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ABSTRACT
Background: Abiotic stresses, particularly drought and heavy metal toxicity, have
presented a significant risk to long-term agricultural output around the world.
Although the heavy-metal-associated domain (HMA) gene family has been widely
explored in Arabidopsis and other plants, it has not been thoroughly studied in wheat
(Triticum aestivum). This study was proposed to investigate the HMA gene family in
wheat.
Methods: To analyze the phylogenetic relationships, gene structure, gene ontology,
and conserved motifs, a comparative study of wheat HMA genes with the
Arabidopsis genome was performed.
Results: A total of 27 T. aestivum proteins belonging to the HMA gene family were
identified in this study, with amino acid counts ranging from 262 to 1,071. HMA
proteins were found to be grouped into three subgroups in a phylogenetic tree, and
closely related proteins in the tree showed the same expression patterns as motifs
found in distinct subgroups. Gene structural study elucidated that intron and exon
arrangement differed by family.
Conclusion: As a result, the current work offered important information regarding
HMA family genes in the T. aestivum genome, which will be valuable in
understanding their putative functions in other wheat species.

Subjects Agricultural Science, Bioinformatics, Biotechnology, Genetics, Plant Science
Keywords Bioinformatics, Genome-wide analysis, Heavy metal toxicity, HMA gene family,
Phylogenetic analysis

INTRODUCTION
Wheat (T. aestivum L.), a major food crop worldwide, is cultivated on nearly 20% of
agricultural land and serves as a significant source of food for 30% of the world’s
population (Vasil, 2007). The global wheat output (growth and yield) is adversely
influenced by environmental stresses such as water scarcity and toxic metals, etc. (Javed
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et al., 2016). Plants have evolved a variety of adaptation strategies, to protect themselves
from harsh environmental conditions (Raza et al., 2019). Plant biologists have long been
fascinated by the regulation and expression of many genes for improved crop resilience to
biotic and abiotic stresses, along with increased productivity. Drought and heavy metal
toxicity are among the abiotic stresses that have posed a severe threat to crop yield globally
(Bari et al., 2018). Drought is one of the most common stresses in heavy metal
contaminated environments (Barceló & Poschenrieder, 2004) and causes a variety of
biochemical and physiological changes in plants (Zahra et al., 2021a). Heavy metal
accumulation and transportation to grain has a detrimental effect on human health as well.
Therefore, it is pivotal to understand the mechanism of metal accumulation and transport
in the grain to mitigate this phenomenon (Ahmad et al., 2018).

Plants selectively sense environmental stimuli and resultantly activate signaling
cascades to assemble an overall response for their survival, which is mediated by complex
signaling networks (Cappetta et al., 2020). Heavy metal associated (HMA) protein, familiar
as P1B-ATPase, participates in absorbing and transporting heavy metal ions (Cu2+, Co2+,
Zn2+, Pb2+ and Cd2+) by combining ATP hydrolysis with metal ion transport across
membranes (Imran et al., 2016; Zhang et al., 2021). Currently, the number of identified
HMA genes are eight in A. thaliana, nine in rice (Oryza sativa L.), 11 in sorghum (Sorghum
bicolor L.), 11 in maize (Zea mays L.), 20 in soybean (Glycine max L.), 17 in Populus
trichocarpa and 21 in barley (Hordeum vulgare L.) (Zhang et al., 2021). HMA domain
genes are vital for the spatiotemporal transit of metal ions that bind to several enzymes and
cofactors throughout the cell (He et al., 2020). It is worth noting that HMA affects not only
heavy metal transport but also plant growth and development (Grispen et al., 2011).

Wheat is sensitive to heavy metals. Heavy metals trigger different responses in wheat,
leading to yield losses in wheat (Rizvi et al., 2020). However, data regarding this gene
family in hexaploid wheat is scanty. Limited similarities have been found in the
mechanisms of both drought and heavy metal tolerance strategies in plants (Islam &
Sandhi, 2022). Signaling pathways activate proteins that make transporters, proteases, ROS
detoxifying enzymes (alternative oxidase, glutathione peroxidase, glutathione reductase,
copper-zinc superoxide dismutase, glutathione S transferase and chaperones (Zhang &
Sonnewald, 2017)), which help plants to ameliorate stress. Under abiotic and biotic stress,
the molecular processes and signal transduction pathways of the HMA family of genes,
their function in shielding plants from pathogens and environmental stresses are currently
poorly known. However, abiotic stress is intimately linked to the HMA gene family (He
et al., 2020). In a previous study, the expression of the yeast AcHMA1 gene improved yeast
cell’s resilience to stresses such as drought, alkali, salt, and oxygen (Sun et al., 2014).

Several HMA genes were found to play different roles in various species of plants, as
OsHMA2 is linked to zinc loading in vascular tissue and tonoplast localization in rice
(Yamaji et al., 2013). OsHMA3, which is found in tonoplasts, transports Cd to the roots,
whereas OsHMA4 transports copper (Huang et al., 2016; Zhang et al., 2021). HvHMA1
aids in the transfer of zinc and cadmium into barley grain (Mikkelsen et al., 2012). There
are evidences that HMAs play a vital role in heavy metal transmembrane trafficking.
However, little is known about HMAs in wheat. This study reports a complete

Zahra et al. (2023), PeerJ, DOI 10.7717/peerj.14920 2/20

http://dx.doi.org/10.7717/peerj.14920
https://peerj.com/


identification of HMA genes in wheat including syntenic examination, gene structures
analysis, and conserved motif analysis. This study may lay the foundation for further
investigate the putative functions of the HMA gene family in wheat.

MATERIALS AND METHODS
Retrieval of protein sequences
HMA protein sequences of Arabidopsis (Table 1) and wheat (Table 2) were retrieved from
the NCBI database (http://www.ncbi.nlm.nih.gov/). These sequences were further verified
from The Arabidopsis Information Resources (TAIR) (http://www.arabidopsis.org/index.
jsp) while the Phytozome database of wheat (T. aestivum) was used to confirm these
proteins in wheat using online server (https://phytozome.jgi.doe.gov/).

Protein BLAST (Blastp) tool of NCBI was used to find similar sequences in wheat, using
50% identity as a threshold. Further, the motif finder online tool (https://www.genome.jp/
tools/motif/) was used to confirm that these genes contain HMA domains. Peptide
sequences not possessing HMA domains were deleted.

Determination of HMA protein properties
Different protein properties such as peptide length (a.a), DNA strand, chromosomal
location, transcript ID, and subcellular locations were described in wheat while using
Arabidopsis as model genome using online tools Expasy (https://web.expasy.org/
protparam/) and plant Ensemble tool (https://plants.ensembl.org/).

Sequence alignment and construction of phylogenetic tree
Full-length sequences of HMA proteins of Arabidopsis and wheat were aligned using
ClustalX (Thompson et al., 1997) and were used for the construction of phylogenetic tree
according to the neighbor-joining method of Saitou & Nei (1987) at 1,000 bootstrap value
using the MEGA7 tool (Katsu et al., 2021).

Gene structure analysis
To observe the pattern of exon and intron organization in the HMA gene family, an online
tool, gene structure display server GSDS 2.0 (http://gsds.cbi.pku.edu.cn/) was used. CDS
and genomic sequences of wheat and Arabidopsis were used as input files however the
default parameters of the tool remained unchanged.

Conserved motif analysis
Conserved motifs and HMA proteins were analyzed using the online tool MEME SUITE
version 4.8.2 (https://meme-suite.org/meme/doc/release-notes.html) according to the
method described by Li & Dewey (2011). These motifs were illustrated in the
corresponding branch of the phylogenetic tree. Default parameters set were, a maximum
number of motifs = 10, minimum motif width = 6 and maximum motif width = 50,
minimum sites per motif = 2, and maximum sites per motif = 37.

Zahra et al. (2023), PeerJ, DOI 10.7717/peerj.14920 3/20

http://www.ncbi.nlm.nih.gov/
http://www.arabidopsis.org/index.jsp
http://www.arabidopsis.org/index.jsp
https://phytozome.jgi.doe.gov/
https://www.genome.jp/tools/motif/
https://www.genome.jp/tools/motif/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://plants.ensembl.org/
http://gsds.cbi.pku.edu.cn/
https://meme-suite.org/meme/doc/release-notes.html
http://dx.doi.org/10.7717/peerj.14920
https://peerj.com/


Table 1 Physio-chemical property of heavy metal associated (HMA) proteins in Arabidopsis.

S. No. Gene name Transcript name Gene ID Translation length (a.a) Protein accession no. Chr. Subcellular location Strand

1. HMA1 AT4G37270.1 19648322 819 NP_195444.1 4 Plasma membrane Reverse

2. HMA2 AT4G30110.1 19643720 951 NP_001320088.1 4 Plasma membrane Reverse

3. HMA3 AT4G30120.1 19645860 542 NP_001328455.1 4 Plasma membrane Reverse

4. HMA4 AT2G19110.1 19641614 1,172 NP_179501.1 2 Plasma membrane Forward

5. HMA5 AT1G63440.1 19650287 995 NP_176533.1 1 Chloroplast Forward

6. HMA6.1 AT4G33520.2 19645604 949 NP_974675.1 4 Chloroplast Forward

7. HMA6.2 AT4G33520.3 19645605 949 NP_974676.1 4 Plasma membrane Forward

8. HMA7 AT5G44790.1 19665355 1,001 NP_199292.1 5 Chloroplast Reverse

9. HMA8 AT5G21930.1 19665627 883 NP_001237371.2 5 Chloroplast Forward

10. HMA8.2 AT5G21930.2 19665628 883 NP_001031920.1 5 Plasma membrane Forward

Table 2 Physio-chemical properties of heavy metal associated (HMA) proteins in wheat.

S. No. Gene name Transcript
name

Gene ID Translation length (a.a) Protein accession no. Chr. Subcellular location Strand

1. HMA1 Traes_2AL_D0EABF355.2 31873047 863 KAF7003072.1 2A Plasma membrane Forward

2. HMA2 Traes_2BL_19B3E60AA.1 31802866 845 KAF7010487.1 2B Plasma membrane Forward

3. HMA3 Traes_2DL_51FF05F66.1 32015465 888 KAF7017839.1 2D Plasma membrane Reverse

4. HMA4 Traes_4AS_622EEFE10.2 31758612 648 KAF7041053.1 4A Chloroplast Forward

5. HMA5 Traes_4BL_89775421A.2 31775420 262 KAF7050535.1 4B Extracellular Forward

6. HMA6 Traes_4DL_385639507.1 31802013 604 KAF7029642.1 4D Chloroplast Reverse

7. HMA7 Traes_5AL_C89EEBE50.2 31899687 558 XP_044438068.1 5A Chloroplast Reverse

8. HMA8 Traes_5BL_D6C3DC326.1 31786522 829 XP_044401945.1 5B Plasma membrane Reverse

9. HMA9 Traes_5BL_F83C809F0.1 31807288 458 XP_044424302.1 5B Cytoplasmic Forward

10. HMA10 Traes_5DL_91C1891D3.1 31858473 632 KAF7074611.1 5D Plasma membrane Forward

11. HMA11 Traes_6AS_6F306F27E.1 31768608 974 KAF7089256.1 6A Cytoplasmic Forward

12. HMA12 Traes_6AS_9321C1C5B.2 31961570 1,074 KAF7084039.1 6A Plasma membrane Reverse

13. HMA13 Traes_6BS_9A12C2A1D.1 31766484 837 KAF7098168.1 6B Plasma membrane Froward

14. HMA14 Traes_6BS_A8B960E60.1 31836000 813 XP_044412145.1 6B Cytoplasmic Reverse

15. HMA15 Traes_6DS_26C5A0A44.1 31904930 980 KAF7084123.1 6D Plasma membrane Forward

16. HMA16 Traes_6DS_9FA053DF8.2 31748333 862 KAF7098167.1 6D Plasma membrane Reverse

17. HMA17 Traes_7AL_7A2639A1B.2 31943896 916 XP_044424773.1 7A Plasma membrane Forward

18. HMA18 Traes_7AL_8304348B7.1 32021814 790 KAF7097469.1 7A Extracellular Forward

19. HMA19 Traes_7DL_A5269C73F.2 31916999 1,061 KAF110499.1 7D Plasma membrane Reverse

20. HMA20 Traes_7BS_8EC4B41E4.1 31834193 737 KAF7100926.1 7B Chloroplast Forward

21. HMA21 Traes_7DS_04F16455B.1 31749939 804 XP_044426682.1 7D Plasma membrane Reverse

22. HMA22 Traes_7AS_766146E70.1 31803725 806 KAF7095199.1 7A Plasma membrane Reverse

23. HMA23 Traes_7BL_EFF0E2E31.1 31766590 718 XP_037446570.1 7B Chloroplast Reverse

24. HMA24 Traes_7DL_DF97DD324.1 31923629 959 XP_020190440.1 7D Chloroplast Forward

25. HMA25 Traes_7BL_041308E74.3 31832822 636 XP_037464768.1 7B Plasma membrane Reverse

26. HMA26 Traes_7AL_84D5BAE85.1 31955716 638 XP_037460689.1 7A Plasma membrane Forward

27. HMA27 Traes_7DL_271C7BED5.1 31915788 500 XP_020187387.1 7D Chloroplast Forward
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Prediction of subcellular location
Subcellular locations of HMA proteins in wheat were determined using the tool WoLF
PSORT (https://wolfpsort.hgc.jp/). An excel sheet was prepared to present the information
about gene names and their location and their 14 nearest neighbors using the WoLF
PSORT data and then TBTool (Guo et al., 2007) was used to create the heatmap.

Synteny analysis
An online tool of synteny viewer tool (tools.bat.infspire.org/circoletto/) was used to find
the evolutionary relationship between Wheat and Arabidopsis HMA proteins. Protein
sequences of all the HMA downloaded proteins were used as input files to compare the
wheat genome with Arabidopsis using default parameters (Darzentas, 2010).

Identification of homologous pairs and calculating Ks/Ka values
Homologous pairs of HMA genes were manually selected from the phylogenetic tree and
Ks/Ka values were calculated using TBTool using genomic sequences, protein sequences,
and gene duplication pairs as input files.

RESULTS
Sequencing of the wheat genome has made it possible to identify the HMA genes in this
important cereal crop. The HMA gene family was not previously characterized in wheat.
Therefore, we selected HMA gene family and performed genome wide survey in wheat
(T. aestivum). We used Arabidopsis HMA proteins using the blastp tool to find similar
sequences in wheat. A total of 27 genes of theHMA gene family were found in wheat in this
study.

Characteristics of Arabidopsis HMA proteins
In Arabidopsis HMA gene family was comprised of 10 members. In Arabidopsis HMA
genes were located on all the chromosomes except chromosome 3. Amino acid length of
HMA proteins was ranged from 542 to 1,172 (Table 1). The subcellular location analysis
indicated that six HMA proteins were present in the plasma membrane and four in the
chloroplast. Four genes were located on reverse strand and six on the forward strand.

We identified 27 HMA proteins in wheat. Gene location indicated that wheat HMA
genes were present on the 4th, 5th, 6th, and 7th chromosomes. Out of 27 proteins, 15 were
present in the plasma membrane, 10 in the chloroplast, and two in extracellular locations.
Seventeen proteins were present on the forward strand and 10 on the reverse strand.
Amino acid length of wheat HMA proteins ranged from 262 to 1,071 (Table 2).

Sequence alignment and phylogenetic association
Full-length HMA protein sequences from wheat and Arabidopsis obtained from different
databases were used to construct the phylogenetic tree to assess the phylogenetic
association among both plant species. The phylogenetic tree indicated that HMA proteins
were distributed in three subgroups. Clad one was the largest subgroup containing 14
proteins that were belonging to both species, second clad consisted of 11 members and
third clad was comprised of 13 members (Fig. 1).
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Gene structure analysis
To predict the exon-intron organization in wheat and Arabidopsis HMA genes, CDS and
genomic DNA were used as input files. The organization pattern of intron/exons in HMA
genes was displayed to the relative branch in the phylogenetic tree. It was observed that
several introns and exons varied among these genes. Arabidopsis genes ATG33520.2 and
ATG33520.3 showed the largest number of exons (17) whereas four wheat genes showed
the fewest (five) exons. Further, it was observed that closely related members in a subclass
showed similar intron-exon pattern (Fig. 2).

Conserved motif analysis
To predict the conserved domains in wheat and Arabidopsis HMA proteins, motif analysis
was performed. Ten distinct motifs were discovered in both plant species. We selected the
motif width from 10 to 50 as default parameters however it was noted that motif width was
ranging from 40 to 50 indicating that highly conserved regions in HMA proteins were
present. Each motif was displayed to the concerned protein on the phylogenetic tree to

Figure 1 An unrooted phylogenetic tree of Arabidopsis (At) and wheat (Ta). Tree of HMA proteins
constructed by the following of neighbor-joining method with MEGA6.0 software. Three subclasses were
differentiated by orange, blue and dark blue colors. Full-size DOI: 10.7717/peerj.14920/fig-1
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explore the motif pattern according to the phylogenetic association. It was noted that
closely linked proteins in phylogenetic tree were showing the same expression pattern as
the motifs falling in different subgroups of tree (Fig. 3). Our results regarding the
conservation of motifs within subgroups were supported by previous studies on different
gene families (Azeem et al., 2018; Waqas et al., 2019).

Prediction of subcellular locations
Subcellular locations of 27 HMA proteins were predicted in various subcellular
components such as nucleus, plasma membrane, cytoplasm, vacuole, endoplasmic
reticulum, chloroplast, golgi bodies, mitochondria, and extracellular locations. Results
indicated that most of the proteins were present in plasma membranes followed by
endoplasmic reticulum and vacuoles whereas lowest proteins were located on extracellular
locations and golgi bodies (Fig. 4).

Figure 2 Gene structure analysis of HMA genes in wheat and Arabidopsis. Exon/intron pattern was
predicted by gene structure display server 2. CDS/Exons were presented with yellow color, intron with the
black line, and upstream/downstream with blue color. Full-size DOI: 10.7717/peerj.14920/fig-2
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Synteny analysis
The evolutionary link of ArabidopsisHMA genes with wheat genes was assessed through a
micro-syntenic tool. It was concluded that most of the wheat HMA genes and Arabidopsis
HMA genes have similar evolutionary origin (Fig. 5). Traes.7AS.766146E70.1 and

Figure 3 Conserved motifs of HMA proteins in wheat and Arabidopsis. Each motif was distinct from
the other and represented by various colors, discovered by MEME Suit tool. (A) An asterisk (�) in the red
and ‘x’ in the green color box is to distinguish between the colors for greater accessibility.

Full-size DOI: 10.7717/peerj.14920/fig-3
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Traes.7DS.04F16455B.1 were originated from Arabidopsis gene AT4G33520.2. Similarly,
Arabidopsis gene AT4G30110.1 gave rise to wheat Traes_5BL_D6C3DC326.1,
Traes_7AL_8304348B7.1 and Traes_7BS_8EC4B41E4.1. Traes_6DS_9FA053DF8.2,
Traes_7DL_DF97DD324.1, Traes_7AL_7A2639A1B.2, Traes_6BS_9A12C2A1D.1 and
Traes_7BL_EFF0E2E31.1 were evolutionary originated from AT2G19110.1.

Gene ontology
GO analysis was used to describe the functions of a gene such as involvement in biological
processes, molecular activities of the gene products, and location of these activities. GO
analysis indicated that HMA genes were mainly involved in metabolic processes,
single-organism process, localization establishment, single organism transport, metal ion,
ion, and cation transport (Fig. 6). Molecular functions of HMA genes observed through
GO tools indicated that these genes are mainly involved in various types of binding
activities. The percentage of binding with different compounds is shown in Fig. 7. HMA

Figure 4 Subcellular location of HMA proteins in Arabidopsis and wheat. Heatmap was constructed
by using TBTool. Where NUC, nucleus; Plas, plasma membrane; Cyto, cytoplasm; VAC, vacuole;
ER, endoplasmic reticulum; CHL, chloroplast; GOLG, golgi body; Mito, mitochondria; EXTRA,
extracellular. Full-size DOI: 10.7717/peerj.14920/fig-4
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genes mainly bind with organic cyclic compounds, heterocyclic compounds, ion binding,
nucleotides, and nucleoside bindings.

Ka/Ks ratio determines the ratio of beneficial mutations and neutral mutations present
on a set of homologous genes. This ratio also indicates the net balance between beneficial
and deleterious mutations. Six gene pairs were duplicated in wheat belonging to the HMA
family. Ka, Ks, and Ka/Ks ratio was calculated using TBtool. The ratio of Ka/Ks value in the
Table 3 indicated that all the six homologous pairs showed a value less than one. Ka/Ks

Figure 5 Visualization of the sequence similarity of wheatHMA genes with ArabidopsisHMA genes. In the circuletto tool wheat HMA proteins
were used as query and Arabidopsis proteins as comparative files as per default parameters of the tool. Colored lines which connect two regions
indicate syntenic regions between Arabidopsis and wheat. Full-size DOI: 10.7717/peerj.14920/fig-5
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greater than one expressed positive selection, less than one indicates purified/stable
selection and equal to one indicates neutral selection. Hence according to results, Ka/Ks
value of all the pairs is below one which means HMA genes have the stable and purifying
selection.

Figure 6 GO of biological process determined through Blast2GO tool using the Arabidopsis,
and wheat HMA proteins as a query. Various biological processes carried out by these genes were
distinguished by different colors. Full-size DOI: 10.7717/peerj.14920/fig-6

Figure 7 GO of molecular functions determined through Blast2GO tool using the Arabidopsis, and
wheat HMA proteins as a query. The genes were distinguished by different colors.

Full-size DOI: 10.7717/peerj.14920/fig-7
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DISCUSSION
Abiotic stresses like drought and heavy metal toxicity have presented a severe challenge to
global food production. The impacts of heavy metals on plants and their ability to
withstand metal toxicity have been widely studied (Gao et al., 2020). The consequences of
heavy metal stress on a plant’s ability to deal with other environmental difficulties,
including water scarcity, have received less attention (Barceló & Poschenrieder, 2004).
Previously, a mutation in HMA domain in the chimeric allele of the drought resistant
wheat mutant NN1-M-700 was responsible for drought stress tolerance (Zahra et al.,
2021b). Heavy-metal-associated domain (HMAD) has been found to have a variety of vital
roles in Arabidopsis, and significant progress was achieved in identifying HMA genes in
many other plants (Li et al., 2016; Sutkovic et al., 2016;Wu et al., 2019; Zhang et al., 2021).
However, reports regarding this gene in hexaploid wheat are meager. In wheat and other
crop species, the HMA gene family plays a significant role in heavy metal transport and
abiotic stress tolerance (Wu et al., 2019).

Drought is known as one of the most prevalent strain in metal-contaminated
ecosystems (Sitko et al., 2021). Various plant indicators are used to compare heavy metal
exposure with drought stress, such as photosynthetic performance and stomatal behavior,
photosynthetic pigment, proline, and peroxidase. Abiotic stress crosstalk includes the ROS
(reactive oxygen species) signal and the antioxidant system, as well as drought stress and
heavy metal stress (Khan, Ahmed & Shah, 2022). Metal-rich soils often have poor
structure, reduced bacterial activity, and minimal organic matter content, resulting in
inadequate moisture-holding capacity (Derome & Nieminen, 1998; Wang et al., 2007).
Toxic metal exposure has also been shown to affect plant traits essential for plant-water
associations, including abscisic acid (ABA) concentrations (Barceló & Poschenrieder,
1986), cell wall elasticity (Barceló & Poschenrieder, 1986), root elongation (Kahle, 1993),
organic matter allocation to roots (Ryser & Emerson, 2007), and root permeability for
water (Ryser & Emerson, 2007; Przedpelska-Wasowicz & Wierzbicka, 2011). Furthermore,
in metal-exposed plants, hydraulic and stomatal conductance has been reported to be
reduced (Lamoreaux & Chaney, 1977; Disante, Fuentes & Cortina, 2011). Similar findings
were observed in EMS mutant lines of NN-1 wheat (NN1-M-363, NN1-M-506, NN1-M-
700, NN1-M-701, and NN1-M-1621) (Zahra et al., 2021b). All of the above physiological

Table 3 Estimated time of divergence of wheat heavy metal associated (HMA) genes.

S. No. Seq_1 Seq_2 Ka Ks Ka/Ks T (MYA)

1. Traes_7AL_7A2639A1B.2 Traes_7BL_EFF0E2E31.1 0.007469 0.118871 0.062836074 9.90589E−09

2. Traes_7BS_8EC4B41E4.1 Traes_7DS_04F16455B.1 0.008408 0.042414 0.1982277 3.53451E−09

3. Traes_5AL_C89EEBE50.2 Traes_5BL_F83C809F0.1 0.033487 0.10141 0.330218025 8.4508E−09

4. Traes_7AL_84D5BAE85.1 Traes_7DL_271C7BED5.1 0.001769 0.050569 0.03498181 4.21409E−09

5. Traes_5BL_D6C3DC326.1 Traes_5DL_91C1891D3.1 0.181692 0.332826 0.545906617 2.77355E−08

6. Traes_7AL_8304348B7.1 Traes_7DL_A5269C73F.2 0.007949 0.090577 0.087758967 7.54811E−09
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processes may reduce water uptake in metal-stressed plants, aggravating the consequences
of drought stress.

In the present research, we provided a complete overview of HMA gene family in wheat.
Further, we analyzed the phylogenetic relationship, subcellular location, gene structure,
conserved motifs, identification of homologous pairs, and Ka/Ks ratio under drought
conditions. A plant’s sensitivity to various stresses cannot always be inferred from their
responses to specific stresses (Mittler, 2006). Despite substantial study of the effects of
drought and metals on plants as separate stimuli, experiments subjecting plants to both
stresses at the same time are rare. For annual plants like wheat and rye (Klimov, 1985),
sunflower (Krizek, Foy & Wergin, 1988), and barley (Krizek, Foy & Wergin, 1988), metal
stress and drought stress have been demonstrated to have synergistic growth-reducing
effects (Krizek, Foy & Wergin, 1988). In this study, the phylogenetic tree domenstrated six
homologous pairs of HMA genes in the wheat genome. Similar findings were published in
another study on wheat by (Zhou et al., 2019). According to gene ontology, the activity or
action done by a gene product is determined by its molecular function. In general terms, a
molecular function, is a process carried out by a single molecular mechanism through
direct physical contact with other molecular entities.

Furthermore, the distribution pattern of intron and exon is a significant tool to study
comparative genomics in order to acquire understanding about a gene family, because it
supports the evolutionary link of a gene with its predecessors (Waqas et al., 2019). It was
observed that several introns and exons varied among these genes. Arabidopsis genes
ATG33520.2 and ATG33520.3 showed the largest number of exons (17) whereas four
wheat genes showed the fewest (5) exons. Further, it was observed that closely related
members in a subclass showed similar intron- exon pattern (Zhang et al., 2019). To check
the significance of HMA proteins in plant growth and development, we examined their
distribution in several subcellular components. Locations of twenty-seven identified HMA
proteins were predicted in various subcellular components such as the nucleus, plasma
membrane, cytoplasm, vacuole, endoplasmic reticulum, chloroplast, golgi bodies,
mitochondria, and extracellular locations. These proteins were shown to be abundant in
the plasma membrane, demonstrating their importance in metal ion transport.
Our findings are comparable with those of Zhou et al. (2019), who showed similar results
in wheat HMA proteins. Variances in gene structure among members of the same class
may be due to differences in evolutionary history, and these proteins may have novel
functional properties (Yang et al., 2019).

The current findings show that HMA proteins have a wide range of activities. It has also
been shown that there is a phylogenetic specific pattern of conserved domains (Azeem
et al., 2018; Waqas et al., 2019). This pattern of conserved motifs suggested that HMA
genes shared a recent common ancestor. Furthermore, the occurrence of conserved motifs
leads to functional conservation and gene duplication processes in plants (Waqas et al.,
2019). In polyploids, gene and genome duplication is a dominant factor in the evolution of
complexity and diversity. Conserved motifs also indicate the variety of domain design,
which has been used to retain domains outside the key parts of HMA genes, and play a
vital role in protein function (Du et al., 2013; Tan et al., 2020). Various HMA proteins
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including the A. thaliana AtHMA1 protein, were shown to be involved in zinc/cadmium
transport and chloroplast copper mobilization (Moreno et al., 2008). Furthermore,
HvHMA in barley grains (Mikkelsen et al., 2012), studies on expression of OsHMA1 in rice
(Zhou et al., 2019), and analysis of ArabidopsisHMA2 gene (Eren & Arguello, 2004) shown
their role in important cellular processes. In wheat, TaHMA2 is restricted to the plasma
membrane and promotes Zn and Cd translocation from the root to the shoot (Tan et al.,
2017).

Proteins from Arabidopsis (AtHMA3), rice (OsHMA3), and wheat (TaHMA3) are
found in tonoplasts and are involved in transport of Zn and Cu to the vacuole (Zhang et al.,
2021). In Brassica juncea, the HMA4 gene promotes heavy metal transport and binding, as
well as increasing heavy metal resistance in yeast and E. coli (Wang et al., 2019). AtHMA5
mediates Cu transport from roots to the leaves or root detoxification (Zhou et al., 2019).
Cu is transported to chloroplast envelope AtHMA6 (also known as PAA1), whereas it is
transported into the thylakoid lumen to provide plastocyanin by AtHMA8 (PAA2) (Zhang
et al., 2019). Cu is transported to ethylene receptors and Cu homeostasis in seedlings are
mainly mediated by AtHMA7 (Binder, Rodríguez & Bleecker, 2010). Furthermore, studies
with numerous species, including A. thaliana (Eren & Arguello, 2004), O. sativa (Huang
et al., 2016), Noccaea caerulescens (Lochlainn et al., 2011), Sedum alfredii (Zhang et al.,
2016), and Sedum plumbi zincicola (Liu et al., 2017) have reports on proteins like HMA2,
HMA3, HMA4, HMA5 or HMA9.

Prior investigations have demonstrated that several similar proteins are engaged in the
transport of different heavy metals and are responsible for the cross-tolerance process
when combined with antioxidative enzymes. They assist plants in adapting to a wide range
of stresses (Zschiesche et al., 2015; Cowan et al., 2018; Zhang et al., 2020). In Quercus suber
and Coriandrum sativum L, however, the presence of large amounts of Zn and Cd reduced
the impact of water stress on photosynthesis, stomatal conductance, and relative water
content (Khan et al., 2021; Disante, Fuentes & Cortina, 2011). Metal contamination of the
substrate decreased the effect of substrate moisture on white birch growth when the water
supply was adequate (Santala & Ryser, 2009). The Ka/Ks ratio, also known as the dN/dS
ratio, is the ratio of the number of nonsynonymous substitutions per nonsynonymous site
(Ka) in a certain time period to the number of synonymous substitutions per synonymous
site (Ks) in the same period. According to the current findings, the synonymous/
nonsynonymous ratio was greater than one in all of the chosen homologous pairs,
indicating that selection among HMA genes in wheat is stable and purified. However,
because no data on HMA genes in wheat was previously available, the results were not
compared.

CONCLUSIONS
In the current study, the comprehensive identification of HMA genes in wheat
(T. aestivum L) along with their syntenic analysis, gene structure, conserved motifs
analysis, and Ka/Ks values were investigated. The result revealed a total of 27 wheat
proteins belonging to the HMA gene family, ranging in amino acid count from 262 to
1,071. The study examined the specific functions of the HMAD gene family in
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drought-stressed wheat. The phylogenetic tree revealed that HMA proteins were
divided into three subgroups, with closely related proteins in the tree displaying the
same expression pattern as motifs from different subgroups. Gene structural analysis
revealed that intron and exon arrangement was family-specific. Our results offer a base
for further investigation on the crosstalk of molecular mechanisms of HMA genes
under abiotic stress and heavy metal conditions. In future, this research might be used
to better describe the significance of the HMA gene family in wheat and other crops by
manipulating stress responsive genes.
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