Usability and acceptance of crowd-based early warning of harmful algal blooms (#76584)

First submission

Guidance from your Editor

Please submit by 22 Sep 2022 for the benefit of the authors (and your token reward).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 2 Latex file(s)
- 1 Raw data file(s)
- 1 Other file(s)

Custom checks

Human participant/human tissue checks

- Have you checked the authors ethical approval statement?
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Usability and acceptance of crowd-based early warning of harmful algal blooms

Lindung Parningotan Manik ^{Corresp., 1, 2}, Hatim Albasri ³, Reny Puspasari ³, Aris Yaman ⁴, Shidiq Al Hakim ², Al Hafiz Akbar Maulana Siagian ², Siti Kania Kushadiani ², Slamet Riyanto ², Foni Agus Setiawan ², Lolita Thesiana ³, Meuthia Aula Jabbar ⁵, Ramadhona Saville ⁶, Masaaki Wada ⁷

Corresponding Author: Lindung Parningotan Manik Email address: lind008@brin.go.id

Crowdsensing has become an alternative solution to physical sensors and apparatuses. Utilizing citizen science communities is undoubtedly a much cheaper solution. However, similar to other participatory-based applications, the willingness of community members to be actively involved is paramount to the success of implementation. This research investigated factors that affect the continual use intention of a crowd-based early warning system (CBEWS) to mitigate harmful algal blooms (HABs). This study applied the partial least square-structural equation modeling (PLS-SEM) using an augmented technology acceptance model (TAM). In addition to the native TAM variables, such as perceived ease of use and usefulness as well as attitude, other factors, including awareness, social influence, and reward, were also studied. Furthermore, the usability factor was examined, specifically using the System Usability Scale (SUS) score as a determinant. Results showed that usability positively affected the perceived ease of use. Moreover, perceived usefulness and awareness influenced users' attitudes toward using CBEWS. Meanwhile, the reward had no significant effects on continual use intention.

¹ Faculty of Information Technology, University of Nusa Mandiri, Jakarta, Indonesia

² Research Center for Data and Information Sciences, National Research and Innovation Agency, Bandung, Indonesia

Research Center for Fisheries, National Research and Innovation Agency, Jakarta, Indonesia

⁴ Research Center for Computing, National Research and Innovation Agency, Bogor, Indonesia

⁵ Department of Aquatic Resources Management, Jakarta Technical University of Fisheries, Jakarta, Indonesia

⁶ Department of Agribusiness Management, Tokyo University of Agriculture, Tokyo, Japan

⁷ School of Systems Information Science, Future University Hakodate, Hokkaido, Japan

Usability and acceptance of crowd-based early warning of harmful algal blooms

- Lindung Parningotan Manik^{1,2}, Hatim Albasri³, Reny Puspasari³, Aris
- 4 Yaman⁴, Shidiq Al Hakim¹, Al Hafiz Akbar Maulana Siagian¹, Siti Kania
- **Kushadiani**¹, Slamet Riyanto¹, Foni Agus Setiawan¹, Lolita Thesiana³,
- $_{\circ}$ Meuthia Aula Jabbar 5 , Ramadhona Saville 6 , and Masaaki Wada 7
- ¹Research Center for Data and Information Sciences, National Research and Innovation
- 8 Agency, Bandung, 40135, Indonesia
- ²Faculty of Information Technology, University of Nusa Mandiri, Jakarta, 13620, Indonesia
- ³Research Center for Fisheries, National Research and Innovation Agency, Jakarta,
- 11 13620, Indonesia
- ⁴Research Center for Computing, National Research and Innovation Agency, Bogor,
- 13 16911, Indonesia
- ⁵Department of Aquatic Resources Management, Jakarta Technical University of
- 15 Fisheries, Jakarta, 12520, Indonesia
- ¹⁶ Department of Agribusiness Management, Tokyo University of Agriculture, Tokyo,
- 17 138-8538, Japan
- ⁷School of Systems Information Science, Future University Hakodate, Hokkaido,
- 9 041-8655, Japan
- ²⁰ Corresponding author:
- Lindung Parningotan Manik¹
- 22 Email address: lind008@brin.go.id

23 ABSTRACT

Crowdsensing has become an alternative solution to physical sensors and apparatuses. Utilizing citizen science communities is undoubtedly a much cheaper solution. However, similar to other participatory-based applications, the willingness of community members to be actively involved is paramount to the success of implementation. This research investigated factors that affect the continual use intention of a crowd-based early warning system (CBEWS) to mitigate harmful algal blooms (HABs). This study applied the partial least square-structural equation modeling (PLS-SEM) using an augmented technology acceptance model (TAM). In addition to the native TAM variables, such as perceived ease of use and usefulness as well as attitude, other factors, including awareness, social influence, and reward, were also studied. Furthermore, the usability factor was examined, specifically using the System Usability Scale (SUS) score as a determinant. Results showed that usability positively affected the perceived ease of use. Moreover, perceived usefulness and awareness influenced users' attitudes toward using CBEWS. Meanwhile, the reward had no significant effects on continual use intention.

INTRODUCTION

The aquaculture subsector has proliferated in the last three decades, contributing 46% of the total fish production according to FAO (2020). However, several emerging challenges affect the development of the fish farming industry, including harmful algae blooms (HABs), an aquatic environmental event caused by excessive growth of certain species of phytoplankton/algae. A massive HAB event could lead to mass mortality of higher trophic marine organisms within a large geographical area, including farmed fish. The damaging effect of HABs is caused by toxins released by HAB causative species and oxygen depletion in the water column, leading to asphyxiation in fish. Frequent HAB events could markedly reduce the economic capacity of a mariculture-dependent coastal region due to its unpredictability, scale, and high fish mortality rate. For example, according to a study by León-Muñoz et al. (2018), large fish farms in

51

52

53

60

61

65

67

71

73

78

80

81

82

87

Chile reported a loss of nearly 40 thousand tonnes of cultured salmon during re-occurrences of HAB events between 2015 and 2016. In Indonesia, HABs have occurred regularly in Lampung Bay. In 2018, small-scale fish farmers lost at least 30 tonnes of farmed fish due to a single HAB event, according to a study by Puspasari et al. (2018). Both cases have caused long-term social, economic, political, and environmental disruptions in Chile and Indonesia. Although HABs' negative impacts have severely affected mariculture, capture fisheries, and human health, early warning system (EWS) to detect and mitigate these adverse effects are rarely investigated.

Studies by Yuan et al. (2018); Davidson et al. (2021) have developed and integrated various EWSs into fish farming activities to convey environmental conditions in (near) real-time, such as water or weather quality EWSs. For example, a water quality EWS automatically senses a poor water condition and warns farmers and other related parties of the situation. This system collects and processes data from various site sources to obtain the desired information. The processed information, usually in a more straightforward format, is then communicated to the user via various visual displays to aid the users in decision-making in response to the changing condition. An EWS requires as many consistent, complete, and continuous datasets as possible to generate accurate alerts. Collecting data for the EWS is generally carried out through sensors deployed in the monitored water area. The challenge is that data's increasing amount, type, and spatiotemporal coverage is expensive and requires many apparatuses. In order to overcome this, another mechanism in data collection can be used, namely crowdsourcing, i.e., the new online distributed production model in which people collaborate and may be awarded to complete a task.

Crowdsourcing technology has been implemented in various use cases, including biodiversity contexts. For example, iNaturalist, developed by Aristeidou et al. (2021), facilitates global citizen scientists to record and share observations of plants and animals. Other researchers have also studied the implementation of crowdsourcing, such as Sullivan et al. (2009) in collecting bird observation data in eBird and Zhou et al. (2018) in collecting images of plant phenomics. Specifically, for the EWS context, HABscope was developed by Hardison et al. (2019) as a tool to help with early warning of respiratory irritation caused by harmful blooms. Inspired by these studies and the increasing occurrences of HABs in Indonesia's coastal waters, since 2019, Alboom has been developed as a crowdsourcing application used by citizen scientists to record, store, analyze, share, and provide early warning information regarding HABs.

Individuals use the Alboom mobile application to collect geotagged images and report visual information regarding water quality and weather conditions in their locality, whether there are HABs or not. Non-HAB data are intended to provide baseline information for the "normal situation" in the areas of interest or serve as a "precursor" condition if HABs occur. In contrast, HAB data and visual information are used to validate HAB events and later as data sources for HAB early warning information for the local community as well as regional and national mitigation of HABs. In addition, Algies, an expert system, has also been developed by Setiawan et al. (2021) using an ontology of algae to speed up the identification process of algae that causes HABs. Alboom and Algies are expected to provide government, community, researchers, and other stakeholder institutions regarding HAB events in Indonesia and other countries to speed up decision-making in detecting hazard indications and mitigating the effects of HABs.

Compared to an EWS equipped with many physical sensors and apparatuses, Alboom is undoubtedly much cheaper because it uses volunteer humans as sensors. This phenomenon is called social sensing, a paradigm where data are collected from individuals or devices on their behalf, according to Manik et al. (2019). Crowdsourcing and data sharing have been widely applied in various information technology systems, such as geotagging locations on social media, location sharing on various online map platforms and messaging services, and participatory monitoring or reporting systems. However, similar to other community participatory-based applications, the willingness of community members to be actively involved in collecting and sharing the data is critical to the success of implementation.

Literature Review

This subsection presents the theoretical basis, such as the crowdsourcing concept, the technology and acceptance model (TAM), the usability measurement, HABs, Alboom, and similar studies.

Crowdsourcing terminology still refers to a concept used to outsource a task through collective intelligence in online communities to solve problems, according to Morschheuser et al. (2016). However, in subsequent developments, crowdsourcing has become a general term for activities that use the potential intelligence of groups or communities to contribute to problem-solving, knowledge aggregation, content creation, and large-scale data processing. Various needs, contexts, and problems can be applied to

crowdsourcing. Several studies have different terms with similar meanings with crowdsourcing for sensing capabilities. For instances, Ganti et al. (2011) addressed it crowdsensing, Kamel Boulos et al. (2011) named it citizen sensing, and Liu et al. (2015) called it social sensing. This sensing is widely applied to data collection for monitoring.

Technology Acceptance Model (TAM) was introduced by Davis (1989). The factors that determine whether users accept or reject information technology might vary. However, based on TAM, user acceptance has two critical factors: perceived usefulness and perceived ease of use. Initially, the TAM adopted the theory of reasoned action (TRA) developed by Flanders et al. (1975). TRA refers to social psychology, which analyses the determinants of conscious behavior, where a person's behavior is determined by the intention to perform the behavior (behavioral intention). Someone tends to use or not use application or information system (IS) because they believe that it will help their work improve. This concept is then interpreted as the perceived usefulness factor. Therefore, perceived usefulness can be construed as a person's level of belief that using an information technology system or application will improve performance. The ease-of-use factor is a person's level of belief that using a system or application will be free from severe effort or free from difficulties. An effort is a limited resource that a person can allocate to perform an activity for which he is responsible. The perceived usefulness and ease of use factor in the TAM has been widely used in IS research.

Usability has a broader definition according to ISO 9241:11:2018¹. Usability is the extent to which specific users can use a system, product, or service to achieve specific goals with effectiveness, efficiency, and satisfaction in particular contexts of use. The definition of effectiveness is the level of accuracy and completeness used by users to achieve specific goals. In comparison, efficiency is the resources used concerning the results achieved. Finally, satisfaction is how users' physical, cognitive and emotional responses result from using systems, products, or services that meet needs and user expectations. A usability evaluation method is an approach to evaluating systems based on human-computer interaction (HCI) concept. This study used the System Usability Scale (SUS) score as part of the usability evaluation. This instrument was initially developed to measure and evaluate products due to the demands and measures product usability at Digital Equipment Co. Ltd by Brooke (1996). In subsequent development, Sharfina and Santoso (2016) adopted the instruments in Indonesian language.

HABs outbreak is typically related to changes in environmental conditions. Some physical and chemical water parameters induce the rapid growth of HAB species. HAB incidents are relatively easy to identify using several indicators of the physical condition of water, such as changes in water color to reddish, brownish, or dark green. Massive algal blooms can form foam, scum, mats, or paint-like features floating on the water's surface. Some HABs are not clearly visible at the water surface in other instances. However, water bodies may appear red, brown, yellow, orange, or dark green. When HABs die off and decompose, they can release unpleasant odors². An increase in water temperature may also help phytoplankton proliferate to form blooms. HAB events also tend to occur with increases in sea surface temperature, which is affected by climate change.

Alboom can be a solution for detecting and mitigating HABs. The system's workflow begins with the input of required information, which consists of images of water and the surrounding environment as well as automatic recording of location coordinates and time. Both automatic and manual recording can be used when the user's smartphone device is on the Internet or offline. In offline conditions, the user's data are stored in the device storage and then transmitted to the data server when connected to the Internet. After providing the images, the user (reporter) performs manual qualitative input of environmental conditions related to weather observations, water conditions, and a visual assessment of the situations. The workflow is shown in Figure 1. The data input into the server are then analyzed and verified automatically and relayed to other Alboom users via the map viewer. This relay speed is relatively short so that the occurrence of HABs in one place will be immediately known (near real-time) by other users in different places.

Similar Acceptance Studies have been performed when implementing the crowdsourcing concept in various contexts. For example, a study on mobile crowdsourcing technology acceptance in crisis

¹ https://www.iso.org/standard/63500.html

²https://cdc.gov/habs

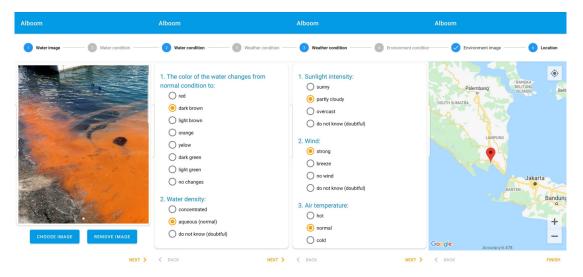


Figure 1. Uploading Alboom data workflow.

Table 1. Previous crowd-based technology acceptance studies

Ref.	Context	Acceptance	Results
		model	
Yaseen and	Refugee crisis	UTAUT	Crowd performance expectancy, the social influence, perceived
Al Omoush	management		risks on the individual and crowd levels, and cultural values
(2020)			of collectivism and uncertainty avoidance had a significant
			influence. However, cultural values of masculinity, power
			distance, and long-term orientation did not affect the intention.
Wang et al.	Crowdsourcing	UTAUT2	Users' continued intention toward crowdsourcing games was
(2020)	games		directly influenced by effort expectancy, hedonic motivation,
			and social influence. Also, time-based variations in users'
			views and acceptance of the games, as well as how their per-
			ceptions affected their acceptance.
Huang et al.	Sustainable ur-	PPM theory	Monetary rewards and trust had a significant positive impact.
(2020)	ban logistics		However, work enjoyment from previous work and entry bar-
			riers for work had a significant negative impact.
Bakici	Idea collabora-	TPB	Attitude and subjective norms significantly impacted individu-
(2020)	tion		als' intention to participate in crowdsourcing.
Djimesah	Crowdfunding	TAM	Perceived ease of use and usefulness significantly influenced
et al. (2022)	in Ghana		intention to use.
Cruz et al.	Tracing con-	TAM	Perceived utility (usefulness) as well as ease of use and inten-
(2020)	tacts		tion to use had a significant influence on the acceptance of
			RISCOVID.
Minkman	Water resource	TAM3	Usefulness, relevance to the task, and the demonstrability of
et al. (2017)	management		benefits were the important drivers of citizens' behavioral
			intentions.

management was conducted by Yaseen and Al Omoush (2020) using an extended Unified Theory of Acceptance and Use of Technology (UTAUT). According to their findings, individual and crowd performance expectations, social influence, and perceived risks substantially impact the intention to continue acceptance. Revised UTAUT2 was applied to explain the acceptance of crowdsourcing games by Wang et al. (2020). Effort expectancy, hedonic motivation, and social influence directly impacted users intention to continue playing crowdsourcing games, as well as time-based variations in users' perceptions and acceptance of the games and how their perceptions affected their acceptance. Moreover, Huang et al. (2020) used the Push-Pull-Mooring (PPM) theory to understand what factors influenced crowd workers' participation in crowd logistic platforms. Results showed that trust and monetary rewards positively affect crowd workers' motivation to continue working in crowd logistics. Also, another study by Bakici (2020) that used an augmented Theory of Planned Behavior (TPB) indicated that attitude and subjective norms significantly impact individuals' intention to participate in crowdsourcing. A summary of previous crowd-based technology acceptance studies is provided in Table 1.

Research Gaps, Objectives, and Contributions

Nevertheless, acceptance studies for crowd-based technologies using TAM are still rare. Only three relevant studies were found, showing that all proposed TAM hypotheses were accepted. The ease of use and usefulness were essential for stakeholders to use crowdfunding in a study by Djimesah et al. (2022). Perceived ease of use and utility significantly influenced users' intention to use RISCOVID for tracing contacts of persons infected with Covid-19 in a study by Cruz et al. (2020). Moreover, according to a study by Minkman et al. (2017), usefulness, the relevance of the task, and the demonstrability of benefits significantly influenced acceptance of mobile technology for citizen science in water resource management.

Research Gaps to be addressed in this study concerns the limited application of the TAM to EWS settings. Although interest in crowdsourcing as a new social computing paradigm is growing, there is a lack of adoption of technology acceptance models to explain the determinants of users' continuous acceptance of crowd-based early warning systems (CBEWS). Table 1 shows studies related to crowdsourcing and its acceptance research in various contexts. However, there is not yet found for EWS contexts, particularly in detecting and mitigating HABs.

Objectives of this study were to investigate and examine factors that determine users' acceptance of CBEWS by extending the original version of TAM and incorporating other variables. This study used the TAM because it considers users' technical experiences and beliefs about how technology might influence their behavior in a crowd-based early warning ecosystem. The TAM was a powerful and robust prediction model for understanding user adoption of technology in many circumstances, according to a meta-analysis by King and He (2006) of 88 studies in diverse domains. The original TAM was created to describe end users' readiness to use new technology in businesses. Also, the SUS score was used in this study's context to determine whether the usability measure affects individuals' intention to accept and use CBEWS long-term. Therefore, this study proposed a new model to reveal the determinants and fill the research gap for this specific context.

Contributions of this study are twofold. First, this study investigated factors that affect the acceptance and use of CBEWS using TAM theory, an IS-based approach. The fundamental determinants used in the original TAM model need to elaborate on what factors need to be concerned in developing and implementing CBEWS. In addition to native TAM variables, this study also incorporated other factors by using variables that had significant effects based on the findings of previous studies, such as awareness, rewards, and social influence. Second, this study investigated whether the application usability measure using the SUS score, an HCI-based approach, influences the continual use intention. In general, theory-driven research like this study promotes a better understanding of the attitudes and behaviors influencing a particular action. For example, organizations or experts can build applicable methods to advertise positive responses by understanding what motivates users to use CBEWS on a daily basis. To our knowledge, this study is the first investigation of CBEWS usability and acceptance analysis, particularly in detecting and mitigating HAB events. The results of this study may also be applied in other CBEWS use cases.

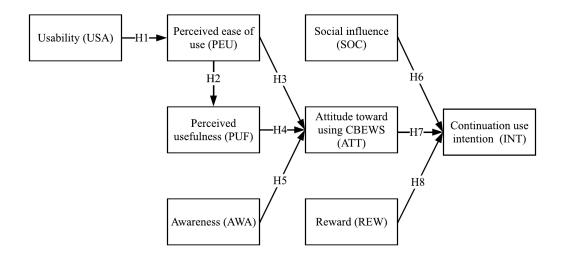


Figure 2. Proposed model.

RESEARCH MODEL AND HYPOTHESIS

This study developed a model that supports the intention to use CBEWS continuously. Specifically, this study proposed that usability (USA) could influence the perceived ease of use (PEU), and the later could affect perceived usefulness (PUF). Then, perceived ease of use (PEU), perceived usefulness (PUF), and awareness (AWA) could influence attitudes (ATT) toward using CBEWS. Meanwhile, social influence (SOC), attitude (ATT), and reward (REW) could significantly affect the continual use intention (INT). Figure 2 shows the proposed model.

This study considered usability measures as a factor in the research model. In this sense, a website's usability definition by Choros and Muskala (2009) was adopted. Usability is defined as a set of layout, structure, arrangements, typography, and many other aspects that make an application simple and easy to use. The SUS score was specifically used to measure usability in this study. Furthermore, a comprehensive study by Tao et al. (2020) integrated usability, in particular usability testing performed by users to accomplish particular tasks, and TAM to understand young consumers' adoption of a health information portal. As a result, subjective usability influenced perceived ease of use positively. Moreover, Mlekus et al. (2020) also combined usability using a user experience (UX) questionnaire with TAM. The results showed that usability, particularly perspicuity and dependability, significantly affected the perceived ease of software R³. Following these successful works, usability was considered a factor in the research model. However, unlike previous studies, this study used the SUS score to assess UX characteristics. This study hypothesized that the usability of CBEWS could positively affect perceived ease of use.

H 1 Usability of CBEWS positively affects perceived ease of use.

According to TAM, one of its native variables, perceived ease of use, influences the other native variable, perceived usefulness. A previous study of Ghanaian crowdfunding by Djimesah et al. (2022) proved this relationship. It indicates that perceived ease of use plays a critical positive factor affecting users' acceptance of participatory-based technologies or systems. Furthermore, in the acceptance study of Covid-19 by Akther and Nur (2022), the perceived ease of use positively affected the attitude toward behavior. Therefore, based on prior studies, this native TAM variable was used as a factor in the proposed model. This factor represents the users' opinion regarding the ease of using the Alboom application in this study. In particular, perceived ease of use was expected to positively affect the perceived usefulness and the users' attitude to continue using CBEWS.

H 2 Perceived ease of use positively influences perceived usefulness.

³https://www.r-project.org

H 3 Perceived ease of use positively influences attitudes towards using CBEWS.

Another factor in the proposed model was perceived usefulness. According to the acceptance study of e-procurement by Brandon-Jones and Kauppi (2018), perceived usefulness positively affected users in accepting the technology. Furthermore, as again shown by Akther and Nur (2022), the perceived usefulness influenced the attitude toward Covid-19 acceptance. This study used this native TAM variable to indicate that using Alboom could benefit its users, particularly their job performance. Therefore, perceived usefulness was believed to impact users' attitudes toward using CBEWS positively.

H 4 Perceived usefulness positively influences attitudes towards using CBEWS.

As the area with the most frequent HAB events, Lampung Bay has experienced HAB events since 2004. Therefore, such frequent events may facilitate Lampung Bay's coastal communities to better understand and know about HABs. However, a study by Aditya et al. (2015) reported that less than 51% of sampled populations in the Lampung coastal area knew the indicators of HAB occurrence. Similarly, Hidayati (2020) reported that only up to 50% of Lampung Bay coastal communities know that HABs could last for several days and cause fish death. These studies indicate that many of the Lampung Bay coastal communities are still unaware of HABs and their direct negative impacts on their economy and public health in general. Few to no HAB cases were reported from other areas in Indonesia, primarily due to the lack of HAB awareness in the coastal community and the absence of HAB reporting or early warning systems. Recent studies by Akther and Nur (2022); Rahman and Sloan (2017); Mashal et al. (2020) showed that people's awareness is a significant factor in accepting COVID-19 vaccination, mobile commerce, and smart homes, respectively. Thus, an awareness factor was included in the proposed model. It is the magnitude of knowledge users possess about the potential dangers of HABs. Understanding the risks and hazards were believed to affect the users' attitude toward using Alboom positively. Therefore, it was expected that awareness could positively affect users' attitudes toward using CBEWS.

H 5 Awareness positively influences attitudes towards using CBEWS.

Social influence can be explained as a factor in which users are affected by other people (e.g., families, friends, and neighborhoods) to use a system or to be involved in an activity. Previous crowdsourcing studies by Yaseen and Al Omoush (2020); Wang et al. (2020) showed that social influence is an essential factor. In particular, Mashal et al. (2020) explained that social influence had significant positive impacts on people's intention to use smart home applications (e.g., smart TV, smart fridge, and smart lights). Meanwhile, Panopoulou et al. (2021) stated that social influence had significant positive effects on people's intention to use an e-participation system, Puzzled by Policy (PbP). Based on the findings of those prior studies, social influence was included in the research model. Specifically, it was expected that social influence could positively affect users to continue using CBEWS.

H 6 Social influence positively affects continuation use intention of CBEWS.

Attitude was a critical factor in accepting a system based on a crowdsourcing study by Bakici (2020). Moreover, Brandon-Jones and Kauppi (2018) claimed that attitude toward a system had a significant positive impact on users to continue using the e-procurement. Therefore, attitude was used as a factor in the proposed model. Specifically, the attitude toward using CBEWS was expected to affect users positively to the continuation use intention.

H 7 Attitude toward using CBEWS positively affects continuation use intention.

This study presumed that obtaining a reward could be one reason users use Alboom continuously. This presumption was based on previous studies by Cappa et al. (2019); Huang et al. (2020); Ye and Kankanhalli (2017) that stated reward had a significant positive effect on increasing the number of users' participation and influencing the users to participate continuously in a crowdsourcing environment. Because Alboom relies on a crowdsourcing approach, it was believed that reward might positively affect users' intention to use Alboom continuously. Thus, the reward factor was proposed in the research model. In particular, it was expected that reward could positively affect users to continue using CBEWS.

H 8 Reward positively affects continuation use intention of CBEWS.

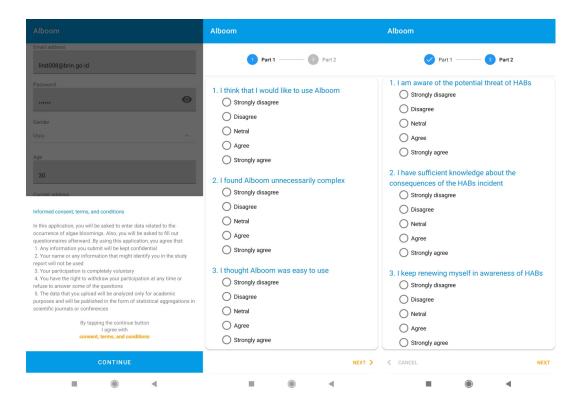


Figure 3. Informed consent and survey questionnaires.

METHODS

280

281

282

284

285

286

287

288

289

290

291

292

294

295

296

297 298

300

301

This study used quantitative methods, and respondents were asked to state their agreement with certain statements using a Likert scale of 1 to 5, where 1 indicated "strongly disagree", 2 indicated "disagree", 3 indicated "neutral", 4 indicated "agree", and 5 indicated "strongly agree". The survey was approved by the Research Ethics Committee on Social Studies and Humanities, National Research and Innovation Agency with approval number of 164/KE.01/SK/8/2022. This study also complied with all relevant ethical regulations, and informed consent was obtained from all participants.

Data Collection was performed using online survey. Before collecting questionnaire data, two general lecture and training workshop webinars⁴ were conducted to increase participants' awareness about the role of technology and community participation in detecting and mitigating HAB incidence. Participants were part of the EWS stakeholders for HABs consisting of fish farmers, fishers, governments, fishery instructors, researchers, and students.

In the first webinar, Alboom was introduced to the public for the first time. Then, the attendees were asked to install the mobile application on their smartphone devices. The users must input their profile data when registering themselves in the application. Informed consent was obtained before creating the user account. The new users were required to agree to the terms and conditions, as shown in Figure 3, such as:

- Any information users submit will be kept confidential.
- · Users' name or any information that might identify their profile in the study report will not be used.
- Users' participation is completely voluntary.
- Users have the right to withdraw their participation at any time, or refuse to answer some of the
 questions.
- The data that users upload will be analyzed only for academic purposes and will be published in the form of statistical aggregations in scientific journals or conferences.

After consenting and finishing registration, users were asked to collect data using Alboom regularly. Users who consistently contributed data six times between the first and the second webinar have been

⁴http://alboom.mict.id

306

310

311

312

313

315

320

321

322

323

324

325

327

331

332

333

rewarded a certificate of appreciation. After the second webinar, the questionnaire was distributed, and all users were invited to respond through the mobile application.

Research Instrument was divided into two parts. The first part consisted of standard SUS questionnaires, as shown in Table 2. The instrument has 10 questions, where odd items are positive statements, while even ones are negative ones. Meanwhile, the second part of the questionnaire consisted of the augmented TAM instruments is shown in Table 3.

Table 2. Usability instruments

Code	Questionnaire
sus1	I think that I would like to use Alboom
sus2	I found Alboom unnecessarily complex
sus3	I thought Alboom was easy to use
sus4	I think that I would need the support of a technical person to use Alboom
sus5	I found the various functions in Alboom were well integrated
sus6	I thought there was markedly well inconsistency in Alboom
sus7	I would imagine that most people would learn to use Alboom very quickly
sus8	I found Alboom very cumbersome to use
sus9	I felt very confident using Alboom
sus10	I required to learn a lot of things before I could get going with Alboom

Analysis Method was performed using statistics tools available in SmartPLS 4^5 to calculate all statistical computations. The model was analyzed using partial least squares structural equation modeling (PLS-SEM) algorithm. Before performing analyses, reliability and validity tests were conducted by measuring Cronbach's alpha, factor loading, average variance extracted (AVE), and discriminant validity. Meanwhile, calculating SUS score simple, only requiring odd and even question numbers to be distinguished. If the number is odd, then the result of the respondent's value is reduced by 1; if the number is even, then the value is five minus the value of the respondent. The scores of the ten questions are summed and then multiplied by 2.5 as shown by Equation 1 where U_i refers to the rating of the i^{th} item. The average score of all respondents is the final SUS score, which ranges from 0 to 100.

$$SUSscore = 2.5 \times \left[\sum_{n=1}^{5} (U_{2n-1} - 1) + (5 - U_{2n}) \right]$$
 (1)

RESULTS

This section presents the collected data and quantitative analysis results. Both analyses on SUS and TAM are explained using statistical measurements. The dataset obtained was uploaded by Manik (2022) to a public repository.

Participant Demographics

The first webinar was attended by 488 people. Meanwhile, only 138 participants installed Alboom⁶. Alboom was introduced continuously to the stakeholders between the first and the second webinars, and afterward. Thus, the number of new users increased to 223. However, only 109 people have ever uploaded data using Alboom at least once. All users were offered to respond to the questionnaires, and 104 of 223 people provided responses.

Table 4 shows the demographic information of the respondents. The proportion of men and women in this survey was balanced. Most respondents were 17-25 years old (54%), which indicates that the majority were digital natives. Based on reported job distributions and education levels, most of the respondents were well educated. Also, 32% of respondents have installed and used Alboom but never uploaded data. Meanwhile, 42% of respondents reserved the reward of certification because they uploaded data using Alboom six times or more.

⁵https://smartpls.com/

⁶https://appho.st/d/JM80Ljzf

Table 3. Acceptance instruments

Construct	Items	Questionnaires	Adopted from
PEU	peu1	Learning to use Alboom is easy for me	
	peu2	It is easy for me to become proficient in using Alboom	Djimesah et al. (2022);
	peu3	The use of Alboom is clear and easy to understand	Akther and Nur (2022)
	peu4	Overall, it is easy for me to use Alboom	
PUF	puf1	Alboom provides useful information to me	Brandon-Jones and
	puf2	Alboom adds to my knowledge about HABs prevention efforts	Kauppi (2018); Akther
	puf3	Using Alboom is relevant or useful for my work	and Nur (2022)
AWA	awa1	I am aware of the potential threat of HABs	Rahman and Sloan
	awa2	I have sufficient knowledge about the consequences of the HABs	(2017); Mashal et al.
		incident	(2020); Akther and Nur
	awa3	I keep renewing myself in awareness of HABs	(2022)
	awa4	I share HABs knowledge with my colleagues to increase awareness	
SOC	soc1	I need to use Alboom according to my colleagues' opinions	Yaseen and Al Omoush
	soc2	According to people who influence my behavior, I must use Alboom	(2020); Panopoulou
	soc3	If coastal communities feel helped by Alboom, then I must use this	et al. (2021)
		application	
ATT	att1	I think using Alboom is a good idea	Alethon and Num (2022).
	att2	I have a positive attitude towards using Alboom	Akther and Nur (2022); Brandon-Jones and
	att3	All things considered, the use of Alboom is recommended	Kauppi (2018)
	att4	I think using Alboom is interesting and fun	Kauppi (2016)
REW	rew1	I hope to receive a reward (e.g., a certificate, credit or otherwise)	Compared (2010).
		for my contribution to Alboom	Cappa et al. (2019);
	rew2	The more rewards I get, the more I want to contribute to Alboom	Huang et al. (2020); Ye and Kankanhalli (2017)
	rew3 I am satisfied with the rewards given in using Alboom		aliu Kalikalilialii (2017)
INT	int1	Based on my experience, I will most likely continue to contribute	Djimesah et al. (2022);
		to Alboom	Bakici (2020); Cruz
	int2	I will recommend others to use Alboom	et al. (2020)
	int3	I plan to use Alboom often in the future	

Table 4. Demographics of the participants

Characteristi	Percentage	
Gender	Male	49%
	Female	51%
Age	17 - 25	54%
	26 - 34	14%
	35 - 43	10%
	44 - 52	16%
	53 - 61	6%
Education	Doctoral degree	9%
	Master degree	21%
	Bachelor degree	15%
	High school	55%
Profession	College student	54%
	Researcher	20%
	University lecturer	9%
	Fishery instructor	8%
	Fisher	5%
	Teacher	2%
	Government employee	2%
Upload count	0 times	32%
	1 - 5 times	26%
	6 times	27%
	More than 6 times	15%

System Usability Scale (SUS) Measurement

In order to determine whether the SUS instruments had good reliability, it is necessary to calculate Cronbach's alpha value, which is a test score reliability coefficient to measure how closely related a set of items are as a group. The results of the calculation, as shown in the Cronbach's alpha (α) column in Table 5, have values above 0.7. Because reliability theory, according to Nunnally (1975), requires a Cronbachs's alpha value of at least 0.7, the reliability of the variables and the level of internal consistency of the instrument are confirmed.

No Code		Items Value					∑ Norm	% Two highest value	α
		1	2	3	4	5	1		
1	sus1	1%	0%	18%	55%	26%	3.05	81%	0.81
2	sus2	11%	64%	22%	1%	2%	2.81	75%	0.79
3	sus3	1%	0%	15%	57%	27%	3.09	84%	0.79
4	sus4	10%	50%	19%	15%	6%	2.42	60%	0.81
5	sus5	0%	7%	21%	59%	13%	2.79	72%	0.78
6	sus6	4%	46%	43%	7%	0%	2.47	50%	0.78
7	sus7	0%	6%	16%	54%	24%	2.96	78%	0.78
8	sus8	10%	70%	15%	5%	0%	2.85	80%	0.77
9	sus9	0%	14%	14%	55%	16%	2.73	71%	0.77
10	sus10	1%	21%	14%	51%	13%	1.47	22%	0.81
	SUS score	66.59							

Table 5. SUS score and reliability of measurements

The SUS instruments, as shown in Table 2, have ten questions that contain both positive and negative meanings. For example, questions on numbers 1, 3, 5, 7, and 9 have positive connotations, while questions 2, 4, 6, 8, and 10 have negative meanings. This difference in positive and negative statements will result in a different grade. If a question is positive, selecting a higher value (e.g., strongly agree) will yield a true value. In contrast, if the question is negative, a lower value (e.g., strongly disagree) yields a higher score. Therefore, the values must be normalized to find the absolute highest value.

The normalized results shown in Table 5 were calculated by reducing the value input from the respondent by lifting one (1) for positive questions. In contrast, by reducing five (5) by the value of the respondent, the value will be between zero (0) and four (4). Table 5 also shows the percentage of respondent values one (1) to five (5). To calculate the optimal ratio, in the % two highest values column, the calculation adds one (1) and two (2) if the question is negative, and if the question is positive, it adds three (3) and four (4). The tenth item has an average normalization result below 1.47 with 22%. This item stated that users had to learn many things before they could use Alboom, which indicates that the respondents required adaptation to use Alboom.

The normalized results were then multiplied by 2.5 to determine the level of usability perception in the Alboom application. From this calculation, the final score was in the range of 0 to 100. Therefore, the average value from 104 respondents became the SUS score. Table 5 shows the SUS score for the Alboom application of 66.59. This value is sufficient, has a grade "D" scale, adjective ratings of "OK", and a high-marginal acceptability range, according to Bangor et al. (2009).

Assessment of Measurement Model

The measurement model was assessed based on factor loading, construct reliability using Cronbach's alpha, AVE parameter, and discriminant validity. As shown in Table 6, seven construction item indicators (AWA, PEU, PUF, SOC, ATT, REW, and INT) had loading values between 0.56-0.96. A factor loading is the correlation coefficient for the variable and factor. It describes the variance the variable explains on that particular factor. According to F. Hair Jr et al. (2014), the ideal allowable factor loading should exceed 0.7, which indicated that the factor removed sufficient variance from the variable. Thus, the construct indicators of awa1, awa2, att1, and soc3 were dropped because their loading values were below 0.7. Furthermore, all Cronbach's alpha values were more significant than 0.7, indicating that all constructs were reliable.

Also, convergent validity was assessed using AVE. As shown in Table 6, all AVE values in the six construct parameters exceeded the minimum threshold value of 0.5, according to Fornell and Larcker

Table 6. Measurement model

Construct	Items	Loading	Cronbach's α	AVE
USA	SUS score	1.00	1.00	1.00
PEU	peu1	0.91	0.90	0.77
	peu2	0.86		
	peu3	0.85		
	peu4	0.89		
PUF	puf1	0.91	0.84	0.76
	puf2	0.93		
	puf3	0.77		
AWA	awa1	0.67 ^a	0.82	0.85
	awa2	0.69 ^a		
	awa3	0.87		
	awa4	0.84		
SOC	soc1	0.89	0.87	0.88
	soc2	0.90		
	soc3	0.69 ^a		
ATT	att1	0.56 ^a	0.91	0.84
	att2	0.91		
	att3	0.92		
	att4	0.90		
REW	rew1	0.94	0.95	0.91
	rew2	0.97	1	
	rew3	0.96	1	
INT	int1	0.90	0.85	0.77
	int2	0.83]	
	int3	0.90		

^aDrop items

 Table 7. Discriminant validity check

	USA	PEU	PUF	AWA	SOC	ATT	REW	INT
SUS score	1.00							
peu1		0.91						
peu2		0.85						
реи3		0.85						
peu4		0.89						
puf1			0.91					
puf2			0.93					
puf3			0.77					
awa3				0.92				
awa4				0.92				
soc1					0.94			
soc2					0.94			
att2						0.90		
att3						0.93		
att4						0.91		
rew1							0.94	
rew2							0.97	
rew3							0.96	
int1								0.90
int2								0.83
int3						•		0.90

Hypothesis	Path	Path coeff. (β)	p-value	Supported
H1	$USA \rightarrow PEU$	0.72	0.000	Yes
H2	$PEU \rightarrow PUF$	0.55	0.000	Yes
H3	$PEU \rightarrow ATT$	0.22	0.046	Yes
H4	$PUF \rightarrow ATT$	0.36	0.000	Yes
H5	$AWA \rightarrow ATT$	0.30	0.001	Yes
Н6	$SOC \rightarrow INT$	0.25	0.001	Yes
Н7	$ATT \rightarrow INT$	0.59	0.000	Yes
H8	$REW \rightarrow INT$	-0.04	0.638	No

Table 8. Structural model hypothesis

(1981), which indicated that the variance captured by the construct was larger than the variance due to measurement error. Thus, all constructs were valid. Table 7 shows the discriminant validity of each indicator for all construct parameters. According to Monecke and Leisch (2012), the discriminant validity values of less than 0.2 are not shown in the output. The largest values for each indicator were in the construct parameter, and the built indicators were appropriate for measuring the construct parameters. Based on these results, the measurement model was satisfactory.

Assessment of Structural Model

Bootstrapping testing was performed to test the significance of the effect of one variable on another. This study accepted a hypothesis if the *p*-value is less than a significant level of 0.05. Therefore, all hypotheses in the proposed model were supported except H8, as shown in Table 8.

As expected, PEU was found to be significantly affected by USA (H1: $\beta=0.72$; p<0.001). Furthermore, PEU significantly affected PUF (H2: $\beta=0.55$; p<0.001) but PEU had small significant effect on ATT (H3: $\beta=0.22$; p=0.046). PUF and AWA positively predicted ATT (H4: $\beta=0.36$; p<0.001, H5: $\beta=0.30$; p=0.001). Moreover, INT was found to be significantly influenced by ATT and SOC. Based on the magnitude of the path coefficient value, which is significant in each construct, the attitude toward using CBEWS plays the most important role in determining a person's desire to use CBEWS subsequently (H7: $\beta=0.59$; p<0.001). The path coefficient value was more than twice the coefficient of the path from social influence to intention (H6: $\beta=0.25$; p=0.001). Nevertheless, REW did not significantly positively predict INT (H8: $\beta=-0.04$; p=0.638).

DISCUSSION

Based on the results of this study, the attitude was the most influential factor that affects the continual intention to use. This finding supports TAM studies by Akther and Nur (2022); Brandon-Jones and Kauppi (2018), and implies that latent variables significantly influence attitude should be identified. This study also found that perceived usefulness, as in a TAM study by Akther and Nur (2022), positively affected attitude with the highest effect. While typical TAM studies, like in Akther and Nur (2022), found that perceived ease of use strongly predicted users' attitudes, results suggested that this strong association was not always present. In fact, a study by Brandon-Jones and Kauppi (2018) showed no significance. Although the perceived ease of use had a small effect on the attitude in this study, it influenced the usefulness significantly, as supported by studies in Cruz et al. (2020); Panopoulou et al. (2021). On the other hand, the usability affected perceived ease of use positively. This finding corroborates studies by Mlekus et al. (2020); Tao et al. (2020) even though these studies have different approaches to assessing usability. Therefore, it implies that the higher usability of a system, which is determined by how well its features suit users' needs and contexts, would lead to a higher perception of ease of use. Furthermore, the more users perceive a system as easy to use, the more users perceive the system as helpful in achieving the users' goals.

Moreover, awareness factor, which refers to knowledge of indications and impacts of hazards that an EWS solves, introduced in this study significantly influenced the attitude toward continuation use intention. This finding supports Rahman and Sloan (2017); Mashal et al. (2020); Akther and Nur (2022), although these prior studies had different contexts. However, unlike many other crowdsourcing studies, reward did not significantly affect continuation use intention in this research. The context of this study related to an EWS could be one possible reason. Suppose the users know that the potential dangers would

impact them or others. In that case, they intend to use the application without rewards because it would be useful to detect and mitigate the hazards. Furthermore, social influence had a more significant effect on use intention. This finding agrees with Yaseen and Al Omoush (2020); Wang et al. (2020); Panopoulou et al. (2021).

Research Implications

Although many studies debate whether an HCI-based approach, like usability, could be combined with an IS-based approach, this study showed a successful integration of usability, particularly SUS score, into TAM. Nevertheless, studies by Pal and Vanijja (2020); Albastaki (2022) showed that perceived ease of use had high similarity with usability, particularly SUS score. Therefore, as an implication of the research, usability could be optionally included in the future acceptance models if perceived ease of use or a similar variable is already incorporated. This study showed a strong relationship between the two variables, where usability significantly influenced perceived ease of use.

It is worth revisiting the reward factor in subsequent research. Most crowd-based technology acceptance studies found reward as a significant driver of use. It could be because those studies used monetary rewards. Meanwhile, in this study, a general term of reward was used. In fact, non-financial rewards, such as certificates, credits, et cetera, were given to participants. However, due to a limited budget and regulations, financial rewards were not provided. Therefore, further studies are needed to investigate the monetary reward and its relationship with intention to use, attitude, or even perceived usefulness.

Practice Implications

Even though perceived ease of use and usability is considered a similar variable, in practice, it is suggested that organizations or practitioners conduct both analysis, IS-based approaches first, followed by HCI-based approaches. For example, suppose perceived ease of use or another similar factor is found to be significant. In that case, the degree to which users can use the application to achieve quantified objectives with efficiency, satisfaction, and effectiveness in a quantified context of use should be measured. Then, if the usability score is below average, the application should be improved. In this study case, the usability of Alboom should be revamped because the SUS score was only 66.59.

Reward was not a determinant of the continual use intention of CBEWS. Therefore, this result might imply that providing a reward is not a solution for organizations or practitioners to boost application use. A reward might not guarantee that users will continue to use CBEWS in the future. However, awareness positively influenced attitude toward using CBEWS. Based on this finding, it is suggested that organizations or practitioners should frequently increase citizens' awareness regarding the hazards' context. In this study case, webinars about HABs were organized for citizens to educate them regarding the indications and impacts of HABs. Furthermore, social influence positively affected the continual use intention, which might indicate that the more users that use CBEWS, the more likely that other users are to be socially influenced to also use CBEWS. Therefore, organizations should encourage inspired people, such as managers and leaders or respectable persons, to embrace CBEWS and persuade others to use it on a long-term basis.

Limitations and Threats to Validity

This subsection identifies limitations and threats to the validity of this research and discusses how they can possibly be addressed. This study considers four validity threats: internal, external, construct, and conclusion validity.

To control for the internal validity threat of multiple submissions from the same participant, users were asked to log in to the mobile application before submitting the response to the questionnaire. Thus, it was ensured that participants who completed the questionnaires had installed and used Alboom. All users were encouraged to respond to the questionnaires. Reminders were sent to the users' mobile applications and emails every day.

Although respondents consisted of 47% of the population of Alboom's users, this does not mean the results can be generalized. The respondents were dominated by students (54%), researchers (20%), and university lecturers (9%), which indicates that current Alboom users are primarily scholars. The primary target users of Alboom in the future will be fish farmers, fishermen, and others that have primary related jobs in coastal waters because they spend most of their time in the field, which makes them available at any time to upload data. However, respondents from the most expected users, such as fishery instructors (8%) and fishers (5%), were limited in this study. Also, fishers currently using Alboom are not purely voluntary

469

470

472

474

476

477

479

481

485

486

487

489

491

493

494

497

because they were facilitated with smartphone devices financed by this project budget. The variable in this study, the awareness factor, had a significant influence on the attitude toward using CBEWS and might be affected by the background of the highly educated respondents, which leads to a stronger understanding. These limitations are potential threats to external validity. However, in future work, this study will be repeated when the number of Alboom non-scholar users increases.

Threats to construct validity were manageable because Cronbach's alpha and factor loading for each question in SUS and TAM questionnaires were beyond the standard value of 0.7. If their value was less than 0.7, the question items were dropped. These items were primarily adapted from highly cited studies on TAM and SUS. Furthermore, convergent validity was checked using AVE measures, and discriminant validity was also tested to ensure that the constructs that should have no relationship indeed do not have any relationships. Only reliable and valid items were considered in the SEM analysis.

For statistical conclusion validity, the SEM technique was used in this study to fit a theoretical model to the data. Model fit indicators indicate that the model is sound. SEM further improves conclusion validity by adjusting for multiple comparisons, measurement error (by inferring latent variables from observable variables), and testing the full model (rather than one hypothesis at a time). Alternative path modeling techniques, such as partial least squares path modeling like Bayesian approaches, are regarded as inferior to SEM, according to Rönkkö and Evermann (2013).

Future Works

More recent theories should be implemented in the future. For example, UTAUT or its second version should be used to investigate other factors that could positively influence attitude, such as facilitating conditions, performance, and effort expectancy, because the attitude toward using CBEWS was the most influential factor in this research. Moreover, latent variables could also be added in subsequent studies, based on the second version of the TAM created by Venkatesh and Davis (2000) or the third version by Venkatesh and Bala (2008). Also, the actual use variable could be examined in the future by looking at actual usage data. Specific actions could be implemented to achieve particular targets by knowing specific factors to promote positive behavior.

Furthermore, only one CBEWS was examined in this study. Future works should investigate whether the same results are acquired in other CBEWSs. Also, usability addressed in this study was only measured with a single approach. Future research also could check whether other usability measures, survey-based or even usability testing approaches, would generate the same results. Moreover, individuals' perceptions of technology may evolve over time. As a result, the current findings could serve as a starting point for future longitudinal studies into the shifting roles of predictors in users' acceptance and subsequent use of CBEWS.

SOURCE SOURCE

A usability and acceptance analysis of CBEWS was conducted in this study. The research model designed in this study enriched the understanding of CBEWS, particularly in detecting HAB incidents and mitigating their effects. This study's findings strongly indicate that improving the knowledge and awareness of a local coastal community about HABs and their potential negative impacts via education will be more effective than providing rewards to users. In addition, formal social influence on the human resources of government and non-government institutions, particularly those working or living near high-risk areas, also offers alternative support in increasing the usage of CBEWS and other similar crowdsensing applications to prevent and mitigate the potential dangers.

ACKNOWLEDGMENTS

The authors would like to thank all the Knowledge Engineering Research Group members for their suggestions and valuable feedback about this study. In addition, the other members of the SATREPS Mariculture Project from Japan and Indonesia are also thanked for their indirect contributions to the study.

REFERENCES

Aditya, V., Koswara, A., Fitriya, N., Rachman, A., Sidabutar, T., and Thoha, H. (2015). Public awareness on harmful algal bloom (hab) in lampung bay. *Marine Research in Indonesia*, 38(2):71–75.

- Akther, T. and Nur, T. (2022). A model of factors influencing covid-19 vaccine acceptance: A synthesis of the theory of reasoned action, conspiracy theory belief, awareness, perceived usefulness, and perceived ease of use. *PLOS ONE*, 17(1):1–20.
- Albastaki, Y. (2022). Assessing the perceived usability of an intelligent contact tracing app to prevent the spread of covid-19 using sus and tam: be aware bahrain. *Journal of Decision Systems*, 0(0):1–18.
- Aristeidou, M., Herodotou, C., Ballard, H. L., Young, A. N., Miller, A. E., Higgins, L., and Johnson, R. F. (2021). Exploring the participation of young citizen scientists in scientific research: The case of inaturalist. *PLOS ONE*, 16(1):1–13.
- Bakici, T. (2020). Comparison of crowdsourcing platforms from social-psychological and motivational perspectives. *International Journal of Information Management*, 54:102121.
- Bangor, A., Kortum, P., and Miller, J. (2009). Determining what individual sus scores mean: Adding an adjective rating scale. *Journal of Usability Studies*, 4:114–123.
- Brandon-Jones, A. and Kauppi, K. (2018). Examining the antecedents of the technology acceptance model within e-procurement. *International Journal of Operations & Production Management*, 38(1):22–42.
- Brooke, J. (1996). Sus-a quick and dirty usability scale. In Jordan, P. W., Thomas, B., McClelland, I. L., and Weerdmeester, B., editors, *Usability Evaluation In Industry*. CRC Press, London.
- Cappa, F., Rosso, F., and Hayes, D. (2019). Monetary and social rewards for crowdsourcing. Sustainability,
 11(10):2834.
- Choros, K. and Muskala, M. (2009). Block map technique for the usability evaluation of a website. In
 Proceedings of the 1st International Conference on Computational Collective Intelligence. Semantic
 Web, Social Networks and Multiagent Systems, ICCCI '09, page 743–751, Berlin, Heidelberg. Springer Verlag.
- Cruz, M. M., Oliveira, R. S., Beltrão, A. P. V., Lopes, P. H. B., Viterbo, J., Trevisan, D. G., and Bernardini,
 F. (2020). Assessing the level of acceptance of a crowdsourcing solution to monitor infectious diseases
 propagation. In 2020 IEEE International Smart Cities Conference (ISC2), pages 1–8.
- Davidson, K., Whyte, C., Aleynik, D., Dale, A., Gontarek, S., Kurekin, A. A., McNeill, S., Miller, P. I.,
 Porter, M., Saxon, R., and Swan, S. (2021). Habreports: Online early warning of harmful algal and
 biotoxin risk for the scottish shellfish and finfish aquaculture industries. *Frontiers in Marine Science*, 8.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3):319–340.
- Djimesah, I. E., Zhao, H., Okine, A. N. D., Li, Y., Duah, E., and Kissi Mireku, K. (2022). Analyzing the
 technology of acceptance model of ghanaian crowdfunding stakeholders. *Technological Forecasting* and Social Change, 175:121323.
- F. Hair Jr, J., Sarstedt, M., Hopkins, L., and G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (pls-sem). *European Business Review*, 26(2):106–121.
- FAO (2020). *The State of World Fisheries and Aquaculture 2020: Sustainability in action.* FAO, Rome, Italy.
- Flanders, N., Fishbein, M., and Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction
 to Theory and Research. Addison-Wesley series in social psychology. Addison-Wesley Publishing
 Company, Reading, MA.
- Fornell, C. and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1):39–50.
- Ganti, R. K., Ye, F., and Lei, H. (2011). Mobile crowdsensing: current state and future challenges. *IEEE Communications Magazine*, 49(11):32–39.
- Hardison, D. R., Holland, W. C., Currier, R. D., Kirkpatrick, B., Stumpf, R., Fanara, T., Burris, D., Reich,
 A., Kirkpatrick, G. J., and Litaker, R. W. (2019). Habscope: A tool for use by citizen scientists to
 facilitate early warning of respiratory irritation caused by toxic blooms of karenia brevis. *PLOS ONE*,
 14(6):1–17.
- Hidayati, I. (2020). The understanding of the lampung coastal community about the dangers of harmful algae blooms in seafood sources. *JPIG*, 5:122–131.
- Huang, L., Xie, G., Blenkinsopp, J., Huang, R., and Bin, H. (2020). Crowdsourcing for sustainable urban logistics: Exploring the factors influencing crowd workers' participative behavior. *Sustainability*, 12(8):3091.
- Kamel Boulos, M. N., Resch, B., Crowley, D. N., Breslin, J. G., Sohn, G., Burtner, R., Pike, W. A., Jezierski, E., and Chuang, K.-Y. S. (2011). Crowdsourcing, citizen sensing and sensor web technologies

- for public and environmental health surveillance and crisis management: trends, ogc standards and application examples. *International Journal of Health Geographics*, 10(1):67.
- King, W. R. and He, J. (2006). A meta-analysis of the technology acceptance model. *Information & Management*, 43(6):740–755.
- León-Muñoz, J., Urbina, M. A., Garreaud, R., and Iriarte, J. L. (2018). Hydroclimatic conditions trigger record harmful algal bloom in western patagonia (summer 2016). *Scientific Reports*, 8(1):1330.
- Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G., and Shi, L. (2015). Social sensing: A new
 approach to understanding our socioeconomic environments. *Annals of the Association of American Geographers*, 105(3):512–530.
- Manik, L. P. (2022). Dataset of Usability and Acceptance of Alboom: A Crowd-Based Early Warning
 System for Harmful Algal Blooms.
- Manik, L. P., Syafiandini, A. F., Mustika, H. F., Akbar, Z., and Rianto, Y. (2019). Gender inference
 based on indonesian name and profile photo. In 2019 International Conference on Computer, Control,
 Informatics and its Applications (IC3INA), pages 25–29.
- Mashal, I., Shuhaiber, A., and Daoud, M. (2020). Factors influencing the acceptance of smart homes in jordan. *International Journal of Electronic Marketing and Retailing*, 11(2):113–142.
- Minkman, E., Rutten, M. M., and van der Sanden, M. C. A. (2017). Acceptance of mobile technology
 for citizen science in water resource management. *Journal of Irrigation and Drainage Engineering*,
 143(3):B6016001.
- Mlekus, L., Bentler, D., Paruzel, A., Kato-Beiderwieden, A.-L., and Maier, G. W. (2020). How to raise
 technology acceptance: user experience characteristics as technology-inherent determinants. *Gruppe*.
 Interaktion. Organisation. Zeitschrift für Angewandte Organisationspsychologie (GIO), 51(3):273–283.
- Monecke, A. and Leisch, F. (2012). sempls: Structural equation modeling using partial least squares. *Journal of Statistical Software*, 48(3):1–32.
- Morschheuser, B., Hamari, J., and Koivisto, J. (2016). Gamification in crowdsourcing: A review. In *2016*49th Hawaii International Conference on System Sciences (HICSS), pages 4375–4384.
 - Nunnally, J. C. (1975). Psychometric theory—25 years ago and now. Educational Researcher, 4(10):7–21.
- Pal, D. and Vanijja, V. (2020). Perceived usability evaluation of microsoft teams as an online learning platform during covid-19 using system usability scale and technology acceptance model in india. *Children and Youth Services Review*, 119:105535.
- Panopoulou, E., Tambouris, E., and Tarabanis, K. (2021). An eparticipation acceptance model. *IEEE Transactions on Emerging Topics in Computing*, 9(1):188–199.
- Puspasari, R., Sugianti, Y., Rustam, A., Adi, R. A., Sagala, S. S., and Pranowo, W. S. (2018). The outbreak of chochlodinium sp.: the red tide maker in the coastal of lampung bay. *IOP Conference Series: Earth and Environmental Science*, 176:012021.
- Rahman, M. M. and Sloan, T. (2017). User adoption of mobile commerce in bangladesh: Integrating perceived risk, perceived cost and personal awareness with tam. *The International Technology Management Review*, 6:103–124.
- Rönkkö, M. and Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. *Organizational Research Methods*, 16(3):425–448.
- Setiawan, F. A., Puspasari, R., Manik, L. P., Akbar, Z., Kartika, Y. A., Satya, I. A., Saleh, D. R.,
 Indrawati, A., Suzuki, K., Albasri, H., and Wada, M. (2021). Ontology-assisted expert system for algae
 identification with certainty factors. *IEEE Access*, 9:147665–147677.
- Sharfina, Z. and Santoso, H. B. (2016). An indonesian adaptation of the system usability scale (sus). In
 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS),
 pages 145–148.
- Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., and Kelling, S. (2009). ebird: A citizen-based bird observation network in the biological sciences. *Biological Conservation*, 142(10):2282–2292.
- Tao, D., Shao, F., Wang, H., Yan, M., and Qu, X. (2020). Integrating usability and social cognitive theories with the technology acceptance model to understand young users' acceptance of a health information portal. *Health Informatics Journal*, 26(2):1347–1362. PMID: 31603378.
- Venkatesh, V. and Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. *Decision Sciences*, 39(2):273–315.
- Venkatesh, V. and Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four

- longitudinal field studies. *Management Science*, 46(2):186–204.
- Wang, X., Goh, D. H.-L., and Lim, E.-P. (2020). Understanding continuance intention toward crowd-sourcing games: A longitudinal investigation. *International Journal of Human–Computer Interaction*, 36(12):1168–1177.
- Yaseen, S. G. and Al Omoush, K. S. (2020). Mobile crowdsourcing technology acceptance and engagement in crisis management: The case of syrian refugees. *International Journal of Technology and Human Interaction (IJTHI)*, 16(3):1–23.
- Ye, H. J. and Kankanhalli, A. (2017). Solvers' participation in crowdsourcing platforms: Examining the impacts of trust, and benefit and cost factors. *The Journal of Strategic Information Systems*, 26(2):101–117.
- Yuan, F., Huang, Y., Chen, X., and Cheng, E. (2018). A biological sensor system using computer vision for water quality monitoring. *IEEE Access*, 6:61535–61546.
- Zhou, N., Siegel, Z. D., Zarecor, S., Lee, N., Campbell, D. A., Andorf, C. M., Nettleton, D., Lawrence-Dill,
 C. J., Ganapathysubramanian, B., Kelly, J. W., and Friedberg, I. (2018). Crowdsourcing image analysis
 for plant phenomics to generate ground truth data for machine learning. *PLOS Computational Biology*,
 14(7):1–16.