X3)S located at transmembrane helices 6, 7, and
8, respectively (Fig. S4). Although the highest MIC of Mr. extorquens AM1 (1.9 mM)
correlated with its highest number of Cu-ATPases (5), no clear correlation could be
established between MICs and the number of Cu-ATPases in other species.

Cu-ATPases from PAFD and PPFM show high genetic diversity
Table 2 shows that multiple Cu-ATPases are encoded in different replicons, namely,
chromosomes, megaplasmids, and plasmids. This result suggests that genes encoding
Cu-ATPases may have different evolutionary histories. To test this hypothesis, the

Figure 1 Minimal inhibitory concentrations (MICs) of CuCl2 (mM) that consistently inhibit the
visible growth of PAFD (A) and PPFM (B) on solid chemical defined medium. MICs were assessed
as detailed in Methods section. Names of PAFD strains: Rfr, R. freirei PRF81; SfrNGR S. fredii NGR234;
Sme, S. meliloti 1021;M. lotiMAFF303099, R. tropici CIAT899; S. fredii GR64, Rle, R. leguminosarum bv
viciae 3841; R. etli CFN42. Names of PPFM: MeAM, Mr. extorquens AM1; Mor, Mb. organophilum
DSM760; Mb. radiotolerans JCM2831; Mb. nodulans ORS2060; Mr. extorquens TK0001.

Full-size DOI: 10.7717/peerj.14925/fig-1
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evolutionary divergence of the 28 Cu-ATPases (Table S4 Cu-ATPases for phylogeny) was
inferred by maximum likelihood phylogenetic analysis. The 28 Cu-ATPases from PAFD
and PPFM were sorted into eleven distantly related lineages (Fig. 2). Large divergence was
also observed among the multiple Cu-ATPases encoded in the genome of several species,
suggesting evolution by HGT. The phylogeny also showed that the Cu-ATPases
MeAM3Ch and MeAM4Mp from Mr. extorquens AM1 located in lineage X were closely
related, suggesting evolution by gene duplication.

Figure 2 Maximum likelihood phylogenetic tree inferred from amino acid sequences of Cu-ATPases
encoded in the genomes of PAFD and PPFM listed in Table 2. Copper translocating ATPases from
Acidithiobacillus ferrivorans ACH (AcfeACH207) and (AcfeACH663,) as well as Zn-ATPases from
Mb. organophilum DSM760 (MorZn) andMr. extorquens AM1 (MeAM1Zn) were included as outgroup
(OG). Cluster support was assessed by Bootstrap with 100 replicates, values are indicated at nodes.
The scale of genetic change is indicated at the bottom. Cu-ATPases clustered in the same lineages share
similarity values >85%. Cu-ATPases grouped in different lineages share similarity values <85%. Genome
and protein names are in Table 2. Full-size DOI: 10.7717/peerj.14925/fig-2
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Gene neighborhoods analysis of Cu-ATPases uncovers a complex and
potentially mobile Cu efflux resistome in Mr. extorquens AM1
The high copper resistance exhibited by Mr. extorquens AM1 and the presence of five
Cu-ATPases (CopA1-CopA5) encoded in its genome led us to define the Cu efflux
resistome based on contextual information of copA1-copA5 genes as detailed above in
Materials and Methods. This contextual information revealed that the five CopA belong to
five different Cu-Homeostasis Gene Clusters (Cu-HGCs). Detailed schemes for each
Cu-HGC, based on the interactive gene neighborhood diagrams displayed in TREND, are
shown in Figs. 3–5.

The proteins encoded in each Cu-HGC are listed in Table S6 (Cu-HGCs).
The organization of the Cu efflux resistome in five Cu-HGCs is described below.

Figure 3 Schematic comparison of the multimetal Cu/Ni/Co/Zn-HGC (A) and the Cu-HGC-1 (B) encoded in the chromosome and
megaplasmid, respectively of Mr. extorquens AM1. Gene products are indicated by arrow symbols. Proteins with conserved domains are fully
colored; homologs are in same colors; bold border indicates protein used as query. Genes belonging to the same operon have border of the same
color. Genes encoding hypothetical proteins and transcription regulators proteins are indicated with HP and TR respectively. The co-occurrence of
different Cu-efflux systems (Cu-ATPases, CusAB and Cu-chaperones) are highlighted in yellow. Syntenic regions shared between Cu/Ni/Co-HGC
and Cu-HGC-1 are indicated with dashed lines. The co-occurrence of different Cu-efflux systems (Cu-ATPases, CusAB and Cu-chaperones) are
highlighted in yellow. Full-size DOI: 10.7717/peerj.14925/fig-3
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Figure 5 Genomic organization of MGE-CopA2. The Cu-ATPase CopA2 is harbored in a putative
mobile genetic element containing a repertoire of proteins frequently found in mobile genetic elements
(highlighted in colors) and IS transposases flanking both sides. This genomic organization was named
MGE-CopA2. Full-size DOI: 10.7717/peerj.14925/fig-5

Figure 4 Schematic view of the genomic organization of Cu-HGC-2 and Cu-HGC-3. (A) The Cu-HGC-2 is characterized by the co-occurrence of
Cu-ATPases, CusAB-RND transporters and Cu-chaperones (highlighted in yellow). (B) The Cu-HGC-3 shows the co-occurrence of genes encoding
CopA1 and a phosphatidylglycerol synthetase (highlighted in yellow) that may confer Cu resistance under low pH (see Results section).

Full-size DOI: 10.7717/peerj.14925/fig-4
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Chromosomal 23.9 kb Cu/Ni/Co-homeostasis gene cluster (Cu/Ni/
Co-HGC)
We first analyzed the GN of the Cu-ATPase coding gene copA3 due to the close
phylogenetic relationship with CopA4, which suggests a gene duplication event (Fig. 2,
lineage X). A careful inspection revealed that copA3 is part of a putative Cu-resistance
operon (Fig. 3A, blue dashed line). Three additional metal resistance operons were
predicted, with one upstream (light yellow dashed line) and two downstream of the
Cu-resistance operon (Fig. 3A, dashed lines light yellow, and blue).

Cooccurrence of Cu-ATPases/CusAB and Cu-chaperones in the
Cu-resistance operon
The first gene of this operon encodes Cu-ATPase CopA3, which is presumed to be a
copper efflux pump (Fig. 3A, highlighted in yellow). Six hundred base pairs downstream of
the copA3 gene is encoded a cytoplasmic short cysteine-rich protein with a length of
110 amino acids and a four-helical copper-binding bundle that might have a role in copper
storage or as a Cu chaperone capable of binding Cu(I) and delivering it to the inner
membrane CopA which transports Cu(I) to the periplasm. One thousand base pairs
downstream of genes coding Cu-binding proteins are encoded two transporters
belonging to the resistance-nodulation and cell division (RND) superfamily. The first
shares 70% identity with the inner membrane permease CusA from E. coli, and the second
shares 80% similarity with the periplasmic membrane fusion protein from E. coli CusB.
In enterobacteria, both proteins are part of a cation antiporter CusCFBA system for Cu(I)
and Ag(I) detoxification (Delmar, Su & Yu, 2015). However, neither the outer membrane
factor CusC nor the periplasmic metallochaperone CusF homologs were predicted by GN
analysis 10 kb upstream and downstream of cusAB genes. The polypeptide of 73 amino
acids encoded downstream cusB gene (Fig. 3A) contains a heavy metal-associated domain
shared among Cu(I) chaperones; however, two-sequence BlastP comparisons did not
identify significant alignments with CusF. Moreover, PSORT (https://www.psort.org/) and
BUSCA (http://busca.biocomp.unibo.it/), two web servers for subcellular localization of
proteins, could not predict a periplasmic localization characteristic of E. coli CusF. Only
the protein WP_003603728.1 produced significant alignment (25.9% identity, 97% query
cover and 2e-23 e-value) with CusC from E. coli (WP_000074194.1). Both shared domains
with outer membrane factors operate in conjunction with membrane fusion proteins to
transport substrates across membranes. This putative Mr. extorquens CusC is part of a
multidrug efflux system together with one CusB and two CusA proteins located far from
the Cu-resistance operon.

Putative Ni/Co resistance rcnA/rcnR operon
Downstream of the Cu-resistance operon, TREND predicted a couple of genes organized
in a single operon with significant similarity (67%) to E. coli nickel/cobalt efflux proteins
RcnA, and its transcriptional repressor, RcnR (Fig. 3A, light yellow dashed line).
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Pb/Cd/Zn homeostasis operon
An operon harboring seven genes (Fig. 3A, dark blue dashed line) is located downstream of
the rcnA/rcnR operon in the complementary DNA strand. Thorough curation of the
function of these proteins did not reveal significant information on their role in Cu
homeostasis.

Nucleases, CRISPR/Cas system, and mobility of Cu/Ni/Co-HGC
This multimetal homeostasis gene cluster is bordered at the 5′ end by a two-gene operon
coding an exoDNAse V and a CRISPR/Cas system-associated protein Cas4 both sharing
RecB domains (Fig. 3A, orange rectangles). The 3′ end is flanked by a type II endonuclease
(orange rectangle), which is probably a remnant of the restriction-modification system
(RM). It has been well documented that to maintain long-term persistence in the genome,
RM and CRISPR/Cas systems are often linked with mobile genetic elements that confer an
adaptive advantage. Their presence in the Cu/Ni/Co-HGC suggests that this gene cluster
could be part of a genomic island prone to HGT (Oliveira, Touchon & Rocha, 2014).

Cu homeostasis gene cluster-1 (Cu-HGC-1, 25.7 kb)
Figure 2 suggests a close phylogenetic relationship between CopA3 and CopA4. The GN of
CopA4 revealed that this megaplasmid located Cu-HGC-1 and the chromosomal Cu/Ni/
Co-HGC described above in the section “Gene neighborhoods analysis of Cu-ATPases
uncovers a complex and potentially mobile Cu efflux resistome in Mr. extorquens AM1”
share not only their Cu-ATPases but also the Cu-resistance and cbb3-Cox biogenesis
operons (Fig. 3B, green and light brown dashed lines).

TREND also predicted an extra copy of CusA and a fragment of CusB that might be the
result of a genomic rearrangement involved in the duplication of this region. Cu-HGC-1 is
flanked at the 5′ and 3′ ends by transposases belonging to the IS3, IS110, and IS630 families
that resemble the structure of composite transposons. In addition, a protein with an
integrase domain is also located at the 5′ end of Cu-HGC-1. The presence of these enzymes
suggests the potential intra- and intergenomic mobility of this gene cluster.

Megaplasmid-located Cu-homeostasis gene cluster-2 (Cu-HGC-2)
encodes Cu efflux redundant functions
Figure 4A shows the gene neighborhood analysis of the Cu-ATPase CopA5. Genes located
upstream and downstream of copA5 encode the RND transporters CusB and CusA, and
the Cu chaperones CopZ and CusF, respectively. These genes span 16 kb and together
integrate into the second Cu homeostasis gene cluster (Cu-HGC-2). No genetic elements
involved in mobility were detected.

An unknown interrelation between efflux of copper and modulation of
membrane charge highly conserved among the PPFMwas found in the
Cu-homeostatic gene cluster-3 (Cu-HGC-3)
The Cu-ATPase-encoding gene copA1 is located in a chromosomal locus. According to
TREND, copA1 forms part of an operon together with two downstream genes (Fig. 4B).
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The product of the first gene shows significant identity (58%) with CueR from E. coli, a Cu
(I)-responsive transcriptional regulator protein. The second gene encodes a putative M20
family metallopeptidase. Since almost all naturally occurring metallopeptidases are
zinc-dependent enzymes, the functional relationship between the products of these three
genes could not be established. Upstream of the copA1 gene, TREND predicted a second
two-gene operon. The first gene, lpiA, encodes a polypeptide of 343 amino acids with a
significantly similar identity (31.16%) with the lysylphosphatidylglycerol synthetase from
R. tropici CIAT899 (WP_015341009.1) responsible for lysylphosphatidylglycerol (LPG)
formation. LPG produces a positive charged membrane that defends bacteria from cationic
antimicrobial molecules. This cytoplasmic membrane lipid is synthesized only at low pH
(4.5) and is involved in acid tolerance (Sohlenkamp et al., 2007). Downstream lpiA, is
encoded a sensor kinase member of the PhoR family (WP_012753105) that may be
involved in sensing phosphate status. The functional interrelation between lpiA and copA
is unknown, it can be speculated the efflux of copper under low pH conditions. This
genetic organization is not shared between the acid-tolerant strain R. tropici CIAT899 and
Mr. extorquens AM1 but is highly conserved in the PPFM studied in this work.

The mobile genetic element CopA2 (MGE-CopA2, 24.7 kb) shares
characteristics of both integrative and conjugative elements (ICE), and
composite transposons (CTn)
The gene encoding the Cu-ATPase CopA2, along with numerous genes often present in
MGEs, are located in a chromosomal locus (Fig. 5). In the complementary DNA strand,
upstream copA2 gene is encoded a site-specific integrase that may catalyze the integration/
excision of MGE. Downstream of the integrase gene, is encoded a type II toxin-antitoxin
system (highlighted in blue), which is important for the long-term persistence of MGEs in
their hosts (van Melderen, de Bast & Rosenberg, 2009). Downstream this T-A system is
encoded an antirestriction protein homologous to ArdC (highlighted in gray), which may
inhibit type I and type II R-M systems of the recipient cell and avoid degradation of the
incoming MGE upon an HGT event (González-Montes et al., 2020). The presence of two
IS3 family transposases bordering this genetic region (orange rectangles) resembles the
structure of a composite transposon. The complexity of this putative MGE increases due to
the presence of a traG gene at the 5′ end (highlighted in yellow). The product of this gene
may be a component of the type IV secretory system essential for DNA transfer in bacterial
conjugation. The relaxase domain-containing protein (highlighted in yellow) encoded four
kb downstream of traGmay initiate the conjugative transfer of DNA binding to the origin
of transfer (oriT) and melt the double helix. The copA2 gene, together with the integrative
and conjugative transfer-associated functions described above, resembles the structure of a
complex MGE known as an integrative and conjugative element (ICE). An ICE exhibits
two different states: an integrative state, in which its DNA resides in the chromosome of
the host, and a conjugative state, in which its DNA is excised from the chromosome of the
host and can potentially spread horizontally by conjugative transfer to a new cell (Delavat
et al., 2017).
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DISCUSSION
The antimicrobial property of copper has been considered a therapeutic alternative to
control the dissemination of bacteria resistant to multiple antibiotics. The ability of
bacteria to tolerate copper must be considered when implementing copper-based
treatments, and a thorough understanding of Cu tolerance is required to achieve
bactericidal efficacy with Cu therapies. Copper tolerance is the result of an evolutionary
process initiated two billion years ago when the great oxidation event increased the
bioavailability of this metal. In recent centuries, industrial and agricultural activities have
spread Cu in different ecosystems. In contrast to other antimicrobials, metals cannot be
degraded; thus, they have accumulated in the atmosphere, waters, and soils (Briffa, Sinagra
& Blundell, 2020). These data suggest that environmental bacteria may be natural
reservoirs of copper resistance genes similar to the genetic reservoir reported for antibiotic
resistance genes (Larsson & Flach, 2022). Based on these data, high copper tolerance
should be a widespread characteristic in bacteria and may interfere with the therapeutic
use of copper.

No information is available on how copper tolerance is evolving in bacteria living in
natural environments potentially exposed to neglected copper pollution. To contribute to
this knowledge, we take advantage of a collection of models PAFD and PPFM constituted
by root-nodulating and cosmopolitan freestyle bacteria respectively presumed to come
from environments not polluted with metals. Their genomes, completely sequenced,
allowed us to analyze not only their copper tolerance but also to infer their molecular
mechanisms conferring resistance and involvement in HGT. With exception of R. etli
CFN42 and R. tropici CIAT899 the copper tolerance of the PAFD and PPFM analyzed in
this study have not been reported.

MIC comparisons indicate that strains isolated from nodules were much more sensitive
to CuCl2 than bacteria with a free lifestyle. Six of the eight PAFD analyzed are narrow-host
range nitrogen-fixing symbiotic bacterium that exhibited the lowest range of tolerance
between 0.020 and 0.030 mM. S. fredii NGR234 exhibited a MIC of 0.090 mM. This
broad-host range nitrogen-fixing symbiotic bacterium is able to nodulate 79 legume plant
genera (Pueppke & Broughton, 1999). Its ability to colonize different niches may have
increased its exposure to copper and consequently its copper resistance.

The highest tolerance in the PAFD sample was found in R. freirei PRF81 (MIC 0.1 mM)
an acid-tolerant strain able to grow and fix nitrogen at pH 4.8 (Tullio et al., 2019). A
correlation between acid and metal tolerances has been observed in different bacteria.
Cell-envelope modifications have been associated with low pH tolerance by reducing
membrane permeability to H+ (Martinić et al., 2011; Ormeno-Orrillo et al., 2012; Shabala
& Ross, 2008). In extremely acidophilic bacteria with optimal growth at pH <3 and able to
survive in metal-rich environments, changes in membrane permeability to H+ has also
been demonstrated to provide a barrier to metal influx (Dopson et al., 2014).

The PPFM sample exhibited higher copper tolerance than the PAFD sample, and their
CuCl2 tolerance ranged between 0.08 and 1.9 mM. In general, these bacteria are well
adapted to a wide range of abiotic stresses such as toxic compounds, gamma and UV
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radiation, heavy metals, chlorine, salinity, and desiccation (Dourado et al., 2015; Dourado
et al., 2012). The highest CuCl2 MIC (1.9 mM) was found inMr. extorquens AM1 isolated
in Oxford, England, in 1960 as an airborne contaminant in a medium containing
methylamine as sole carbon and energy source. Mr. extorquens AM1 is a model for
studying methylotrophy but there is no information on its copper resistance. To our
knowledge, this is the first comprehensive genome-based inference study that elucidates
the copper-efflux resistome in PPFM.

To gain insights into the evolution of copper tolerance in PAFD and PPFM, we analyzed
the occurrence and diversity of their Cu-ATPases. The number of Cu-ATPases harbored in
a single genome can vary between one and five. With the MIC data obtained in this study,
we searched for a positive correlation between a high number of Cu-ATPases and a high
MIC, but the data lack a correlation. From a mechanistic point of view, it can be explained
by differences in turnover rates, transport studies have shown that Cu-ATPases with
different efflux rates play different physiological roles distinct from resistance (Raimunda
et al., 2011). Based on the evolution of virulence in opportunistic pathogens (Brown,
Cornforth &Mideo, 2012; Sheppard, 2022), the lack of correlation between multiplicity and
increased tolerance may be the result of a coincidental selection of Cu-ATPases with
differences in turnover rates. A kind of preadaptation with no immediate environmental
success but with long-term benefits.

The diversity of the Cu-ATPases harbored in PAFD and PPFM was assessed by
phylogenetic analysis. Figure 2 shows that the multiple Cu-ATPases harbored in a sole
strain are dispersed among distant lineages. This evolutionary divergence observed among
several Cu-ATPases suggests that they may have been acquired by HGT. This phylogeny
also revealed a putative duplication of Cu-ATPases MeAM3Ch and MeAM4Mp located in
the chromosome and in the megaplasmid of Mr. extorquens AM1. It may represent an
alternative mechanism to generate multiple Cu-resistance genes.

More data on the evolution of copper tolerance come from the thorough gene context
analysis of the five Cu-ATPases encoded in the genome of Mr. extorquens AM1. This
analysis revealed that genes coding for Cu-ATPases, copper efflux system CusAB and
copper chaperones CusF and CopZ constitute putative Cu-homeostasis operons (Figs. 3A,
3B, and 4A). The multimetal Cu/Ni/Co/Zn homeostasis gene cluster shown in Fig. 3A is
constituted by three different putative operons predicted by TREND based on distances
between genes. The presence of genes coding putative integrases and transposases suggests
that some of these Cu-HGCs may be transmitted intra- and intergenomically.

A similar genomic organization of putative copper-related genes in metal tolerance
clusters was also found in environmental and clinical isolates of the opportunistic
pathogen A. baumannii (Thummeepak et al., 2020; Williams et al., 2016).

Studies on antimicrobials (metals, antibiotics, and biocides) in the environment propose
that the selection for copper resistance genes in the natural habitat of bacteria is positively
influenced by the use of Cu-based pesticides and fertilizers in aquaculture and agriculture
(Singer et al., 2016).

Numerous studies have demonstrated that several Methylobacterium and
Methylorubrum species are nosocomial opportunistic pathogens, and have alerted on their
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chlorine resistance, biofilm formation, desiccation tolerance, and high-temperature
resistance, however, their copper tolerance has not been determined (Cordovana et al.,
2019; Kovaleva, Degener & van der Mei, 2014; Lai et al., 2011; Szwetkowski & Falkinham,
2020). Our study suggests that Mr. extorquens AM1 could act as a reservoir of copper
resistance genes prone to exchange genetic information which eventually may be
connecting environmental with clinical resistance. Future analyses should be focused on
examining the co-occurrence of copper and antibiotic resistance genes as well as if Mr.
extorquens AM1 shares virulence traits in common with opportunistic pathogens. These
data are required to provide clues on the emergence of this bacterium as a potential
pathogen recalcitrant to copper-based treatments.

CONCLUSIONS
The presence of bacteria with high copper tolerance is not restricted to metal-rich
environments. This study showed that Mr. extorquens AM1 is an environmental isolate
with high copper tolerance. Its inferred Cu efflux resistome suggests that this bacterium is
well adapted to colonize and persist in niches with high copper content. The additive or
synergistic effect of the five putative homeostasis gene clusters must be investigated to
conclusively determine the contribution of the five putative homeostasis gene clusters to
the high copper tolerance of Mr. extorquens AM1.

Our findings, together with the high copper tolerant strains reported in a large
collection of environmental isolates of A. baumannii indicate that copper resistance genes
are spreading in natural bacterial populations. However, more studies are required to
generalize the presence of high copper-tolerant bacteria among environmental isolates and
assess their interference with the therapeutic use of copper.

ACKNOWLEDGEMENTS
The authors are grateful to Laura Cervantes, Karla Zeferino, and J. Pedro Elizalde-Díaz for
their skillful technical assistance. Bacterial strains were kindly donated by Professor
Esperanza Martínez-Romero (Centro de Ciencias Genómica, UNAM).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by UNAM-DGAPA-PAPIIT (Grant Number IN213619 to
Alejandro García-de los Santos). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
UNAM-DGAPA-PAPIIT: IN213619.

Competing Interests
The authors declare that they have no competing interests.

Dávalos and García-de los Santos (2023), PeerJ, DOI 10.7717/peerj.14925 18/24

http://dx.doi.org/10.7717/peerj.14925
https://peerj.com/


Author Contributions
� Araceli Dávalos conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

� Alejandro García-de los Santos conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.14925#supplemental-information.

REFERENCES
Andrews JM. 2001. Determination of minimum inhibitory concentrations. Journal of

Antimicrobial Chemotherapy 48(suppl_1):5–16 DOI 10.1093/jac/48.suppl_1.5.

Arendsen LP, Thakar R, Sultan AH. 2019. The use of copper as an antimicrobial agent in health
care, including obstetrics and gynecology. Clinical Microbiology Reviews 32(4):e00125
DOI 10.1128/CMR.00125-18.

Arguello JM. 2003. Identification of ion-selectivity determinants in heavy-metal transport P 1B
-type ATPases. Journal of Membrane Biology 195(2):93–108 DOI 10.1007/s00232-003-2048-2.

Argüello JM, Raimunda D, Padilla-Benavides T. 2013. Mechanisms of copper homeostasis in
bacteria. Frontiers in Cellular and Infection Microbiology 3:73 DOI 10.3389/fcimb.2013.00073.

Borkow G, Gabbay J. 2009. Copper, an ancient remedy returning to fight microbial, fungal and
viral infections. Current Chemical Biology 3(3):272–278 DOI 10.2174/187231309789054887.

Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their
toxicological effects on humans. Heliyon 6(9):e04691 DOI 10.1016/j.heliyon.2020.e04691.

Brown SP, Cornforth DM, Mideo N. 2012. Evolution of virulence in opportunistic pathogens:
generalism, plasticity, and control. Trends in Microbiology 20(7):336–342
DOI 10.1016/j.tim.2012.04.005.

Coombs JM, Barkay T. 2005. New findings on evolution of metal homeostasis genes: evidence
from comparative genome analysis of bacteria and archaea. Applied and Environmental
Microbiology 71(11):7083–7091 DOI 10.1128/AEM.71.11.7083-7091.2005.

Cordovana M, Deni A, Kostrzewa M, Abdalla M, Ambretti S. 2019. First report of
Methylobacterium radiotolerans bacteraemia identified by MALDI-TOF mass spectrometry.
New Microbes and New Infections 30:100546 DOI 10.1016/j.nmni.2019.100546.

Cubillas C, Miranda-Sánchez F, González-Sánchez A, Elizalde JP, Vinuesa P, Brom S, García-de
los Santos A. 2017.A comprehensive phylogenetic analysis of copper transporting P1B ATPases
from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic
subtypes. MicrobiologyOpen 6(4):1–13 DOI 10.1002/mbo3.452.

Cusick K, Iturbide A, Gautam P, Price A, Polson S, MacDonald M, Erill I. 2021. Enhanced
copper-resistance gene repertoire in Alteromonas macleodii strains isolated from copper-treated
marine coatings. PLOS ONE 16(9):e0257800 DOI 10.1371/journal.pone.0257800.

Dávalos and García-de los Santos (2023), PeerJ, DOI 10.7717/peerj.14925 19/24

http://dx.doi.org/10.7717/peerj.14925#supplemental-information
http://dx.doi.org/10.7717/peerj.14925#supplemental-information
http://dx.doi.org/10.7717/peerj.14925#supplemental-information
http://dx.doi.org/10.1093/jac/48.suppl_1.5
http://dx.doi.org/10.1128/CMR.00125-18
http://dx.doi.org/10.1007/s00232-003-2048-2
http://dx.doi.org/10.3389/fcimb.2013.00073
http://dx.doi.org/10.2174/187231309789054887
http://dx.doi.org/10.1016/j.heliyon.2020.e04691
http://dx.doi.org/10.1016/j.tim.2012.04.005
http://dx.doi.org/10.1128/AEM.71.11.7083-7091.2005
http://dx.doi.org/10.1016/j.nmni.2019.100546
http://dx.doi.org/10.1002/mbo3.452
http://dx.doi.org/10.1371/journal.pone.0257800
http://dx.doi.org/10.7717/peerj.14925
https://peerj.com/


Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JRM, Andrade DS,
Martínez-Romero E, Hungria M. 2013. Rhizobium freirei sp. nov., a symbiont of Phaseolus
vulgaris that is very effective at fixing nitrogen. International Journal of Systematic and
Evolutionary Microbiology 63(PART 11):4167–4173 DOI 10.1099/ijs.0.052928-0.

Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. 2017. The hidden life of
integrative and conjugative elements. FEMS Microbiology Reviews 41(4):512–537
DOI 10.1093/femsre/fux008.

Delmar JA, Su CC, Yu EW. 2015. Heavy metal transport by the CusCFBA efflux system. Protein
Science 24(11):1720–1736 DOI 10.1002/pro.2764.

Dopson M, Ossandon FJ, LÃvgren L, Holmes DS. 2014. Metal resistance or tolerance?
Acidophiles confront high metal loads via both abiotic and biotic mechanisms. Frontiers in
Microbiology 5(289236):165 DOI 10.3389/fmicb.2014.00157.

Dourado MN, Camargo Neves AA, Santos DS, Araújo WL. 2015. Biotechnological and
agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp.
BioMed Research International 2015(1):1–19 DOI 10.1155/2015/909016.

Dourado MN, Ferreira A, Araújo WL, Azevedo JL, Lacava PT. 2012. The diversity of endophytic
methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their
tolerance to heavy metals. Biotechnology Research International 2012(8):1–8
DOI 10.1155/2012/759865.

Dupont CL, Grass G, Rensing C. 2011. Copper toxicity and the origin of bacterial resistance—new
insights and applications. Metallomics: Integrated Biometal Science 3(11):1109–1118
DOI 10.1039/c1mt00107h.

Elguindi J, Hao X, Lin Y, Alwathnani HA,Wei G, Rensing C. 2011. Advantages and challenges of
increased antimicrobial copper use and copper mining. Applied Microbiology and Biotechnology
91(2):237–249 DOI 10.1007/s00253-011-3383-3.

Elizalde-Díaz JP, Hernández-Lucas I, Medina-Aparicio L, Dávalos A, Leija A, Alvarado-
Affantranger X, García-García JD, Hernández G, Garcia-De los Santos A. 2019. Rhizobium
tropici CIAT 899 copA gene plays a fundamental role in copper tolerance in both free life and
symbiosis with Phaseolus vulgaris. Microbiology 165(6):651–661 DOI 10.1099/mic.0.000803.

EUCAST. 2000. Determination of minimum inhibitory concentrations (MICs) of antibacterial
agents by agar dilution. Clinical Microbiology and Infection 6(9):509–515
DOI 10.1046/j.1469-0691.2000.00142.x.

Furuhata K, Kato Y, Goto K, Hara M, Yoshida S, FukuyamaM. 2006. Isolation and identification
of Methylobacterium species from the tap water in hospitals in japan and their antibiotic
susceptibility. Microbiology and Immunology 50(1):11–17
DOI 10.1111/j.1348-0421.2006.tb03765.x.

Galibert F, Finan TM, Long SR, Pühler A, Abola P, Frédéric A, Frédérique BH, Barnett MJ,
Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D,
Chain P, Cowie A, Davis RW, Śphane D, Federspiel NA, Fisher RF, Śphanie G, Thérèse G,
Goffeau Á, Golding B, Jérôme G, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L,
Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss Ë, Komp C, Valérie L,
Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Bénédicte P, Ramsperger U, Surzycki R,
Thébault P, Vandenbol M, Vorhölter F-J, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J.
2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science
293(5530):668–672 DOI 10.1126/science.1060966.

Dávalos and García-de los Santos (2023), PeerJ, DOI 10.7717/peerj.14925 20/24

http://dx.doi.org/10.1099/ijs.0.052928-0
http://dx.doi.org/10.1093/femsre/fux008
http://dx.doi.org/10.1002/pro.2764
http://dx.doi.org/10.3389/fmicb.2014.00157
http://dx.doi.org/10.1155/2015/909016
http://dx.doi.org/10.1155/2012/759865
http://dx.doi.org/10.1039/c1mt00107h
http://dx.doi.org/10.1007/s00253-011-3383-3
http://dx.doi.org/10.1099/mic.0.000803
http://dx.doi.org/10.1046/j.1469-0691.2000.00142.x
http://dx.doi.org/10.1111/j.1348-0421.2006.tb03765.x
http://dx.doi.org/10.1126/science.1060966
http://dx.doi.org/10.7717/peerj.14925
https://peerj.com/


Gallego V, García MT, Ventosa A. 2006. Methylobacterium adhaesivum sp. nov., a
methylotrophic bacterium isolated from drinking water. International Journal of Systematic and
Evolutionary Microbiology 56(2):339–342 DOI 10.1099/ijs.0.63966-0.

Giachino A, Waldron KJ. 2020. Copper tolerance in bacteria requires the activation of multiple
accessory pathways. Molecular Microbiology 114(3):377–390 DOI 10.1111/mmi.14522.

González-Montes L, del Campo I, Pilar Garcillán-Barcia M, de la Cruz F, Moncalián G. 2020.
ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient
hsdRMS restriction system broadening conjugation host range. PLOS Genetics 16(4):e1008750
DOI 10.1371/journal.pgen.1008750.

González-Sánchez A, Cubillas CA, Miranda F, Dávalos A, García-de los Santos A. 2018. The
ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42.
MicrobiologyOpen 7(3):1–11 DOI 10.1002/mbo3.573.

Grass G, Rensing C, Solioz M. 2011. Metallic copper as an antimicrobial surface. Applied and
Environmental Microbiology 77(5):1541–1547 DOI 10.1128/AEM.02766-10.

Green PN, Ardley JK. 2018. Review of the genusMethylobacterium and closely related organisms:
a proposal that someMethylobacterium species be reclassified into a new genus,Methylorubrum
gen. nov. International Journal of Systematic and Evolutionary Microbiology 68(9):2727–2748
DOI 10.1099/ijsem.0.002856.

Gumerov VM, Zhulin IB. 2021. TREND: a platform for exploring protein function in prokaryotes
based on phylogenetic, domain architecture and gene neighborhood analyses. Nucleic Acids
Research 48(1):W72–W76 DOI 10.1093/nar/gkaa243.

Herrera-Cervera JA, Caballero-Mellado J, Laguerre G, Tichy H-V, Requena N, Amarger N,
MartÃnez-Romero E, Olivares J, Sanjuan J. 2006. At least five Rhizobial species nodulate
Phaseolus vulgaris in a Spanish soil. FEMS Microbiology Ecology 30(1):87–97
DOI 10.1111/j.1574-6941.1999.tb00638.x.

Hutchings MI, Truman AW, Wilkinson B. 2019. Antibiotics: past, present and future. Current
Opinion in Microbiology 51:72–80 DOI 10.1016/j.mib.2019.10.008.

Irawati W, Djojo ES, Kusumawati L, Yuwono T, Pinontoan R. 2021.Optimizing bioremediation:
elucidating copper accumulation mechanisms of Acinetobacter sp. IrC2 isolated from an
industrial waste treatment center. Frontiers in Microbiology 12:713812
DOI 10.3389/fmicb.2021.713812.

Ito H, Iizuka H. 1971. Taxonomic studies on a radio-resistant pseudomonas part xii. Studies on
the microorganisms of cereal grain. Agricultural and Biological Chemistry 35(10):1566–1571
DOI 10.1080/00021369.1971.10860119.

Johnston AWB, Beringer JE. 1974. Identification of the Rhizobium strains in pea root nodules
using genetic markers. Journal of General Microbiology 87(2):343–350
DOI 10.1099/00221287-87-2-343.

Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P. 2004.
Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic,
legume root-nodule-forming and nitrogen-fixing bacteria. International Journal of Systematic
and Evolutionary Microbiology 54(6):2269–2273 DOI 10.1099/ijs.0.02902-0.

Kovaleva J, Degener JE, van der Mei HC. 2014. Methylobacterium and its role in health
care-associated infection. Journal of Clinical Microbiology 52(5):1317–1321
DOI 10.1128/JCM.03561-13.

Lai C-C, Cheng A, Liu W-L, Tan C-K, Huang Y-T, Chung K-P, Lee M-R, Hsueh P-R. 2011.
Infections caused by unusual Methylobacterium species. Journal of Clinical Microbiology
49(9):3329–3331 DOI 10.1128/JCM.01241-11.

Dávalos and García-de los Santos (2023), PeerJ, DOI 10.7717/peerj.14925 21/24

http://dx.doi.org/10.1099/ijs.0.63966-0
http://dx.doi.org/10.1111/mmi.14522
http://dx.doi.org/10.1371/journal.pgen.1008750
http://dx.doi.org/10.1002/mbo3.573
http://dx.doi.org/10.1128/AEM.02766-10
http://dx.doi.org/10.1099/ijsem.0.002856
http://dx.doi.org/10.1093/nar/gkaa243
http://dx.doi.org/10.1111/j.1574-6941.1999.tb00638.x
http://dx.doi.org/10.1016/j.mib.2019.10.008
http://dx.doi.org/10.3389/fmicb.2021.713812
http://dx.doi.org/10.1080/00021369.1971.10860119
http://dx.doi.org/10.1099/00221287-87-2-343
http://dx.doi.org/10.1099/ijs.0.02902-0
http://dx.doi.org/10.1128/JCM.03561-13
http://dx.doi.org/10.1128/JCM.01241-11
http://dx.doi.org/10.7717/peerj.14925
https://peerj.com/


Larsson DGJ, Flach CF. 2022. Antibiotic resistance in the environment. Nature Reviews
Microbiology 20(5):257–269 DOI 10.1038/s41579-021-00649-x.

Li Z, Ma Z, Hao X, Rensing C, Wei G. 2014. Genes conferring copper resistance in Sinorhizobium
meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated
soil. Applied and Environmental Microbiology 80(6):1961–1971 DOI 10.1128/AEM.03381-13.

Martinić M, Hoare A, Contreras I, Álvarez SA, Adler B. 2011. Contribution of the
lipopolysaccharide to resistance of Shigella flexneri 2a to extreme acidity. PLOS ONE
6(10):e25557 DOI 10.1371/journal.pone.0025557.

Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA. 1991.
Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees.
International Journal of Systematic Bacteriology 41(3):417–426
DOI 10.1099/00207713-41-3-417.

Oliveira PH, Touchon M, Rocha EPC. 2014. The interplay of restriction-modification systems
with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Research
42(16):10618–10631 DOI 10.1093/nar/gku734.

Ormeno-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolas MF, Pains Rodrigues E,
Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC,
Ribeiro Vasconcelos AT, Megias M, Hungria M, Martinez-Romero E. 2012. Genomic basis of
broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium
sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC
Genomics 13(1):735 DOI 10.1186/1471-2164-13-735.

Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. 2020. List of Prokaryotic
names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of
Systematic and Evolutionary Microbiology 70:5607–5612 DOI 10.1099/ijsem.0.004332.

Patt TE, Cole GC, Hanson RS. 1976. Methylobacterium, a new genus of facultatively
methylotrophic bacteria. International Journal of Systematic and Evolutionary Microbiology
26(2):226–229 DOI 10.1099/00207713-26-2-226.

Peel D, Quayle JR. 1961.Microbial growth on C1 compounds. 1. Isolation and characterization of
Pseudomonas AM 1. The Biochemical Journal 81(3):465–469 DOI 10.1042/bj0810465.

Poole K. 2017. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic
activity and resistance. Trends in Microbiology 25(10):820–832 DOI 10.1016/j.tim.2017.04.010.

Pueppke SG, Broughton WJ. 1999. Rhizobium sp. strain NGR234 and R. fredii USDA257 share
exceptionally broad, nested host ranges. Molecular Plant-Microbe Interactions 12(4):293–318
DOI 10.1094/MPMI.1999.12.4.293.

Raimunda D, González-Guerrero M, Leeber BW, Argüello JM. 2011. The transport mechanism
of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. BioMetals
24(3):467–475 DOI 10.1007/s10534-010-9404-3.

Saeki K, Kouchi H. 2000. The Lotus Symbiont, Mesorhizobium loti: molecular genetic techniques
and application. Journal of Plant Research 113:457–465 DOI 10.1007/PL00013956.

Samreen, Ahmad I, Hesham A, Malak A, Abulreesh HH. 2021. Environmental antimicrobial
resistance and its drivers: a potential threat to public health. Journal of Global Antimicrobial
Resistance 27(Suppl 1):101–111 DOI 10.1016/j.jgar.2021.08.001.

Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S.
2021. Coming from the wild: multidrug resistant opportunistic pathogens presenting a primary,
not human-linked, environmental habitat. International Journal of Molecular Sciences
22(15):8080 DOI 10.3390/ijms22158080.

Dávalos and García-de los Santos (2023), PeerJ, DOI 10.7717/peerj.14925 22/24

http://dx.doi.org/10.1038/s41579-021-00649-x
http://dx.doi.org/10.1128/AEM.03381-13
http://dx.doi.org/10.1371/journal.pone.0025557
http://dx.doi.org/10.1099/00207713-41-3-417
http://dx.doi.org/10.1093/nar/gku734
http://dx.doi.org/10.1186/1471-2164-13-735
http://dx.doi.org/10.1099/ijsem.0.004332
http://dx.doi.org/10.1099/00207713-26-2-226
http://dx.doi.org/10.1042/bj0810465
http://dx.doi.org/10.1016/j.tim.2017.04.010
http://dx.doi.org/10.1094/MPMI.1999.12.4.293
http://dx.doi.org/10.1007/s10534-010-9404-3
http://dx.doi.org/10.1007/PL00013956
http://dx.doi.org/10.1016/j.jgar.2021.08.001
http://dx.doi.org/10.3390/ijms22158080
http://dx.doi.org/10.7717/peerj.14925
https://peerj.com/


Segovia L, Young JP, Martínez-Romero E. 1993. Reclassification of American Rhizobium
leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. International Journal of
Systematic Bacteriology 43(2):374–377 DOI 10.1099/00207713-43-2-374.

Shabala L, Ross T. 2008. Cyclopropane fatty acids improve Escherichia coli survival in acidified
minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+.
Research in Microbiology 159(6):458–461 DOI 10.1016/j.resmic.2008.04.011.

Shaw JLA, Ernakovich JG, Judy JD, Farrell M, Whatmuff M, Kirby J. 2020. Long-term effects of
copper exposure to agricultural soil function and microbial community structure at a controlled
and experimental field site. Environmental Pollution 263(6):114411
DOI 10.1016/j.envpol.2020.114411.

Sheppard SK. 2022. Strain wars and the evolution of opportunistic pathogens. Current Opinion in
Microbiology 67:102138 DOI 10.1016/j.mib.2022.01.009.

Singer AC, Shaw H, Rhodes V, Hart A. 2016. Review of antimicrobial resistance in the
environment and its relevance to environmental regulators. Frontiers in Microbiology 7:1728
DOI 10.3389/fmicb.2016.01728.

Sohlenkamp C, Galindo-Lagunas KA, Guan Z, Vinuesa P, Robinson S, Thomas-Oates J,
Raetz CRH, Geiger O. 2007. The lipid lysyl-phosphatidylglycerol is present in membranes of
Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic
growth conditions. Molecular Plant-Microbe Interactions 20(11):1421–1430
DOI 10.1094/MPMI-20-11-1421.

Szwetkowski KJ, Falkinham JO. 2020. Methylobacterium spp. as emerging opportunistic premise
plumbing pathogens. Pathogens 9(2):149 DOI 10.3390/pathogens9020149.

Thummeepak R, Pooalai R, Harrison C, Gannon L, Thanwisai A, Chantratita N, Millard AD,
Sitthisak S. 2020. Essential gene clusters involved in copper tolerance identified in Acinetobacter
baumannii clinical and environmental isolates. Pathogens 9(1):60
DOI 10.3390/pathogens9010060.

Trlnlck MJ. 1980. Relationships amongst the fast‐growing Rhizobia of Lablab purpureus, Leucaena
leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with
other Rhizobial groups. Journal of Applied Bacteriology 49(1):39–53
DOI 10.1111/j.1365-2672.1980.tb01042.x.

Tullio LD, Gomes DF, Silva LP, Hungria M, da Silva Batista JS. 2019. Proteomic analysis of
Rhizobium freirei PRF 81T reveals the key role of central metabolic pathways in acid tolerance.
Applied Soil Ecology 135(7):98–103 DOI 10.1016/j.apsoil.2018.11.014.

Urakamit T, Komagata K. 1984. Protornonas, a new genus of facultatively methylotrophic
bacteria. International Journal of Systematic Bacteriology 34(2):188–201
DOI 10.1099/00207713-34-2-188.

van Melderen L, de Bast MS, Rosenberg SM. 2009. Bacterial toxin-antitoxin systems: more than
selfish entities? PLOS Genetics 5(3):e1000437 DOI 10.1371/journal.pgen.1000437.

Vardhan KH, Kumar PS, Panda RC. 2019. A review on heavy metal pollution, toxicity and
remedial measures: current trends and future perspectives. Journal of Molecular Liquids
290:111197 DOI 10.1016/j.molliq.2019.111197.

Virieux-Petit M, Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Romano-Bertrand S. 2022.
From copper tolerance to resistance in Pseudomonas aeruginosa towards patho-adaptation and
hospital success. Genes 13(2):301 DOI 10.3390/genes13020301.

Wang S, Meade A, Lam H-M, Luo H. 2020. Evolutionary timeline and genomic plasticity
underlying the lifestyle diversity in Rhizobiales. mSystems 5(4):152
DOI 10.1128/mSystems.00438-20.

Dávalos and García-de los Santos (2023), PeerJ, DOI 10.7717/peerj.14925 23/24

http://dx.doi.org/10.1099/00207713-43-2-374
http://dx.doi.org/10.1016/j.resmic.2008.04.011
http://dx.doi.org/10.1016/j.envpol.2020.114411
http://dx.doi.org/10.1016/j.mib.2022.01.009
http://dx.doi.org/10.3389/fmicb.2016.01728
http://dx.doi.org/10.1094/MPMI-20-11-1421
http://dx.doi.org/10.3390/pathogens9020149
http://dx.doi.org/10.3390/pathogens9010060
http://dx.doi.org/10.1111/j.1365-2672.1980.tb01042.x
http://dx.doi.org/10.1016/j.apsoil.2018.11.014
http://dx.doi.org/10.1099/00207713-34-2-188
http://dx.doi.org/10.1371/journal.pgen.1000437
http://dx.doi.org/10.1016/j.molliq.2019.111197
http://dx.doi.org/10.3390/genes13020301
http://dx.doi.org/10.1128/mSystems.00438-20
http://dx.doi.org/10.7717/peerj.14925
https://peerj.com/


Watkin ELJ, Keeling SE, Perrot FA, Shiers DW, Palmer M-L, Watling HR. 2009. Metals
tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to
Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans.
Journal of Industrial Microbiology & Biotechnology 36(3):461–465
DOI 10.1007/s10295-008-0508-5.

Wiesemann N, Mohr J, Grosse C, Herzberg M, Hause G, Reith F, Nies DH. 2013. Influence of
copper resistance determinants on gold transformation by Cupriavidus metallidurans strain
CH34. Journal of Bacteriology 195(10):2298–2308 DOI 10.1128/JB.01951-12.

Williams CL, Neu HM, Gilbreath JJ, Michel SLJ, Zurawski Dv, Merrell DS. 2016. Copper
resistance of the emerging pathogen Acinetobacter baumannii. Applied and Environmental
Microbiology 82(20):6174–6188 DOI 10.1128/AEM.01813-16.

Yik LY, Chin GJWL, Budiman C, Joseph CG, Musta B, Rodrigues KF. 2018. Adaptive strategies
of Bacillus thuringiensis isolated from acid mine drainage site in Sabah, Malaysia. Indian Journal
of Microbiology 58(2):165–173 DOI 10.1007/s12088-017-0701-1.

Dávalos and García-de los Santos (2023), PeerJ, DOI 10.7717/peerj.14925 24/24

http://dx.doi.org/10.1007/s10295-008-0508-5
http://dx.doi.org/10.1128/JB.01951-12
http://dx.doi.org/10.1128/AEM.01813-16
http://dx.doi.org/10.1007/s12088-017-0701-1
http://dx.doi.org/10.7717/peerj.14925
https://peerj.com/

	Five copper homeostasis gene clusters encode the Cu-efflux resistome of the highly copper-tolerant Methylorubrum extorquens AM1
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


