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ABSTRACT
Polygenic risk scores (PRS) based on genome-wide discoveries are promising predic-
tors or classifiers of disease development, severity, and/or progression for common
clinical outcomes. A major limitation of most risk scores is the paucity of genome-
wide discoveries in diverse populations, prompting an emphasis to generate these
needed data for trans-population and population-specific PRS construction. Given
diverse genome-wide discoveries are just now being completed, there has been little
opportunity for PRS to be evaluated in diverse populations independent from the
discovery efforts. To fill this gap, we leverage here summary data from a recent genome-
wide discovery study of lipid traits (HDL-C, LDL-C, triglycerides, and total cholesterol)
conducted in diverse populations represented by African Americans, Hispanics, Asians,
Native Hawaiians, Native Americans, and others by the Population Architecture using
Genomics andEpidemiology (PAGE) Study.We constructed lipid trait PRSusing PAGE
Study published genetic variants andweights in an independent African American adult
patient population linked to de-identified electronic health records and genotypes
from the Illumina Metabochip (n= 3,254). Using multi-population lipid trait PRS,
we assessed levels of association for their respective lipid traits, clinical outcomes
(cardiovascular disease and type 2 diabetes), and common clinical labs. While none
of the multi-population PRS were strongly associated with the tested trait or outcome,
PRSLDL-C was nominally associatedwith cardiovascular disease. These data demonstrate
the complexity in applying PRS to real-world clinical data evenwhen data frommultiple
populations are available.

Subjects Genetics, Genomics, Medical Genetics
Keywords Lipids, Polygenic risk scores, African Americans, Genetic risk scores, Electronic health
records, Biorepository, Metabochip

INTRODUCTION
Polygenic risk scores (PRS) are generally defined as the sum of an individual’s additive
genetic risk for an outcome or disease of interest (Cooke Bailey & Igo Jr, 2016; Igo Jr, Kinzy
& Cooke Bailey, 2019; Osterman, Kinzy & Cooke Bailey, 2021). Early genetic risk scores for
cardiovascular disease (Kathiresan et al., 2008), type 2 diabetes (Hivert et al., 2011), and
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age-related macular degeneration (Osterman, Kinzy & Cooke Bailey, 2021), to name a few,
suggest genome-wide association study (GWAS)-identified variants in aggregate have the
potential for patient risk reclassification or identification prior to development of disease or
progression to severe disease, spurring interest in the development of clinical applications
of these basic research findings (Torkamani, Wineiger & Topol, 2018; Christoffersen &
Tybjærg-Hansen, 2021). Despite the promising preliminary data and the now 15 years’
worth of genome-wide discoveries, PRS are still largely limited to or based on GWAS data
from European-descent populations. Recent initiatives that encourage genomic discovery
in diverse populations will enable the assessment of multi-population PRS for outcomes
or traits as population-specific and shared genetic variants emerge from the most recent
GWAS stemming from these efforts (Hindorff et al., 2018).

The Population Architecture using Genomics and Epidemiology (PAGE) Study,
supported by the National Human Genome Research Institute (NHGRI), was first
established to generalize GWAS findings in diverse populations (Dumitrescu et al., 2011;
Matise et al., 2011; Carlson et al., 2013). The PAGE Study has since expanded to include
discovery of genetic associations in diverse populations for common outcomes and
traits (Wojcik et al., 2019). In one such recent PAGE Study, array-based GWAS for high
density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
triglycerides (TG), and total cholesterol (TC), common clinical biomarkers ordered to assess
risk for the development of a variety of outcomes including cardiovascular disease (CVD)
and type 2 diabetes (T2D), was conducted in > 45,000 ancestrally diverse participants (Hu
et al., 2020). A total of nine novel lipid loci were identified. Further, comparisons of effect
sizes across populations revealed smaller genetic effects in African Americans and Hispanic
compared with the same genetic associations identified in European descent participants
(Hu et al., 2020).

The genetic associations identified for lipid traits in the PAGE Study provide a still
unique opportunity to calculate and apply multi-population lipid trait PRS for diverse
populations. To seize this opportunity, we accessed clinical data from electronic health
records (EHRs) linked to a biorepository with genetic data for almost 12,000 African
American patients (Crawford et al., 2015). Here, we calculate multi-population PRS for
lipids based on the PAGE Study discovery efforts and apply them to real world clinical data
in an independent African American patient sample. We anticipated that the availability of
genetic association data from diverse populations that include African Americans would
result in robust PRS. The resulting data highlight many of the challenges that need to be
addressed before PRS research can be translated into clinical practice (Li et al., 2020).

MATERIALS & METHODS
Study population
We accessed an existing and previously described dataset (Crawford et al., 2015) of de-
identified EHRs linked to biospecimens genotyped on the Illumina Metabochip (Buyske
et al., 2012; Voight et al., 2012). These data are a subset of the larger BioVU, Vanderbilt
University Medical Center’s (VUMC) biobank established in 2007 (Roden et al., 2008).
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BioVU links discarded biospecimens collected for clinical purposes during outpatient
visits to a de-identified version of the patient’s EHR. The de-identification process includes
the scrubbing of identifiers, data shifting, and linkage to biospecimens via a one-way hash
that combined make re-identification difficult and unlikely (Roden et al., 2008). BioVU as
a VUMC program has received approval from the Vanderbilt Institutional Review Board
(IRB) and was reviewed in detail by the federal Office for Human Research Protections
(OHRP), who agreed with the non-human subjects regulatory designation for both the
resource and subsequent research (Roden et al., 2008).

The data accessed for the current study were collected under an opt-out participation
model described to the patient annually as part of the consent to treat process and
represent DNA samples extracted from blood collected between 2007 and 2011 and
clinical data collected through 2011. As a study site of the PAGE Study, a consortium
focused on genetic association studies in diverse populations (Matise et al., 2011), we
selected at the time all DNA samples in BioVU from non-European descent patients for
Illumina Metabochip genotyping (n= 15,863), the majority of which are from African
American or Black patients (73%; Crawford et al., 2015). As we have previously described
(Crawford et al., 2015), BioVU is representative of the Nashville, Tennessee VUMC patient
population, a population that is on average older and of European descent compared with
the surrounding Davidson County population. The dataset described here is de-identified
and is considered to be non-human subjects research (Vanderbilt University IRB #110579)
(Pulley et al., 2010).

Electronic phenotyping
Analyses were limited to African American adults aged 18 years or older. All demographic
and clinical data were extracted using a combination of structured (e.g., International
Classification of Diseases 9th edition, Clinical Modification (ICD-9-CM) codes, Current
Procedural Terminology (CPT) codes, problems lists, and laboratory values) and
unstructured (clinical notes) data available in the EHR. Race/ethnicity in BioVU was
administratively assigned, and these assignments are highly correlated with genetic
ancestry for some (e.g., European and African Americans) but not all (e.g., Hispanics
and East Asians) groups (Dumitrescu et al., 2010; Hall et al., 2014; Farber-Eger et al.,
2017). Age was calculated as the age of the patient in 2011 based on the patient’s year
of birth. First mention (e.g., the first clinic visit associated with a lipid lab result) of
each patient’s serum HDL-C, LDL-C, TG, and TC was extracted and recorded as either
a ‘‘pre-medication’’ or ‘‘post-medication’’ value. Pre-medication values were defined as
free of evidence of concurrent lipid lowering medication usage. As previously described
(Crawford et al., 2015), lipid lowering medications included statins (also known as HMG
CoA reductase inhibitors, atorvastatin (Lipitor®), fluvastatin (Lescol®), lovastatin
(Mevacor®, Altoprev™), pravastatin (Pravachol®), rosuvastatin calcium (Crestor®),
simvastatin (Zocor®), lovastatin + niacin (Advicor®), atorvastatin + amlodipine
(Caduet®), and simvastatin + ezetimibe (Vytorin™)), selective cholesterol absorption
inhibitors (ezetimibe (Zetia®)), resins (cholestyramine (Questran®, Questran® Light,
Prevalite®, Locholest®, Locholest® Light), colestipol (Colestid®), colesevelam Hcl
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(WelChol®)), fibrates (gemfibrozil (Lopid®), fenofibrate (Antara®, Lofibra®, Tricor®,
and Triglide™), clofibrate (Atromid-S)), and niacin. Fasting status is unknown. Heights
and weights closest to the first mention of the lipid trait were extracted to calculate body
mass index (BMI; kg/m2). Prevalent cardiovascular disease was defined as mention of heart
attack keywords in the problems list (‘‘MI’’, ‘‘myocardial infarction’’, or ‘‘heart attack’’),
CPT codes (Crawford et al., 2018) for coronary artery bypass graft (33510–33514; 33515;
33516; 33517–33519; 33520; 33521–33523; and 33534–33536) and angioplasty and/or
coronary stents (92980–92981; 92982; 92984; 92995; and 92996), or three mentions of
International Classification of Diseases (ICD)-9-CM codes (410 or 410.*) (Dumitrescu
et al., 2015a) for myocardial infarction. Type 2 diabetes cases status was defined using
a combination of ICD codes, labs, and medications from the previously described and
validated electronic Medical Records & Genomics (eMERGE) Network algorithm (Kho et
al., 2012).

Genotyping and quality control
The Illumina Metabochip was genotyped by Vanderbilt Technologies for Advanced
Genomics (VANTAGE), formerly the Vanderbilt University Center for Human Genetics
Research DNA Resources Core, for the Epidemiologic Architecture for Genes Linked to
Environment (EAGLE) study, a study site of PAGE I (Matise et al., 2011). Genotyping was
conducted following the manufacturer’s protocol (Illumina, Inc.; San Diego, CA.). Per
PAGE I protocol, 360 HapMap samples were also genotyped for quality control (Crawford
et al., 2012). Genotype calling and standard quality control measures (call rates, duplicate
checks, Hardy-Weinberg Equilibrium, etc.) have been described by Buyske et al. 2011 and
more recently by Kaur et al. (2021). Metabochip genotypes linked to the EAGLE BioVU
de-identified clinical data are available through the database of Genotypes and Phenotypes
(dbGaP) accession number phs002767.v1.p1.

Polygenic risk score calculations
Unweighted and weighted multi-population PRS for HDL-C, LDL-C, TG, and TC were
calculated for each patient based on published summary statistics for diverse populations
from the PAGE Study (Hu et al., 2020). We first extracted Metabochip genotypes available
for SNPs previously associated HDL-C (44), LDL-C (36), TG (51), TC (48) reported by
the PAGE Study at genome-wide significance (p≤ 5 × 10−8) (Table S7 from Hu et al.,
2020; Supplementary Table). After removing SNPs out of Hardy Weinberg Equilibrium at
p< 10−4, we calculated unweighted PRS for each patient and each lipid trait by counting
the number of risk alleles (N) for 42, 34, 50, and 46 HDL-C, LDL-C, TG, and TC-associated
SNPs (k), respectively. PRS were weighted (PRSw) using the absolute value of the betas
(|β|) for the corresponding associations published by the PAGE Study (Hu et al., 2020).

PRSw=
k∑

i=1

|β i|N i.
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Statistical methods
Principal components (PCs) were generated as previously described (Buyske et al., 2012;
Kaur et al., 2021). We tested each SNP for an association with the lipid trait previously
associated as described in Hu et al. (2020). Single SNP tests of association were performed
in PLINK version 1.90 using linear regression, unadjusted and adjusted for sex, age,
BMI, and the first ten PCs. TG levels were transformed (natural log) prior to tests of
association. Summary statistics were visualized using Synthesis View (Pendergrass et al.,
2010b; Pendergrass et al., 2010a; Supplementary File). We also tested for associations
between the lipid traits and their respective unweighted and weighted PRS using linear
regression, unadjusted and adjusted for age, sex, BMI, and the first ten PCs. Tests of
association between CVD and T2D and unweighted and weighted PRS were performed
using 2x2 tables (unadjusted) and logistic regression (CVD and LDL-C weighted PRS
adjusted by LDL-C). A limited phenome-wide association study (PheWAS) was performed
for unweighted and weighted PRS and platelet counts, glucose, serum creatinine, serum
albumin, serum albumin creatinine ratio, blood urea nitrogen (BUN), uric acid, urine
creatinine, urine albumin, and estimated glomerular filtration rate (eGFR). eGFR was
calculated using EHR-extracted serum creatinine, age closest to serum creatinine, sex, and
race and the CKD-EPI equation (Levey et al., 2009). eGFR was then categorized as stage 1
(≥90 mL/min per 1.73 m2), stage 2 (60–89 mL/min per 1.73 m2), and stage 3 (<60 mL/min
per 1.73 m2) for the limited PheWAS. When necessary, laboratory values were transformed
as the natural log of the quantitative value plus one per the PAGE I study PheWAS protocol
(Pendergrass et al., 2011). All PheWAS tests of association were performed using linear
regression except for eGFR where multinomial logistic regression was used to test for
association using stage 1 as the referent. All statistical analyses were performed using R
version 4.1.0 (R Core Team, 2021) and PLINK 1.90.

RESULTS
Study population
A total of 11,521 African American patients were genotyped on the Illumina Metabochip
as part of EAGLE BioVU (Crawford et al., 2015). Among these patients, 3,254 were adults
with height, weight, and Metabochip genotypes (Table 1). Many (61.16%) were female
with an average age of 46.95 years (±15.32 years standard deviation) and an average BMI
(31.68 kg/m2;±8.52 kg/m2 standard deviation) considered obese. Average pre-medication
and post-medication lipid lab values were within the range expected for a general US adult
African American population (Cohen et al., 2010; Carroll et al., 2012). Each patient had
at least one risk allele for each lipid trait (Fig. S1). On average, African American adult
patients had a higher TG PRS (5.95) compared with TC (3.52), HDL-C (3.39) and LDL-C
(2.01) (Table 1).

Lipid trait genetic associations
We first performed unadjusted (Fig. S2) and adjusted single SNP tests of association for
each lipid trait, stratified by lipid lowering medication exposure as described in Materials
&Methods. Among African Americans with pre-medication lipid labs, four out of 42
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Table 1 Study population characteristics for African American adults with at least one lipid lab ex-
tracted from the electronic health record. Study population characteristics are based on African Amer-
ican adult (18 years or older) patients who had a mention HDL-C, LDL-C, TG, or TC in the electronic
health record (EHR) and who were also genotyped using the Illumina Metabochip. First mention of each
lipid lab was extracted and recorded as either a ‘‘pre-medication’’ (free of evidence of concurrent lipid
lowering medication) or ‘‘post-medication’’ value as described in Methods and Materials. Body mass in-
dex was calculated using the closest height and weight recorded in the EHR compared to the clinic date of
the lipid lab. Weighted polygenic risk scores (PRSw) were calculated as described in Methods and Materi-
als.

Variable Mean (± standard deviation)
or %

Female 61.16%
Age 46.95 (± 15.32) years
Body mass index 31.68 (± 8.52) kg/m2

HDL-C Pre-medication
(n = 1,464):
53.90 (± 18.16) mg/dL
Post-medication (n= 428):
50.34 (± 19.39) mg/dL

LDL-C Pre-medication
(n = 1,464):
105.23 (± 40.72) mg/dL
Post-medication (n= 433):
101.82 (± 49.98) mg/dL

Triglycerides Pre-medication
(n = 1,535):
115.51 (± 81.13) mg/dL
Post-medication
(n = 441):
134.15 (± 79.56) mg/dL

ln(Triglycerides) Pre-medication
(n = 1,535):
4.56 (± 0.60) mg/dL
Post-medication
(n = 441):
4.76 (± 0.53) mg/dL

Total Cholesterol Pre-medication
(n = 1,640):
182.20 (± 48.72) mg/dL
Post-medication
(n = 464):
177.88 (± 58.10) mg/dL

HDL-C PRSw 3.39 (± 0.61)
LDL-C PRSw 2.01 (± 0.45)
TG PRSw 5.95 (± 0.51)
TC PRSw 3.52 (± 0.43)

HDL-C, three out of 34 LDL-C, five out of 50 TG, and eight out of 46 TC SNPs were
associated with their respective lipid trait at p< 0.05 adjusted for sex, age, BMI, and PCs
(Figs. 1–4). Compared with the literature and accounting for coded alleles (Hu et al., 2020),
all associations identified here at p< 0.05 for LDL-C were in the expected directions of
effect. Most of the associations identified here for HDL-C were in the opposite direction
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Figure 1 Results of adjusted single SNP tests of associations among African American adults for HDL-
C levels, pre-medication. Lipid labs were extracted from EHRs and represent the first mention of the lab-
oratory value free of evidence of concurrent lipid lowering medication usage (‘‘pre-medication’’). Each
SNP was tested for an association with each pre-medication lipid lab using linear regression assuming an
additive genetic model adjusted for age, sex, body mass index, and the first 10 principal components. SNP
genomic location is given on the x-axis, and p-values (−log10 transformed) are plotted along the y-axis us-
ing Synthesis View. The direction of the arrows corresponds to the direction of the beta-coefficient. The
significance threshold is indicated by the red line at p = 0.05. Also plotted are the betas and the coded al-
lele frequencies (CAF).

Full-size DOI: 10.7717/peerj.14910/fig-1

compared with Hu et al. (2020), with only rs1800775 associated in the expected direction.
For transformed triglycerides (rs1077834) and total cholesterol (rs8106922) each, all but
one of the associated SNPs were in the expected direction of effect.

Among African Americans with post-medication lipid labs, two out of 42 HDL-C, four
out of 34 LDL-C, and one out of 49 TG SNPs were associated with their respective lipid
trait at p< 0.05 adjusted for sex, age, BMI, and PCs (Fig. S3). None of the SNPs tested were
associated with post-medication TC at p< 0.05. Overall, fewer associations at p< 0.05 were
identified among post-medication lipid labs (eight) compared with pre-medication lipid
labs (20), most likely due to differences in sample size (Table 1). Despite the smaller sample
sizes, three associations were identified among African Americans with post-medication
labs but not among African Americans with pre-medication labs: rs1864163 (HDL-C),
rs688 (LDL-C), and rs4407894 (transformed TG) (Figs. 1–4 versus Fig. S3). Of these three
associations, rs1864163 was associated in the opposite direction compared with Hu et
al. (2020). Among the five overlapping pre- and post-medication associations, all were
consistent in direction of effects with the exception of rs1800775, which was associated
with decreased HDL-C levels among African Americans with pre-medication labs but with
increased levels among African Americans with post-medication labs.
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Figure 2 Results of adjusted single SNP tests of associations among African American adults for LDL-
C levels, pre-medication. Lipid labs were extracted from EHRs and represent the first mention of the lab-
oratory value free of evidence of concurrent lipid lowering medication usage (‘‘pre-medication’’). Each
SNP was tested for an association with each pre-medication lipid lab using linear regression assuming an
additive genetic model adjusted for age, sex, body mass index, and the first 10 principal components. SNP
genomic location is given on the x-axis, and p-values (−log10 transformed) are plotted along the y-axis us-
ing Synthesis View. The direction of the arrows corresponds to the direction of the beta-coefficient. The
significance threshold is indicated by the red line at p = 0.05. Also plotted are the betas and the coded al-
lele frequencies (CAF).

Full-size DOI: 10.7717/peerj.14910/fig-2

Lipid PRS, CVD, and T2D
We calculated unweighted and weighted PRS for each lipid trait using genomic discovery
data specific for diverse populations as described in Materials &Methods. Among
unadjusted and adjusted tests of association, none were associated with their respective lipid
traits at p< 0.05 (Table 2). All PRS tested here, regardless of significance, were associated
with decreased lipid lab values.

To explore the potential clinical utility of lipid PRS, we tested each lipid weighted
PRS for association with CVD and T2DM (Table 3). In this African American patient
population, 29.5% had one or more CVD event(s) recorded in their EHR (MI (1.7%),
heart attack (29.4%). CABG (1.0%), CSA (1.5%)). Similarly, almost one-third of African
American adult patients in the present study hadT2D (28.4%).We did not detect significant
associations between any of the lipid weighted PRS and T2D at p< 0.05 (Table 3). For
LDL-C PRS, CVD cases had a higher proportion of extreme LDL-C weighted PRS (10.9%)
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Figure 3 Results of adjusted single SNP tests of associations among African American adults
for triglyceride levels, pre-medication. Lipid labs were extracted from EHRs and represent the first
mention of the laboratory value free of evidence of concurrent lipid lowering medication usage (‘‘pre-
medication’’). Each SNP was tested for an association with each pre-medication lipid lab using linear
regression assuming an additive genetic model adjusted for age, sex, body mass index, and the first 10
principal components. Triglyceride levels were transformed (natural log) prior to tests of association. SNP
genomic location is given on the x-axis, and p-values (−log10 transformed) are plotted along the y-axis
using Synthesis View. The direction of the arrows corresponds to the direction of the beta-coefficient.
The significance threshold is indicated by the red line at p= 0.05. Also plotted are the betas and the coded
allele frequencies (CAF).

Full-size DOI: 10.7717/peerj.14910/fig-3

compared with controls (9.6%) (OR= 1.15, 95%Cl [1.01–1.32]; p= 0.04). The association
was no longer nominally significant when adjusted for LDL-C levels (p> 0.05).

Limited PheWAS
To identify possible pleiotropic relationships between genetic determinants of lipid traits
and other commonly ordered clinical labs, we performed a limited PheWAS for each lipid
PRS and EHR-extracted labs related to biochemistry, liver, and kidney functions. Nominal
associations (p< 0.05) were identified for HDL-C PRS and albumin creatinine ratio; serum
creatinine and LDL-C and TC PRS; and stage 2 eGFR and TC PRS (Table 4). However,
after adjusting significance thresholds for multiple testing (four lipid trait PRS ×10 labs),
none of the limited PheWAS associations remained significant.

DISCUSSION
PRS have the potential to identify patients at-risk for developing health outcomes early
in the disease process (Torkamani, Wineiger & Topol, 2018; Kullo et al., 2022). Given
genomic discovery for common human diseases remains biased by genetic ancestry
(Sirugo, Williams & Tishkoff, 2019; Peterson et al., 2019), there is much interest in assessing
the generalizability of current PRS in diverse populations (Wang et al., 2022). In this study
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Figure 4 Results of adjusted single SNP tests of associations among African American adults for
total cholesterol levels, pre-medication. Lipid labs were extracted from EHRs and represent the first
mention of the laboratory value free of evidence of concurrent lipid lowering medication usage (‘‘pre-
medication’’). Each SNP was tested for an association with each pre-medication lipid lab using linear
regression assuming an additive genetic model adjusted for age, sex, body mass index, and the first 10
principal components. SNP genomic location is given on the x-axis, and p-values (−log10 transformed)
are plotted along the y-axis using Synthesis View. The direction of the arrows corresponds to the direction
of the beta-coefficient. The significance threshold is indicated by the red line at p = 0.05. Also plotted are
the betas and the coded allele frequencies (CAF).

Full-size DOI: 10.7717/peerj.14910/fig-4

Table 2 Results of weighted and unweighted polygenic risk score test of associations among African American adults for HDL-C, LDL-C, TG,
and TC levels, pre-medication. Both weighted and unweighted polygenic risk scores (PRS) were calculated as described in Materials & Methods
for all patients with a lipid lab value. Lipid labs were extracted from EHRs and represent the first mention of the laboratory value free of evidence
of concurrent lipid lowering medication usage (‘‘pre-medication’’). Tests of association between PRS and their respective lipid labs were performed
using linear regression unadjusted (A), adjusted for sex, age, and body mass index (BMI) (B), and adjusted linear regression for sex, age, BMI, and
principal components (C). TG levels were transformed (natural log) prior to tests of association.

PRS HDL-C LDL-C TG TC

Beta
(SE)

p-value Beta
(SE)

p-value Beta
(SE)

p-value Beta
(SE)

p-value

A. Unadjusted Linear Regression

Weighted −0.0029(0.7626) 0.9970 −3.7776(2.3805) 0.1128 −0.0311 (0.0293) 0.2887 −2.1158 (2.8190) 0.4530

Unweighted −0.0453 (0.1033) 0.6615 −0.4448(0.2754) 0.1065 −0.0051 (0.0034) 0.1277 −0.1399 ((0.2663)) 0.5994

B. Adjusted Linear Regression

Weighted −0.3625(0.7247) 0.6169 −3.7223(2.3595) 0.1149 −0.0306 (0.0280) 0.2747 −1.9797(2.7868) 0.4776

Unweighted −0.0994(0.0982) 0.3118 −0.4472(0.2731) 0.1017 −0.0050 (0.0032) 0.1199 −0.1284 (0.2632) 0.6256

C. Adjusted Linear Regression + Principal Components

Weighted −0.3102(0.7293) 0.6707 −3.0489 (2.4835) 0.2198 −0.0346 (0.0289) 0.2314 −1.6617 (2.8394) 0.5585

Unweighted −0.0928(0.0990) 0.3490 −0.3855 (0.2917) 0.1865 −0.0052 (0.0033) 0.1147 −0.1120 (0.2683) 0.6764
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Table 3 Results from tests of association between weighted polygenic risk scores for lipid traits and cardiovascular disease and type 2 diabetes
(T2D). Prevalent CVD in African American adults was determined using International Classification of Diseases (ICD) 9th edition, clinical modi-
fication (CM) codes and current procedural terminology (CPT) codes as well as search terms using problems list and clinical notes as described in
Materials & Methods. Type 2 diabetes (T2D) case status was determined using an algorithm developed and validated by the eMERGE Network. For
both CVD and T2D case and control groups, we determined the proportion of African American patients in the upper 90th percentile of each lipid
trait weighted polygenic risk score (PRSw) as well as the proportion of patients in the lower 90th percentiles. Tests of association were performed as
a 2×2 table, and shown are the resulting odds ratios, 95% confidence intervals (CI), and pvalues.

wPRS Outcome and sample sizes % Cases High PRSw/
% Cases Lower PRSw

%Controls High PRSw/
% Controls Lower PRSw

Odds Ratio (95% CI) P-value

CVD
ncases = 3,248
ncontrols = 7,759

10.7/89.3 9.7/90.3 1.12 (0.98, 1.29) 0.094

HDL-
C T2D

ncases = 1,330
ncontrols = 4,053

10.5/89.5 9.8/90.2 1.07
(0.87, 1.31)

0.53

CVD
ncases = 3,244
ncontrols = 7,743

10.9/89.1 9.6/90.4 1.15 (1.01, 1.32) 0.04

LDL-
C T2D

ncases = 1,330
ncontrols = 4,031

9.4/90.6 10.2/89.8 0.91 (0.73, 1.13) 0.43

CVD
ncases = 3,154
ncontrols = 7,522

9.8/90.2 10.1/89.9 0.97 (0.84, 1.12) 0.72

TG
T2D
ncases = 1,297
ncontrols = 3,952

8.6/91.4 10.4/89.6 0.81 (0.65, 1.01) 0.06

CVD
ncases = 3,231
ncontrols = 7,712

10.2/89.8 9.9/90.1 1.03 (0.90, 1.19) 0.62

TC
T2D
ncases = 1,323
ncontrols = 4,016

9.1/90.9 10.3/89.7 0.88 (0.71, 1.09) 0.27

we calculated multi-population PRS for HDL-C, LDL-C, TG, and TC using (1) specific
genetic variants and (2) their respective weights associated with these traits identified in a
diverse population that includes a substantial African American sample (Hu et al., 2020)
and applied them to an independent African American patient population from a biobank
linked to real-world clinical data. Overall, we did not observe strong associations between
unweighted or weighted lipid PRS for the lipid traits tested here or for T2D and other
common clinical labs. We did, however, observe a nominal association between PRSLDL−C
and CVD.

The lack of associations between lipid PRS and their respective lipid traits was somewhat
unexpected as previous reports have demonstrated strong associations between lipid traits
and genetic or polygenic risk scores. In contrast to the present study, lipid trait PRS in
Biobank Japan were strongly associated to their respective lipid labs and in the expected
directions (Tam et al., 2021). Similarly, lipid PRS developed in the diverse Multi-Ethnic
Study of Atherosclerosis (MESA) using variants discovered in European-descent GWAS
were strongly associated with their respective lipid traits in the expected direction for
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Table 4 Limited phenome-wide association study for lipid trait weighted PRS and common clinical labs in African American adult patients. Lipid trait weighted
polygenic risk scores (wPRS) were calculated as described in Materials & Methods. Lab values were transformed (*) when necessary, using log10(x+1). All tests of associa-
tion were performed using linear regression for each lipid trait PRSw and each quantitative trait lab with the exception of estimated glomerular filtration rate (eGFR). We
categorized eGFR where patients with eGFR ≥ 90 mL/min/1.73m2 are considered within normal limits and the reference group here (REF). Patients with eGFR 60-90 and
< 60 were considered stage 2 and stage 3, respectively. Stage 2 and stage 3 were compared with stage 1, respectively, using logistic regression. Shown are test of association
betas, standard errors (SE), and p-values by lipid trait PRSw and organized by clinical lab category.

Weighted PRS

HDL-C LDL-C TG TC

Beta
(SE)

p-value Beta
(SE)

p-value Beta
(SE)

p-value Beta
(SE)

p-value

Biochemistry
Platelet Count 0.1469 (1.4862) 0.9213 −2.2072 (2.1179) 0.2974 0.4775 (1.8077) 0.7917 −2.1575 (2.1881) 0.3242
Glucose 1.5967 (0.8484) 0.0599 −0.3872 (1.2069) 0.7484 0.2874 (1.0440) 0.7831 −0.0652 (1.2427) 0.9582
Serum Creatinine 0.0067 (0.0053) 0.2057 0.0161 (0.0076) 0.0340 0.0053 (0.0065) 0.4122 0.0203(0.0078) 0.0092

Liver
Serum Albumin * −0.0004 (0.0006) 0.5824 0.0001 (0.0009) 0.8930 −0.0014 (0.0008) 0.0865 0.0001 (0.0009) 0.8876

Kidney
Albumin Creatinine Ratio * 0.0952 (0.0344) 0.0057 −0.0190 (0.0494) 0.7008 0.0229 (0.0430) 0.5945 0.0156 (0.0508) 0.7596
Blood Urea Nitrogen * 0.0070 (0.0041) 0.0852 0.0039 (0.0058) 0.4969 0.0036 (0.0050) 0.4778 0.0088 (0.0059) 0.1390
Uric acid −0.0780 (0.0664) 0.2403 0.1171 (0.0956) 0.2207 −0.0313 (0.0839) 0.7094 0.1376 (0.0988) 0.1640
Urine Creatinine * 0.0401 (0.0382) 0.2962 −0.0018 (0.0508) 0.9714 0.0600 (0.0498) 0.2307 0.0273 (0.0575) 0.6360
Urine Albumin * 0.0002 (0.0205) 0.9934 −0.0332 (0.0282) 0.2397 0.0348 (0.0250) 0.1653 −0.0152 (0.0293) 0.6038
eGFR
Stage 2 −0.0136 (0.0437) 0.7552 0.1095 (0.0619) 0.0770 0.0557 (0.0537) 0.2995 0.1365 (0.0638) 0.0324
Stage 3 0.0745 (0.0468) 0.1117 0.04967 (0.0670) 0.4577 0.0568 (0.0580) 0.3275 0.0744 (0.0689) 0.2808
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all populations except for TG in African Americans (Johnson et al., 2015). In a recent
generalization study, European-derived LDL-C, HDL-C, and TG PRS were also strongly
associated with their respective lipid traits in populations from Europe, Asia, and Africa
(Kuchenbaecker et al., 2019). Strong associations between European-derived LDL-C, HDL-
C, TG, and TC PRS have also been reported for a study of adolescents from the Netherlands
(Xie et al., 2020).

Literature specific to lipid trait PRS derived from (all or in part) and applied to African
Americans is limited. A recent assessment LDL-C, HDL-C, TG, and TC PRS derived
from European, multi-ancestral, and sub-Saharan African discovery meta-analyses all
demonstrated strong associations in the expected directions for their respective lipid traits
in an independent sample of 7,103 participants from theAfricaWits-INDEPTHPartnership
for Genomic Studies (AWI-Gen) cohort (Choudhury et al., 2022). Of note is a recent study
from BioVU where chip-wide LDL-C, HDL-C, and TG PRS were developed and applied to
African American patients who largely overlap with the present study (Dennis et al., 2021).
Strong associations were observed between each PRS and its respected lipid trait (Dennis et
al., 2021). Consistent with the larger BioVU study, we did not identify strong associations
between lipid trait PRS and common clinical labs in the limited PheWAS (Dennis et al.,
2021). Differences between the larger BioVU study and the present study are numerous,
including differences in sample size, genotyping array, computable phenotyping approach,
year of clinical data extraction, and methods used to calculate PRS.

As the two studies accessing BioVU demonstrate, direct comparison of PRS associations
in the literature is challenging formultiple reasons. First and foremost, there is no consensus
on how to calculate or define PRS. As of this writing, the Polygenic Risk Score Catalog
(Lambert et al., 2021) reports 66 PRS available in the literature for lipid traits, including
27,10, 9, and 7 for LDL-C, HDL-C, TG, and TC, respectively. PRS, even for the same trait
(e.g., LDL-C), differ by the number of variants included and how variants are chosen.
PRS also differ by the discovery data from which they draw both variants and weights,
much of which is still focused on European-descent populations. Finally, there are no
standards on the evaluation and reporting of PRS performance. In the present study, we
selected index variants associated with lipid traits in a diverse population that includes
African Americans and calculated unweighted and weighted PRS using the absolute values
of the betas reported in the discovery study. We applied the PRS to an independent
sample of African American patients and reported the betas and p-values from unadjusted
and adjusted tests of association. Collectively, the comparison challenges we experienced
here highlight the need to develop approaches to standardize PRS being developed for
implementation in a clinical setting to benefit patients (Wand, Knowles & Clarke, 2021).

While we did not observe strong associations between the PRS and their lipid traits, we
did observe a nominal association between PRSLDL−C and CVD. Our results are consistent
with an early PRSLDL−C applied to the Malmö Diet and Cancer Study, a prospective study
of European-descent participants where PRSLDL−C constructed from nine SNPs predicted
risk of first CVD event independent of known risk factors (Kathiresan et al., 2008). Here,
we observed a greater proportion of CVD cases among the African American patients in
the 90th PRSLDL−C percentile compared with African American patients in the same 90th

Drouet et al. (2023), PeerJ, DOI 10.7717/peerj.14910 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14910


percentile without CVD. Despite differences in genetic ancestry, these data are consistent
with PRSLDL associations and incident CVD recently observed in the UK Biobank (Tromp
et al., 2022). The trend observed here is also consistent with data in Biobank Japan, which
suggested associations between coronary heart disease among T2D patients and PRSLDL,
PRSTG, and PRSTC (Tam et al., 2021). To the best of our knowledge, no similar studies
yet exist that are specific to African Americans with CVD or lipid trait PRS examined for
relationships to T2D risk in any population.

The present study has several limitations. The sample size is small, resulting in low
statistical power. With an initial dataset of almost 12,000 African Americans, the dataset
was reduced to∼2,000 per lipid trait due tomissing data anddata cleaning as is characteristic
of clinical data. While previous published assessments suggest the computable phenotyping
approaches employed here result in high quality, research grade variables (Crawford et al.,
2015; Crawford et al., 2018; Dumitrescu et al., 2015b; Dumitrescu et al., 2015c; Dumitrescu
et al., 2015a; Goodloe et al., 2017), the CVD variable is a mix of prevalent and incident
cases, limiting the assessment of PRS risk. Other limitations are related to PRS calculation.
We drew from the genotyped Metabochip and selected index variants associated with
lipid traits regardless of linkage disequilibrium. Prevailing PRS methods discourage the
inclusion of genetic variants in strong linkage disequilibrium, which can lead to artificial
score inflation. The mostly null associations reported here suggest score inflation was not
substantial. In addition to the already-noted small sample sizes, the mostly null associations
observed here may be a result of an imperfect ancestral match (Privé et al., 2022) between
the diverse and heterogeneous (Choudhury et al., 2020) populations ofHu et al. (2020) and
the African American patient population studied here. While we based PRS calculations on
data that include African Americans, we acknowledge that PRS best practices for diverse
populations are actively being developed and evaluated (Graham et al., 2021).

CONCLUSIONS
Despite the challenges of sample size, this is one of the few studies of multi-population
lipid PRS developed from a genomic discovery effort that includes African Americans
and applied to an independent African American patient population. In general, larger,
prospective diverse cohorts are needed to assess clinical utility of PRS for a variety of
common clinic outcomes.
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