

East-Timor as an unexplored yet important source of cashew (Anacardium occidentale L.) genetic diversity

Lara Guterres ^{1, 2, 3}, João Barnabé ^{2, 4}, André Barros ⁵, Alberto Bento Charrua ^{3, 6}, Maria Cristina Duarte ⁴, Maria M. Romeiras ^{2, 4}, Filipa Monteiro ^{Corresp. 2, 4}

Corresponding Author: Filipa Monteiro Email address: fmonteiro@isa.ulisboa.pt

Background. Cashew (*Anacardium occidentale* L.) is a crop currently grown in several tropical countries due to economic importance of cashew nuts. Despite its enormous economic worth, limited research has been conducted on the molecular diversity of cashew genetic resources. In this study, a wide comprehensive assessment of the genetic diversity of cashew in East-Timor was screened using microsatellites (SSRs) to evaluate intraspecific diversity and population structuring.

Methods. A total of 207 individuals including that from East-Timor (11), and outgroup populations from Indonesia (1) and Mozambique (2), were analyzed with 16 cashew-specific SSRs. A comprehensive sampling within East-Timor was done, thus covering cashew orchards distribution in the country. Genetic diversity indices were calculated, and population structuring determined using three different approaches: genetic distances (UPGMA and NJ), AMOVA and individual- based clustering methods through a Bayesian (STRUCTURE) and multivariate (DAPC) analyses.

Results. Population structuring revealed that the genetic diversity of cashew populations in East-Timor was higher in this study than previously reported for cashew. A higher allelic richness was found within East-Timor populations, compared with the outgroup populations (Mozambique and Indonesia), reinforced by the presence of private alleles. Moreover, our study showed that East-Timor populations are grouped into two dissimilar genetic groups, which may suggest multiple introduction events of cashew. Hence, the newly studied cashew genetic resources could be explored for future crop improvement.

Conclusions. Crop diversity underpins the productivity, resilience and adaptive capacity of agriculture. Therefore, this study provides useful information regarding genetic diversity and population structure that can be harnessed to improve cashew production in East-Timor. This data can be also important to access an in-country genetic signature and increase cashew market value.

¹ Universidade Nacional Timor Lorosa'e (UNTL), Av. Cidade de Lisboa, Díli, East-Timor., Díli, East-Timor

² LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal

Nova School of Business and Economics, Universidade Nova de Lisboa, Campus de Carcavelos, Rua da Holanda, n.1, Carcavelos, 2775-405, Cascais, Portugal

⁴ Centre for Ecology, Evolution and Environmental Changes (cE3c)& Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon, 1749-017, Lisboa, Portugal

Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal

⁶ Department of Earth Sciences and Environment, Faculty of Science and Technology, Licungo University, P.O. Box 2025, Beira 2100, Beira, Mozambique

East-Timor as an unexplored yet important source of cashew (*Anacardium occidentale* L.) genetic diversity

3 4

1

2

Lara Guterres^{1,2,3}, João Barnabé^{1,4}, André Barros ⁵, Alberto B. Charrua^{1,2,6}, Maria Cristina
 Duarte⁴, Maria M. Romeiras^{1,4}, Filipa Monteiro^{1,4}

7

- 8 ¹ LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated
- 9 Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da
- 10 Ajuda, 1349-017 Lisboa, Portugal
- 11 ² Nova School of Business and Economics, Universidade Nova de Lisboa, Campus de
- 12 Carcavelos, Rua da Holanda, n.1, Carcavelos, 2775-405 Cascais, Portugal.
- 13 ³ Universidade Nacional Timor Lorosa'e (UNTL), Av. Cidade de Lisboa, Díli, East-Timor.
- 14 ⁴ Centre for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and
- 15 Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon, 1749-017 Lisbon,
- 16 Portugal.
- 17 ⁵ Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência (IGC), Rua da
- 18 Quinta Grande, 6, 2780-156 Oeiras, Portugal.
- 19 ⁶ Department of Earth Sciences and Environment, Faculty of Science and Technology, Licungo
- 20 University, P.O. Box 2025, Beira 2100, Mozambique.

21

- 22 Corresponding Author:
- 23 Filipa Monteiro^{1,4}
- 24 Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de
- 25 Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
- 26 Email address: fmonteiro@fc.ul.pt.

2728

29

Abstract

- 30 **Background.** Cashew (Anacardium occidentale L.) is a crop currently grown in several tropical
- 31 countries due to economic importance of cashew nuts. Despite its enormous economic worth,
- 32 limited research has been conducted on the molecular diversity of cashew genetic resources. In
- 33 this study, a wide comprehensive assessment of the genetic diversity of cashew in East-Timor
- 34 was screened using microsatellites (SSRs) to evaluate intraspecific diversity and population
- 35 structuring.
- 36 Methods. A total of 207 individuals including that from East-Timor (11), and outgroup
- 37 populations from Indonesia (1) and Mozambique (2), were analyzed with 16 cashew-specific
- 38 SSRs. A comprehensive sampling within East-Timor was done, thus covering cashew orchards
- 39 distribution in the country. Genetic diversity indices were calculated, and population structuring

- 40 determined using three different approaches: genetic distances (UPGMA and NJ), AMOVA and
- 41 individual- based clustering methods through a Bayesian (STRUCTURE) and multivariate
- 42 (DAPC) analyses.
- 43 Results. Population structuring revealed that the genetic diversity of cashew populations in East-
- 44 Timor was higher in this study than previously reported for cashew. A higher allelic richness was
- 45 found within East-Timor populations, compared with the outgroup populations (Mozambique
- and Indonesia), reinforced by the presence of private alleles. Moreover, our study showed that
- 47 East-Timor populations are grouped into two dissimilar genetic groups, which may suggest
- 48 multiple introduction events of cashew. Hence, the newly studied cashew genetic resources could
- 49 be explored for future crop improvement.
- 50 Conclusions. Crop diversity underpins the productivity, resilience and adaptive capacity of
- 51 agriculture. Therefore, this study provides useful information regarding genetic diversity and
- 52 population structure that can be harnessed to improve cashew production in East-Timor. This
- data can be also important to access an in-country genetic signature and increase cashew market
- 54 value.

56 57 58

59 60

Keywords

genetic diversity; SSRs; population structuring; Southeast Asia; diversity hotspots.

Introduction

Cashew (Anacardium occidentale L., Anacardiaceae) is a tropical evergreen tree that can thrive 61 in both dry and wet tropical climates. Many tropical countries use various parts of the cashew 62 tree for consumption, medical, and industrial purposes (Salehi et al., 2019). Among the various 63 64 parts of the plant, the cashew kernel has a high market value and has acquired a status of an 65 export-oriented commodity in several tropical countries, also known as a cash crop (Monteiro et al., 2015, 2017). The highest cashew-producing countries, mainly from West African region 66 67 (Guinea-Bissau and Côte d'Ivoire) and from Southeast Asia (India and Vietnam) are mainly 68 focused on exporting cashew nuts, from which both governments and farmers have their primary 69 income (Havik et al., 2018). Over the past two decades, a global market demand of cashew nuts 70 has been increasing as a result of the rising trend in consumption. Cashews accounted for 17% of 71 world tree nut production in 2019/20, making it the third most popular tree nut after almonds and 72 walnuts (International Nut and Dried Fruit Council Foundation, 2020). The popularity of cashew 73 is mainly because of the changed food habits towards a healthier food intake. As a rich source of 74 plant-based protein, dietary minerals and low-fat contents, cashew has become one of the most 75 produced and valued tree nuts worldwide, together with almonds, pistachios, and walnuts 76 (Pradhan et al., 2020).

- 77 Despite its enormous economic importance, studies evaluating the molecular diversity of cashew
- 78 genetic resources have been scarce. Most studies were performed with different molecular
- 79 markers, namely microsatellites (SSRs, Simple Sequence Repeats) and RAPDs (Random

80 Amplified Polymorphic DNA), mainly done in the top cashew-producing countries. For 81 example, genetic diversity of cashew accessions have been characterized in Ivory Coast

82 (Kouakou et al., 2020), in Nigeria (Alivu & Awopetu, 2007), in India (Archak et al., 2009), in

83 Tanzanian (Mneney et al., 2001), Malawi (Chipojola et al., 2009) and Brazil (dos Santos et al.,

84 2019). Overall, these studies highlight a narrow genetic diversity of cashew accessions when

85 compared to the cashew native origin, Brazil, where a higher diversity was observed.

Cashew was one the many tropical crops introduced by the Portuguese from Brazil into the 86 African continent, in the sixteenth century as part of the Columbian Exchange Event (Havik et 87 al., 2018). In Asia, cashew was introduced most likely through Goa (India), Portugal's main 88 89 settlement in the East Indies in the sixteenth century (Massari, 1994). As a result of the good adaptation of trees to Indian soil conditions, cashew products were explored beyond the nut, 90 mainly through the local fermented brew (the feni) made from ripened cashew apples. After 91 India, cashew spread to South Asia in Moluccas (Indonesia) (Nair, 2010) and thereafter to the 92 present day distribution across Asian countries as Vietnam, Philippines, Malaysia, Thailand, and 93 94 Sri Lanka (Havik et al., 2018). Despite introductions at different timelines, at first, cashew was established as a rustic tree to cope deforestation at both African and Asian countries (Monteiro et 95 al., 2017; Havik et al., 2018). However, at dissimilar paces, these two tropical regions have 96 97 turned cashew amongst the most exported agriculture commodities. While African countries 98 (except for Mozambique, Nigeria and Côte d'Ivoire) are amongst the major raw nuts' exporters 99 with few processing, in Asia the structured value chain implemented allows the processing of 100 imported raw nuts from less resourceful African countries (e.g. Guinea-Bissau, Senegal, Guinea, 101 and Burkina Faso).

East-Timor is a small island country located in Asia, bordered by Indonesia. Agriculture is the 102 main human activity providing subsistence to an estimated 80 % of the population (Harmadi & 103 104 Gomes, 2013). Cashew has been developed as an industrial crop since the 1990's, with over 3.200 ha planted on 6.500 small farms. After the armed period with Indonesia, which nburnt 105 106 several orchards, in 2008, about 125,000 cashew trees (about 800 ha) remained, growing in ten districts (Bobonaro, Manatuto, Oecussi, Cova Lima, Ainaro, Manufahi, Viqueque, Baucau, 107 108 Lospalos and Dili), with a relatively low average yield per ha (270–300 kg/ha, MAFF, 2004; Peng et al., 2009). Cashew varieties planted include the locally recognized variety from 109 110 Indonesia, and more recently, varieties from Brazil and Australia (Peng et al., 2009), to increase yield per ha. Nowadays, as part of the Timor-Leste Strategic Development Plan 2011-2030 111 (República Democrática de Timor-Leste, 2011), cashew is being engaged as an export 112 113 commodity to increase the country agriculture remittance.

Thus, our study focuses on the assessment of the genetic diversity of cashew populations cultivated in East-Timor, using highly informative molecular markers as microsatellites, which are effective in evaluating intra-specific genetic diversity along with the evaluation of the population structuring. To accomplish such objective, eleven cashew orchards from East-Timor were assessed with 16 cashew-specific microsatellites (Croxford *et al.*, 2006) applied to screen

in-country genetic diversity. Besides, an Indonesian population was included as an outgroup, to assess any East-Timor genetic signature, along with two populations from Mozambique, working as a continental outgroup. Our work is pioneer, as no studies have been conducted in East-Timor using a highly comprehensive sampling scheme (over 11 populations) in an emerging cash crop, as cashew.

124125

126

Materials & Methods

East-Timor: country and agriculture profile

East- Timor is a small island country with an estimated population of 1,183,643 (Government of 127 East-Timor, 2015), distributed within an area of approximately 15,000 square kilometers, 128 129 organized in 13 districts (Figure 1). The capital is Dili. Since independence in 2002. East-Timor's primary activities are agriculture, fisheries, and forests, which have reduced the share of 130 131 the country's GDP from 27.8% in 2003 to 19.8% in 2015. About 225,000 ha are cultivated land area, as among these 165,000 ha are arable land (with different annual crops) and 60,000 ha are 132 133 permanent crops for rice, corn, cassava, coffee, coconut and other industrial crops (MAFF, 2004). Agriculture in East-Timor is the most important economic sector. Coffee, maize and rice 134 paddy rises as the most important staple crops (MAFF, 2004; Borges, 2018). Despite its 135 relatively small size, East-Timor is divided in six different agro-ecological zones (ARPAPET, 136 1996), that shape the diverse ecology and agriculture landscapes in the country. These agro-137 138 ecological zones, in terms of territory coverage (in %) and elevation (in m), are: North Coast Lowlands (10 %, <100 m), Northern Slopes (23 %, 100-500 m), Northern Uplands (20%, > 500 139 140 m), Southern Uplands (15 %, > 500 m), Southern Slopes (21 %, 100-500 m) and South Coast Lowlands (11%, <100 m) (ARPAPET, 1996; Fox, 2003). The North coast is far drier than the 141 142 south, and the mountains have more rain than the coasts. The studied districts are included in 143 four agro-ecological regions, namely: in Northern Coast Lowlands- Manatuto (Kribas); Northern Slopes- Baucau; Northern Uplands- Bobonaro; and South Coast Lowlands- Manatuto 144 145 (Natarbora), Cova Lima, Manufahi and Vigueque.

146 Sampling

Cashew populations were sampled from different orchards in East-Timor (11), Indonesia (1), and 147 148 Mozambique (2) (Figure 1A-C). Each population is represented by 12-18 individual plants from 149 an orchard (Table 1), with a total of 207 samples analyzed. Leaves were sampled and preserved in silica gel until further processing. Within East-Timor (Figure 1C), about 11 cashew orchards 150 populations were sampled, covering a comprehensive sampling on 6 districts and cashew 151 producing regions (Figure 1D-I). A population from Indonesia was also included, namely in 152 153 Kefamenanu (Figure 1B), district of Kota Kefamenanu located in the North Central Timor Regency which borders East-Timor's Oecusse enclave, one of the few Indonesian regions that 154 have a land border with other countries. Hence, such population would be essential for 155

184

identifying possible genetic connection between a major region of Indonesia, the only with a 156 strong land connection with East-Timor, and East-Timor cashew populations sampled. Two 157 Mozambican populations (Figure 1A) were included, thus working not only as a possible 158 population outgroup between continental and island regions, but also due to the strong historical 159 160 connection with other Portuguese colonies during 16th and 17th centuries, as it was an important continental outpost for Southeast Asia islands explorations (de Carvalho & Mendes, 2016; Havik 161 162 et al., 2018). All DNA samples are stored at the Instituto Superior de Agronomia, University of Lisboa (Portugal) and are available upon author request. 163

DNA extraction

165 Individual leaves collected in each cashew population were used for genomic DNA (gDNA), extracted with the InnuPREP Plant DNA Kit (Analytik Jena, Germany), following 166 167 manufacturer's instructions with minor modifications. About one hundred milligrams of each leaf collected in the field were grinded briefly with a mortar and a pestle in liquid nitrogen, and 168 about 25 mg of roughly grinded leaves were used for subsequent gDNA extraction protocol, by 169 adding 400 µl of OPT lysis solution and ground the biological material with an Eppendorf-pestle 170 in a 1.5mL tube. After, an initial incubation at 65°C for 1 h was performed, followed by adding 171 172 100 µl of Precipitation Buffer and a 5-min incubation at room temperature; the supernatant was recovered by centrifugation at maximum speed 11.000 x g for 5 mins. The supernatant was then 173 transferred to a Pre-Filter Receiver and centrifuged at 11.000 x g for 1 min. Subsequently, 4ul of 174 RNAse A solution (100 mg/ml) was added and samples were incubated for 30 mins at 37°C. 175 176 After RNAse treatment, 200µl of SBS binding solution was added and then centrifuged at 11.000 x g for 2 mins. To the recovered supernatant, two washing steps with 650 ul of MS washing 177 solution was performed with centrifugations at 11.000 x g for 1 min. The gDNA was eluted in 40 178 ul of AE buffer, left to incubate at room temperature for 15 mins and recovered by centrifugation 179 180 at 11,000 x g for 1 min. DNA purity and concentration were measured at 260/280 nm and 181 260/230 nm using a spectrophotometer (NanoDrop-1000, Thermo Scientific), while DNA integrity was verified by agarose gel electrophoresis at 0.8% in 1x TAE running Buffer (Merck) 182 183 for 30 mins at 90 Volts and then visualized in a GelDoc XR image system (BioRad, USA).

Microsatellite genotyping

- A set of 16 cashew-specific microsatellite (SSRs) markers already available (Croxford *et al.*, 2006) were selected, for screening the genetic diversity of the populations under study, following
- three major criteria: i) markers with a Polymorphism Information Content (PIC) value higher
- than 0.5, as a reference value to be considered as an informative marker, ii) markers with high
- than 0.5, as a reference value to be considered as an informative marker, ii) markers with high
- 189 allelic diversity, iii) and dinucleotide repeats markers to enable a clearer interpretation upon
- 190 microsatellite genotyping, and thus avoiding genotyping errors.
- 191 Before multiplexing, each SSR marker was validated in single-plex polymerase chain reactions
- 192 (PCR) using a three-primer PCR approach (Schuelke, 2000) to assess both reaction

reproducibility and/or presence of PCR artifacts upon fragment analysis (Monteiro et al., 2016). 193 Each SSR was PCR amplified in a 25_{µl} volume reaction following cycling conditions previously 194 described in Croxford et al. (2006), using HotStar Tag DNA Polymerase kit (OIAGEN, 195 Germany), as per manufacturer's instructions. Next, SSRs amplified fragments were run in an 196 197 ABI 3130XL sequencer (Applied Biosystems) with the internal size standard GS500 LIZ (Applied Biosystems, USA) at STAB VIDA company (Costa da Caparica, Portugal), while allele 198 199 calling was performed in GeneMapper v 3.7 (Applied Biosystems, USA). A thorough markers selection to ensure the success of co-amplification loci was assessed using the Multiplex 200 Manager software v1.2 (Holleley & Geerts, 2009). Four SSRs panels assembled in 4-plex PCR 201 202 reactions (Multiplex A, B, C, and D; Table 2), using four universal forward fluorescently labelled primers following Culley et al. (2013). To increase genotyping accuracy, a "PIG-tail" 203 sequence was added at the 5' end of each of the reverse primer (Brownstein et al., 1996). PCR 204 multiplex amplifications were carried out using the QIAGEN Multiplex PCR kit (QIAGEN, 205 206 Germany), following the manufacturer's protocol. In each PCR reaction in a total volume of 207 25μL, the following components were added: 5 μl of 5x Q-Solution, 12.5 μl of 2x QIAGEN Multiplex PCR Master Mix (which includes HotStarTaq DNA Polymerase, PCR Buffer with 6 208 mM MgCl₂, and dNTP mix), with 50-100 ng gDNA, 2.5 pmol of each primer Forward and 209 Reverse and 0.15 pmol of the tailed fluorescently labeled primers (D1–D4), and variable volume 210 of ddH₂O up to 25 µl. Reactions were done in 96 well-plates and on each plate one sample was 211 repeated per run thus working as positive control for allele scoring. Negative PCR controls were 212 included. Initially, a hot-start step at 95°C for 15 min was performed, followed by a touchdown 213 cycling protocol adapted from Croxford et al. (2006) as follows: 5 cycles of denaturation at 95°C 214 215 for 45 s, primer annealing at 68°C for 5 min with -2°C/cycle; a sequence extension at 72°C for 1 min; 5 cycles of denaturation at 95°C for 45 s, primers annealing (58°C for Multiplexes A, C and 216 D and 60°C for Multiplex B) for 2 min with -2°C/cycle and an extension step for 1 min at 72°C; 217 27 cycles at 95°C for 45 s, 47°C for 75 s, and 72°C for 1 min; followed by a final extension step 218 219 at 72°C for 10 min. After, multiplex PCR products were run in a ABI 3130XL sequencer for fragment analysis, as described earlier, and SSR allele sizes were aligned with the internal size 220 standard. To improve SSR data quality, allele callings were checked manually, and ambiguous 221 results were set as "missing data." The resulting genotypic matrix was used for genetic diversity 222 223 and population structuring analyses. The genotypic data generated from this study is freely available at FigShare in Guterres et al. (2022, https://doi.org/10.6084/m9.figshare.19119041.v3). 224

Genetic diversity analysis

225

Genotyping errors were assessed using MICRO-CHECKER v2.2.3 (Van Oosterhout *et al.*, 2004), and estimation of null alleles frequency was done with the EM algorithm of Dempster *et al.* (1977), as implemented in FreeNA (http://www.montpellier.inra.fr/URLB/). These values were computed as described by Chapuis & Estoup (2007), with 10,000 bootstrap iterations, alternatively using and not using the Excluding Null Alleles (ENA) method, after assessment of null allele frequencies. Polymorphic Information Content (PIC) and genetic diversity indices

232 were calculated with Microsatellite Toolkit v.3.1.1 (Park, 2001) and GenALEx 6.5 (Peakall & Smouse, 2006), respectively, as previous described (Monteiro et al., 2016). Briefly, included the 233 total allele number and mean alleles per locus (Na), private alleles, inbreeding coefficient 234 (fixation index, F), observed (H₀), and expected (H_e) heterozygosity. Deviations from Hardy-235 236 Weinberg equilibrium (HWE) were assessed for each locus-population combination and linkage disequilibrium (LD) to determine the extent of distortion from independent segregation of loci 237 238 using GenePop v.4.5 (Rousset, 2008). Statistical significance for both HWE and LD was tested by running a Monte Carlo Markov Chain (MCMC) consisting of 10,000 iterations each, and p-239 values were corrected for multiple comparisons [p < 0.000298, (0.05/168)] by applying a 240 sequential Bonferroni correction (Rice, 2013). 241

242

243

Population structuring

- 244 Population structure was addressed using three approaches: (i) estimating relations among
- 245 populations using genetic distances; (ii) hierarchical genetic analysis by AMOVA; and (iii)
- 246 individual-based clustering with a Bayesian (STRUCTURE) and a multivariate (DAPC,
- 247 Discriminant Analysis of Principal Components) analyses.

248

- 249 Estimating relations using genetic distances
- 250 Distances relationships among populations were done according to Monteiro et al. (2016).
- 251 Specifically, Cavalli-Sforza and Edward's Chord genetic distances (DC, Cavalli-Sforza &
- 252 Edwards, 1967) using the INA method computed in FreeNA (DC^{INA}), and Nei's D distance (Nei,
- 253 1972) were calculated in GenALEx 6.5. Unweighted Pair Group Method with Arithmetic Mean
- 254 (UPGMA) and Neighbor-Joining (NJ) trees were produced using package ape v3.4. (Paradis et
- 255 al., 2004) for R v4.1.0 (R Core Team, 2021) based on 10,000 bootstraps values, assessed by
- about function from poppr v2.1.0. package (Kamvar et al., 2014). Trees were further edited in
- 257 FigTree v1.4.2 (Rambaut, 2014). Distances relationship among populations was done in two
- 258 separate approaches: first using the three countries (East-Timor, Indonesia and Mozambique)
- 259 populations and, second, by excluding continental populations from Mozambique.

- 261 Analysis of molecular variance (AMOVA)
- 262 An Analysis of Molecular Variance (AMOVA, Weir & Cockerham, 1984; Hill, 1996) was done
- 263 with ARLEQUIN v3.5.1.3 (Excoffier & Lischer, 2010) to assess the hierarchical distribution of
- 264 genetic variation on the populations analysed. Significance was assessed after 1000
- 265 permutations. Two three-levels AMOVAs were pursued: one using each of the three countries
- populations (MZ=2; IND=1; ET=11) as a group, and the second considering only East-Timor
- and Indonesia as groups. In each AMOVA, the total variance was partitioned into components to

account for pairwise differences between groups $[V_a, (1) \text{ MZ vs ET vs IND}; (2) \text{ ET vs IND}]$ populations], differences among populations within those groups (V_b) , and differences among individuals within populations (V_c) . Variance components $(V_a, V_b, \text{ and } V_c)$ were used to calculate the fixation indices (F-statistics; F_{CT} , F_{SC} , F_{ST}) according to Weir & Cockerham (1984).

272

273

- Individual-based clustering analyses
- 274 Identification of genetically distinct clusters were done under two different methodologies, as
- 275 previously described in Monteiro et al. (2016), by: a Bayesian clustering analysis using
- 276 STRUCTURE (Pritchard et al., 2000) and a multivariate analysis method, DAPC (Jombart &
- 277 Balloux, 2009). These two different analyses were done because STRUCTURE uses allele
- 278 frequency and LD information from the dataset directly assuming HWE equilibrium, while
- 279 DAPC does not considers a particular population genetics model outlining the genetic
- 280 differentiation between and within groups (Jombart & Balloux, 2009).
- Overall, individual-based clustering analysis were performed under two datasets: one including
- 282 East-Timor, Indonesia, and Mozambique, and the second focused in East Timor and Indonesia.
- 283 Bayesian model-based clustering algorithm implemented in STRUCTURE v.2.3.4 was used to
- 284 identify genetic clusters under a model assuming admixture and correlated allele frequencies
- 285 without using population information. In the first approach, including East-Timor vs Indonesia
- vs Mozambique, analyses were set for a burn-in period length to 100,000 followed by 1,000,000
- 287 MCMC iterations with K-values set from 1 to 14 with 10 runs computed for each K. To the
- 288 second approach, using East-Timor vs Indonesia populations, the same settings were followed by
- configuring K-values from 1 to 12 with 10 runs in each K. StructureHarvester v0.6.94 (Earl &
- 200 Configuring K-values from 1 to 12 with 10 fails in each K. Structure 11al vester vo.0.74 (Lan &
- Bridgett, 2012) was then used to calculate ΔK ad hoc statistics from Evanno et al. (2005), for
- estimating the most likely K-value. CLUMPP v1.1.2 (Jakobsson & Rosenberg, 2007) was used
- 292 to average replicate runs for the selected K-value, for accounting problems with multimodality
- and label switching between iterations of STRUCTURE runs. CLUMPP results were then
- 294 plotted with DISTRUCT v1.1 (Rosenberg, 2004).
- 295 DAPC was implemented in R (R Core Team, 2021) using adegenet v1.3.1 package (Jombart,
- 296 2008) using the dataset relative frequency of the alleles, since presence/absence data may not be
- 297 fully informative, and, thus, may overlook relevant patterns in allele frequency. The function
- 298 find.clusters was used to find the ideal K-value, based on the computation of Bayesian
- 299 Information Criterion (BIC) scores, maintaining default parameters and retaining all principal
- 300 components (PCs). Cross validation using the xvalDapc function was pursued to determine the
- 301 optimal number of PCs to retain in the Discriminant Analysis (DA). DAPC script generated by
- 302 our analysis is available at Figshare (Barros *et al.*, 2022).

303 304

305

Results

SSRs genotyping and statistics

306 All 16 SSRs were tested in singleplex reactions at the estimated optimal annealing temperature, and only after this initial quality assessment, SSRs markers were grouped into 4-plex reactions 307 (Table 2). For the 16 SSRs loci, allele profiles were clear and easy to score. No errors in the 308 genotypic data matrix were detected, indicating the absence of potential errors associated with 309 310 stuttering bands or large allele dropout in SSRs screened. In 60 of the 224 locus-comparisons, null alleles frequencies were higher than 0.20 in markers mAoR33, mAoR12, mAoR29 and 311 mAoR41, thus subsequent analyses were made with the remaining 12 SSRs (Table 3). 312 Deviations from Hardy-Weinberg Equilibrium (HWE) were observed in most loci except for 313 mAoR48, mAoR42, mAoR3, mAoR17, mAoR35, with 84 locus-population combinations 314 statistically significant (p > 0.05); while after sequential Bonferroni correction only two loci 315 (mAoR3 and mAoR35,) displayed significant deviations, matching 33 of the 168 locus 316 population combinations (Supplementary Table S1). All 12 loci were in linkage equilibrium after 317 Bonferroni correction, thus being non-correlated, and alleles independently segregated and 318 319 inherited (Supplementary Table S2). Negative fixation index (F) estimates were observed in two 320 loci, mAoR17 (-0.03) and mAoR7 (-0.04) (**Table 3**), which can reflect more heterozygotes than expected or other population structure complexities. 321

322323

Genetic diversity estimates

- Overall, a total of 157 alleles were detected in the 207 individuals analyzed (**Table 3**). All loci
- 325 screened were polymorphic. The total number of alleles per locus ranged from 4 (mAoR2) to 25
- 326 (mAoR3) with an average of 13.08 alleles per locus (**Table 3**). Overall, Polymorphic Information
- Content (PIC) values ranged from 0.40 (mAoR16) to 0.83 (mAoR17) with a mean value of 0.67
- 328 (Table 3). In our 12-loci dataset, observed heterozygosity (H_o) varied from 0.25 (mAoR35) to
- 0.73 (mAoR17) with a mean of 0.40 (Table 3); and expected heterozygosity (H_e) varied between
- 330 0.45 (mAoR16) and 0.84 (mAoR17).
- 331 By performing a population genetic diversity analysis presented (Table 4), East-Timor presented
- 332 10.67 alleles in average and the lowest value was from Indonesia with 3.42. Expected
- 333 heterozigosity (H_{e)} was 0.67, 0.56 and 0.71, respectively from East-Timor, Indonesia and
- 334 Mozambique, while H_0 was 0.51, 0.47 and 0.54, accordingly. All populations presented a F
- positive variating from 0.12-0.25. The populations with the highest number of alleles were
- observed in East-Timor, most precisely in the population of ETK which presents in average 5.17
- alleles, followed by ETR3 with 5.08 alleles, while ETBAT and ETV with 2.42 and 2.25 alleles,
- 338 respectively. The allele numbers of the SSRs by comparing each of the populations screened,
- enable to depict which population harbors more allelic diversity. When analyzing this parameter,
- we can see that ETK and ETTR3 are the populations that present greater allelic diversity (Na,
- 341 Table 4). Concerning the expected heterozygosity (H_e), the highest was obtained in ETK
- 342 population, and the lowest in ETV population. When comparing the observed heterozygosity
- 343 (H₀), the highest was obtained for the population ETTR1, and the lowest value in ETFA.
- 344 Fixation index (F) was positive in all populations except for ETSAN and ETV, the positive

345 values in the remaining populations may indicate genetic stability and a higher rate of inbreeding. The absence or existence of private alleles is important to account for, since it can 346 allow to identify a specific genetic signature, as private alleles are alleles that are only detected 347 in this population. East-Timor displayed a high number of private alleles (6), with Mozambique 348 349 harboring 2, while in Indonesia populations no private alleles were detected.

350 351

Population structuring analyses

352 353

Estimating relations among populations through genetic distances

UPGMA and NJ trees were built using Nei's D and DC^{INA} (FreeNA) genetic distances across 354 355 accessions screened for East-Timor, Indonesia, and Mozambique (Supplementary Table S3), and 356 an analysis narrowed to East-Timor and Indonesia (Supplementary Table S4) was done. Under 357 the two analysis approaches, similar tree topology's structure was observed with both Nei's D (Supplementary Figure S1, S2) and DC^{INA} (Figures 2 and 3) matrices, thus indicating a reliable 358 topology regardless of the different genetic distance's algorithms used. As such, only DC^{INA} 359 360 distances matrices-derived trees are presented in Figure 2 for East-Timor, Indonesia, and Mozambique analyses and in Figure 3 for analyses narrowed to East-Timor and Indonesia. In the 361 362 UPGMA (Figure 2A) and NJ (Figure 2B) derived trees, three clusters depicted: one cluster (I) that includes ETTR populations (ETTR1-3) from Baucau, Vigueque (ETV), Cova Lima (ETSU) 363 364 and ETK population from Manatuto, grouped with Indonesia (IND); a second cluster (II) comprising the remaining East-Timor populations from Manatuto (ETNA), all populations from 365 366 Bobonaro district (ETMA, ETBAT, ETSAN) and Manufahi population (ETFA), and the third (III) representing the Mozambican populations (MZB and MZD). This result support two 367 different genetic clusters within East-Timor; one including only East-Timor populations (Cluster 368 369 III) and the other with a high genetic membership with the Indonesian population (Cluster II). With the NJ tree (Figure 2B), the dendrogram derived from DC^{INA} distance matrix also 370 371 presented three different clusters: cluster I shows the same grouping with Mozambican 372 populations as observed in the UPGMA (Figure 2A), the second cluster is configured by Bacau, 373 Viqueque (ETV) and Cova Lima (ETSU) populations with Indonesia, and the third cluster include Bobonaro populations (ETMA, ETBAT and ETSAN) and the remaining East-Timor 374 populations (ETFA, ETNA and ETK). 375

When observing trees without Mozambican populations (Figure 3), the two clusters are similar 376

377 to the observed for clusters I and II in Figure 2.

378 Conversely to UPGMA derived dendrograms using the whole populations dataset (Figure 2A,

Suppl. Fig. S1A) and the East-Timor/Indonesia dataset (Figure 3A, Suppl. Fig. S2B), the two 379

genetic distance algorithms produced dissimilar NJ-generated trees (Nei's D distance, Figure 380

381 **3B,** Supplementary Fig. S2A, S2B), indicative of a complex population structuring.

382 383

Analysis of molecular variance

384 When grouping countries dataset (MZ, IND, ET), AMOVA results showed that molecular variation was mainly found within individuals (76%), whereas variation among populations and 385 among individuals within population explained 13% of the total genetic differentiation, in both 386 cases (Table 5). Regarding East-Timor vs. Indonesia dataset, a similar scenario was depicted, 387 388 with genetic differentiation within individuals (73%) also higher than among individuals (14%) or among populations (13%). 389

390 391

Individual-based clustering using Bayesian and a multivariate discriminant analysis to uncover population structure

392 393 394

395

408

409 410

411

412

413

414

415

Two different approaches were done: 1) covering all populations from East-Timor, Indonesia, and Mozambique, and 2) excluding Mozambique, to uncover more in-depth individual clustering within East-Timor populations, using Indonesia population as outgroup.

396 397 In the first approach, STRUCTURE was run considering the highest range of clusters 398 conceivable (K = 1-15). This analysis assigned K = 5 as the optimal number of groups based on Evanno et al. (2005) ΔK method (Supplementary Figure S3). According to the results obtained 399 from this first approach with all populations from East-Timor, Indonesia and Mozambique, in K 400 = 5, Mozambique was grouped in a single cluster (orange cluster) (Figure 4A), Manatuto 401 populations are grouped in 2 principal clusters (brown and red), Baucau populations mostly in 402 one cluster (blue) except for ETTR3 that have a mix of all clusters except with Mozambican 403 cluster; Cova Lima is only grouped in a single cluster (green cluster) as well as Bobonaro 404 populations grouped in the red cluster. Manufahi population is mostly in a red cluster sharing 405 406 genetic flow with Viqueque and Indonesia, which are grouped in two clusters (brown) (Figure 407 **4A**).

DAPC analysis was made without any a priori group assignment. For the first dataset, the clustering analysis determined that K = 10 was the one with the best combination of mean and 95% CI of BIC (Supplementary Figure S4). However, we do not see an "elbow" effect, rather a considerable plateau in the number of clusters with a significant overlap among confidence intervals for the nearby number of clusters. To make the results comparable with the ones produced by STRUCTURE, we decided to use the optimal number of clusters for the later analysis, K = 5 (Figure 4B). Using the function xvalDAPC, 40 PCs (highest successful assignment - 88.2 %, with the lowest mean squared error - 0.178) were retained and 4

Discriminant Functions, thus conserving 87.5% of variance (Supplementary Figure S5). 416

417 Cross validation using the xvalDapc function outcome the number of PCA axes retained against 418 the proportion of successful outcome prediction, which allowed retaining 40 PCA axes (considering the highest successful assignment- 88%, with the lowest mean squared error, MSE-419 420 17%) and 2 Discriminant Functions (explaining 87.5% of cumulative variance), for inferring the 5 genetic clusters (Supplementary Figure S6). When displaying loading plots from both 421 422 Discriminant Functions, one can determine which variables (i.e., alleles/loci) contributed the 423 most for the five-clustering assemblage. Considering both DAPC results (K = 9 and K = 10), the

same variables are responsible for cluster assemblage (i.e., 172 (mAoR6), 328 (mAoR17), 174 (mAoR35), 170 (mAoR47), which highlight the importance of these alleles for cluster discrimination (Supplementary Figure S6 and S9).

427 428

429

430

431

432 433

434

435

436 437

438

439

440 441

442

443

444

445 446

447

For the Bayesian analysis of the second approach, which included East-Timor and Indonesia populations, STRUCTURE was run considering the highest range of clusters conceivable (K =1–13). This analysis assigned K=2 as the optimal number of groups based on Evanno et al. (2005) method (Supplementary Figure S8), with no alternative ideal K. Considering the high ΔK values displayed for K=2 (Figure 5), two clusters were observed, the first cluster, in green, with Baucau, Cova Lima, Manatuto and Indonesia; and the second cluster, in red color, with Bobonaro, Manufahi and Viqueque populations (Figure 5A). For the DAPC analysis and based on the best number of clusters from STRUCTURE, K = 2 (Figure 5B), the cross-validation allowed retaining 20 PCA axes (considering the highest successful assignment- 93.5%, with the lowest mean squared error, MSE - 10%) and 2 Discriminant Functions (explaining 96.4% of cumulative variance), for inferring the two genetic clusters. For K = 2, there are differences between the STRUCTURE and DAPC analyses, a different admixture scenario is depicted, namely in DAPC genetic diversity in Baucau which is not shared with Indonesia, while Bobonaro, Manufahi and Viqueque populations has a common allelic diversity to Indonesia (Figure 5B), contrarywise to STRUCTURE optimal clustering (Figure 5A). These analytical inconsistencies may be related to different pre-requisites associated to both methods: STRUCTURE assumes that markers are not linked and that populations are panmictic (Pritchard et al., 2000), while DAPC are more convenient approaches for populations that are clonal or partially clonal. In this case, STRUCTURE provides a more realist observation of the genetic diversity of cashew populations, given the panmictic nature and absence of clonal populations even in cashew varieties.

448 449

450

451 Discussion

- A comprehensive sampling of cashew orchards in East-Timor was conducted by collecting 11 populations from major cashew producing districts in the country, to assess and characterize the genetic diversity and population structuring. A total of 207 individuals belonging to 14 cashew populations from three tropical countries (East-Timor, Mozambique, and Indonesia), using Indonesia and Mozambique populations (n=3) as outgroups, were screened using 16 cashew
- 457 specific microsatellites.

- 459 Cashew diversity assessment
- Fourteen different cashew populations were first genotyped with 16 SSRs, and SSRs quality assessment was done (**Table 3**). Four loci (mAoR12, mAoR33, mAoR41, mAoR29) were

462 discarded due an excess of null alleles in almost all populations (null allele frequency > 0.20), despite being polymorphic across the cashew populations analyzed and thus being an informative 463 marker for future diversity analysis. Thus, subsequent genetic diversity indices and population 464 structuring analyses were performed using 12 loci. PIC-values obtained were high (average PIC 465 466 = 0.65) which indicates high informativeness, and compared with a recent study using 21 cashew SSR (cSSR, Savadi et al., 2020) values were higher (0.33 average PIC-value). Differences on 467 PIC-values from our study might be due to distinct plant material sources compared to former 468 reports, which may influence the number of alleles detected at each SSR locus, though a 469 potential influence of the lower number of SSRs loci used should not be eliminated. When 470 471 analyzing null alleles presence and their effect on population structure, only 60 of the 224 locuscomparisons harbored null alleles with a frequency higher than 0.20. Overall, based on the 472 results of the preceding analysis, it is possible to predict that the SSRs loci used are suitable for 473 474 downstream genetic diversity analysis.

Genetic diversity observed in our study is high when compared to other cashew studies. Within 475 East-Timor, more alleles were found, which can be explained partly by a higher sampling effort 476 477 but also may be indicative of a reservoir of alleles associated to traits conferring tolerance to 478 various biotic and abiotic stresses or to local adaptation conditions. Our results show a higher allelic richness in East-Timor populations (Na=10.67, **Table 4**) than in Mozambique (Na=3.42) 479 and in Indonesia (Na=3.42), which highlights the high genetic diversity in East-Timor. 480 Nevertheless, only with the inclusion of more populations from Mozambique and Indonesia 481 could corroborate if Eat-Timor higher allelic richness. Within East-Timor, ETK population from 482 483 Manatuto district display the highest allelic richness (Na=5.17), followed by ETTR3 from Baucau district, with ETV from Viqueque having the lowest allelic diversity obtained (Na=2.25, 484 485 Table 4). Since in Viqueque district cashew orchards are less frequent in comparison with Baucau and Manatuto districts, where implementation of several orchards is occurring over the 486 last 20 years, less diversity is observed. The populations analyzed might reflect long-term 487 genetic diversity that can be exploited in a breeding program to improve yield and nut quality 488 (Kouakou et al., 2020). Moreover, identifying trees with high allelic richness is necessary for 489 conserving cashew germplasm (Bataillon et al., 1996). The number of private alleles found 490 within accessions is an important diversity measurement since these alleles represent genotypic-491 492 specific allelic build-up. Contrasting with previous SSRs studies in cashew (Savadi et al., 2020). private alleles were detected in our study, which may allow for the configuration of a unique 493 genetic signature of our populations, either by different allele frequencies or by unique alleles in 494 each population. This is of major importance in an agricultural crop like cashew, where nuts are, 495 frequently, exported and processed outside the producing countries, as it may lead to the 496 valorization of a domestic product with geographical origin. 497

The information regarding genetic diversity and population structuring in cashew is the primary impetus for this work; from 2006 to 2020, only a few papers were published especially in Southeast Asia and West Africa region. In comparison with a study done in Benin (West Africa),

our study show a much higher genetic diversity, where a lower genetic diversity (Shannon index = 0.04) was observed in 60 cashew morphotypes using eight SSR markers (Sika *et al.*, 2013). In Brazil, wild Brazilian populations of cashew were studied (dos Santos *et al.*, 2019), and the genetic diversity in wild populations was higher than in domesticated ones, despite a weak distinction between wild and domesticated groups and with no correlation between genetic and geographical interpopulation distance. In Côte d'Ivoire, genetic diversity of cashew was studied using SSRs and revealed an overall heterozygosity deficit and a high intra-population genetic diversity among the screened cashew populations (Kouakou *et al.*, 2020), which is in accordance with our results in AMOVA where most genetic diversity is depicted within populations. Our results also agree with a recent study from Burkina Faso, where a substantial genetic diversity was observed across the 18 cashew accessions screened with 4 SSRs (Moumouni *et al.*, 2022).

Population structuring in East-Timor

AMOVA showed that most of the genetic diversity lies within populations with little diversity present among populations or between populations in each country. The large proportion of diversity was found within accessions for the two types of groupings (countries MZ vs IND vs ET and ET vs IND) suggesting a high gene flow between populations, which is in accordance with previous studies (Freitas & Paxton, 1996). Cashew is an allogamous species favoring crossfertilization (Freitas & Paxton, 1996), thus allowing intraspecific hybridizations and heightening genetic variation. Overall, outcrossing species tend to have higher genetic variation within-populations, whereas selfing species or species with a mixed mating system are often genetically less variable (Nybom, 2004). Since cashew is an outcrossing, negative to low inbreeding coefficients (*F*) were expected, which agrees with former studies (Freitas & Paxton, 1996; Layek *et al.*, 2021).

Moreover, population structuring revealead that genetic diversity scattering does not follows a clear geographic trend, despite a well-defined clustering observed between Mozambican populations with the remaining East-Timorese/Indonesian populations. The unique clustering attributed to Mozambican populations may be related to in-country cashew varieties selection, different from the ones used by farmers in both Indonesia and East-Timor, and also due to being a continental region in comparison to the geographical isolation of the island countries, Indonesia and East-Timor. When narrowing to East-Timor, a complex population structuring is observed which is linked to a district- associated genetic diversity. Within the country, Viqueque, Manufahi and Bobonaro districts display a unique allelic diversity; while Baucau, Cova Lima and Manatuto has a high genetic similarity with the Indonesian population. These dissimilar results when including vs excluding Mozambican populations, highlights the complex genetic diversity of cashew in the context of a continental (Mozambique) country where orchards have been implemented at long-term with improved varieties, while in Indonesia and East-Timor surely a different historical context with few progression into improved varieties, is being

540 applied. These results are in accordance with previous results in India (Archak et al., 2009), 541

where cashew genetic diversity lies within geographical populations and also the sharing of

allele frequencies among populations does not translates into an in-country population 542

543 structuring.

557

558 559

560

561

562 563

564

565

566

567 568

569

570

571

572 573

574

575

576 577

578

544 The clustering of cashew populations in this study had an uncommon, yet existing, relationship 545 with geographical region under a district-wise distribution, which is contrary to previous reports 546 in India (Archak et al., 2009), where no relationship with the geographic region was observed. 547 One of the reasons for a genetic diversity pattern according to district sampled may be related to 548 current cashew orchards in each district been engaged into different cashew varieties according to seeds availability and farmers' preferences, many of which associated to better trees local 549 550 performance and yield. Considering that few cashew varieties have been introduced in the country, this genetic diversity distribution may be associated to inter-exchange of seed material 551 552 adapted to similar ecological conditions. Despite a high genetic diversity attributed to the high heterozygosity, allogamous nature and high gene flow found in cashew (Mitchell & Mori, 1987; 553 Borges, 2018), also obtained in our study, in certain East-Timor districts as Bobonaro, Vigueque 554 555 and Manufahi, the dissimilar genetic clustering from the remaining districts suggests a diverse 556 genetic build-up, which could be attributed to different cashew varieties being planted.

Fixation Index F (also called the Inbreeding Coefficient) exhibits values from -1 to +1. Values close to zero are expected under random mating, while substantial positive values indicate inbreeding or undetected null alleles (Monteiro et al., 2016). Negative values denote excess of heterozygosity, due to negative assortative mating, or selection for heterozygotes. Overall, positive F-values were observed across all populations (**Table 4**), thus revealing that populations are at or near Hardy-Weinberg equilibrium, further supported by the lower observed heterozygosity values against the expected under HWE (Table 4). Among the cashew populations collected (associated with different geographic regions), inbreeding coefficient was lowest in the northern Bobonaro district (ETSAN, F=-0.04; ETMA, F=0.14; ETBAT, F=0.01, **Table 4**) and southern Viqueque district (ETV, F = -0.09), possibly because growers from both regions easily exchange seeds with the other regions. In contrast, Cova Lima district (south) showed the highest inbreeding coefficient (F=0.26). Both Bobonaro and Vigueque districts display a significant share of exchange of planting material: in Bobonaro from Indonesia and in Viqueque from Australia. Thus, its genetic richness might benefited from different introduced seeds and more varied germplasm imported than in other regions. In the studied populations, positive F values was observed which may indicate some level of inbreeding. The difference between expected heterozygosity and observed heterozygosity might be due to evolutionary factors (as inbreeding) or internal genetic factors (such as gene incompatibility). In addition, cashew grower's seeds preference for establishing new orchards might be another explanation. Indeed, when establishing new cashew orchards, some producers used seeds from a single tree with good traits (preferentially high-yield and large-nuts). Moreover, according to Ahmed & Saddi (2012), the genetic makeup of a given population can vary over time in response to

- 579 evolutionary forces that in turn affect the heterozygosity of the population relative to the Hardy-
- Weinberg equilibrium. 580
- Considering the 11 populations studied from East-Timor, population differentiation (F_{ST} = 0.129, 581
- Table 5) was relatively moderate in comparison to other studies in Côte d'Ivoire (Kouakou et al., 582
- 583 2020) where a low differentiation was indicative of a common origin of Ivorian cashew trees.
- However, it cannot be discarded that moderate differentiation could be associated to a lesser 584
- 585 number of molecular markers used in our study (12 SSRs vs 18 SSRs in Kouakou et al. (2020)).
- 586 In India, a similarly low genetic diversity among cashew trees was associated to a relatively
- 587 recent introduction in the country (Archak et al., 2009), which is also reported in other countries
- (e.g. Benin, Kouami et al., 2020), except in Brazil. In East-Timor case, two different scenarios of 588
- cashew genetic diversity are conceivable, namely: i) possible multiple introductions from 589
- Bobonaro and Viqueque districts, these regions being regarded as cashew introduction hotspots 590
- 591 in East-Timor; and ii) introduction of new cashew varieties on the remaining districts according
- to farmers preference. 592

- 593 Also, the moderate genetic variability among the populations screened could be due to the
- relatively recent introductions into East-Timor on evolutionary timescale and the allogamous 594
- 595 nature of cashew resulting in the high gene flow and exchange of genetic material. The
- unexplored yet high genetically diverse accessions from East-Timor could be used in future 596
- 597 cashew breeding programs to improve yield, quality, and other traits.
- 598 East-Timor as an explored yet important source of cashew genetic diversity
- 599 The wide distribution of cashew in its primary center of diversity, in Brazil, has been attributed
- to water currents in which the mature fruit will float in addition to the role played by bats in seed 600
- dispersal (Johnson, 1973). However, outside its center of origin, cashew distribution, since its 601
- introduction in India, has been attributed to anthropogenic efforts, rather than through natural 602
- means alone, (Archak et al., 2009). Considering this important premise, the present genetic 603
- diversity analysis is discussed accordingly. The extent and distribution of genetic diversity as 604
- revealed by the present study provide some clues of cashew introduction mode and expansion in 605
- 606 East-Timor. The existence of substantial overall genetic diversity and populations' grouping into
- 607 two distinct genetic groups in East-Timor point to multiple events of introduction comprising
- different founder populations. These results are in accordance with a recent report that suggests 608

several introductions in Burkina Faso, and then, well performed cashew cultivars were

- 610 disseminated through the same route across producing areas, without a single cultivar selection
- to a particular producing region (Moumouni et al., 2022). If the introduction occurred as a one-611
- time event, founder effect would have been reflected in low genetic diversity. Nowadays, cashew 612
- expansion in East-Timor has been promoted mainly through the introduction of different 613
- varieties from Brazil, Indonesia, Australia and a so-called "native" cashew. According to the 614
- 615 information obtained from the National Directorate of Industrial Crops and Agribusiness

(Ministry of Agriculture, Forestry and Fisheries (MAFF) of East-Timor), the Portuguese brought the cashew to East-Timor (ET) in the 18th century, where it was planted as ornamental plants in various districts. Since the establishment of cashew as an industrial crop in the 1990's (Buss & Ferreira, 2010; Odete et al., 2017), no proper orchards management have been applied in terms of varieties introduced. In Cova Lima district, cashew orchards were implemented in 1990s and few new cashew varieties have been introduced. At Manatuto and Baucau districts, cashew orchards were planted with accessions retrieving higher yield and better-adapted to local agro-ecological conditions. During fieldwork at Bobonaro and Viqueque districts, land farmers reported that several cashew accessions were being introduced, namely from Indonesia and Australia, hence such a different genetic clustering may be associated to farmers preferences thus shaping current East-Timor cashew genetic diversity panorama.

Considering that India was an important country, where cashew was first introduced as a commercial crop in Asia (Singh, 2018), future studies should include Indian cashew populations aiming to explain the genetic diversity within East-Timor and assist on the historical introduction in the country. As also reported in India (Archak *et al.*, 2009), in East-Timor a relatively significant genetic diversity for an introduced species was observed, thus supporting the possibility of cashew being introduced repeatedly over time. Contrary to our data, a significant level of redundancy (homogenous group) was reported within Nigerian cashew germplasm (Aliyu, 2012), thus highlighting a narrow genetic diversity. Our results in East-Timor are of major importance, since the country aims to invest in cashew nut exports market, and thus assessing genetic diversity will allow detecting the existence of an East-Timor genetic signature that will acknowledge the valorization of cashew nuts. Thus, this should be taken in consideration by the local Government, since East-Timor would compete directly with countries such as India and Vietnam, which are among the major world cashew nuts exporters.

This study provides useful information on genetic diversity assessment on cashew populations in a largely understudy country, where cashew nuts is becoming an important export-oriented crop, and thus the genetic diversity build-up obtained in our study, point out to a cashew genetic diversity hotspot. Cashew has been implemented under a monoculture system and land cropping area has been increasing to meet global market needs (Monteiro *et al.*, 2017). This, together with a scenario of rising potential of pest and diseases (Monteiro *et al.*, 2015; 2017) and the current narrow genetic diversity of cashew orchards is a major concern to its future sustainable production. Thus, the incorporation of genetic resources with new genetic diversity should be foreseen towards the development of varieties with improved agronomic traits, such as higher yield, biotic and abiotic stress tolerance. Also the increase of the genetic diversity of on-farm orchards at the short run and the identification of genetic resources for the development of cashew genetic management should not be neglected.

Conclusions

654 Our results show a higher allelic richness in East-Timor populations than in Mozambique and Indonesia, reinforced by the presence of private alleles. Genetic diversity was observed within 655 populations, in accordance with former studies. Population structuring revealed that the genetic 656 diversity seems to follow a geographic trend, with a well-defined cluster observed in 657 658 Mozambican populations and other in East-Timor/Indonesia. Within East-Timor, a districtassociated genetic diversity clustering into two genetic groups was seen, which may point to 659 multiple events of cashew introduction. This study provides useful information on genetic 660 diversity hotspots, which can be used to improve genetics and characterize new types in a future 661 breeding effort. East-Timor is one of the countries where cashew nuts are becoming an important 662 tradeable agriculture product, and the genetic diversity build-up obtained in our study point out 663 to cashew agrobiodiversity hotspots. The findings of this study are also applicable to the 664 development or preservation of genetic resources for cashew in a understudied country as East-665 Timor, towards the development of a management and conservation plan of cashew genetic 666 667 resources. Considering that East-Timor is engaging into cashew as an important crop, the genetic diversity build-up obtained would be important for assessing an in-country genetic signature to 668 increase the crop market value, and thus competitiveness. 669

670

671

Acknowledgements

The authors would like to acknowledge all farmers from East-Timor for their significant contribution during fieldwork, the Ministry of Agriculture, Forestry and Fisheries (MAFF) of East-Timor for logistics support, and Sílvia Catarino for map representation in Figure 1.

675

676

Author Contributions

- Conceptualization, F.M. and M.M.R.; methodology, F.M, L.G., J.B. and A.B.B.; formal analysis,
- 678 J.B., A.B.B., A.C. and F.M.; investigation, L.G. and J.B.; writing—original draft preparation,
- 679 L.G., J.B. and F.M.; writing—review and editing, A.B.B., A.C., M.C.D. and M.M.R.;
- supervision, M.M.R. and F.M. All authors have read and agreed to the published version of the
- 681 manuscript.

682

683

Funding

- 684 This research was funded by FCT Fundação para a Ciência e a Tecnologia, I.P. under the
- 685 project GenoCash (PTDC/ASP-AGR/0760/2020). Fellowships were funded by Portuguese
- 686 National Funds through FCT, Portugal: SFRH/BD/135358/2017 to L.G. and
- 687 SFRH/BD/135360/2017 to A.C., and research units: UID/AGR/04129/2020 (LEAF);
- 688 UID/BIA/00329/2020 (cE3c). Fellowship to J.B. was funded by FAO/UN (TCP/GBS/3801). The
- 689 APC was funded by Fundação para a Ciência e Tecnologia (FCT) under the GenoCash project
- 690 (PTDC/ASP-AGR/0760/2020).

692

Data Availability Statement

- 693 Data is contained within the article or supplementary material. Genotypic matrix
- 694 (https://doi.org/10.6084/m9.figshare.19119041.v3) and DAPC script
- 695 (https://doi.org/10.6084/m9.figshare.19117889.v3) are available at the online figshare repository.

696 Conflicts of Interest

The authors declare that they have no competing interests.

698

References

699 700

703

704

705

706 707

708

- Aliyu OM, Awopetu JA. 2007. Multivariate analysis of cashew (*Anacardium occidentale* L.) germplasm in Nigeria. *Silvae Genetica* 56:170–179. DOI: 10.1515/sg-2007-0026.
 - Aliyu OM. 2012. Chapter 9: Genetic Diversity of Nigerian Cashew Germplasm. *In* Genetic Diversity in Plants, Çalişkan M. (Ed.). IntechOpen. Pp 163-184. https://doi.org/10.5772/32892.
 - ARPAPET. 1996. Agro-climatic Zones of East Timor. (Lindsay Evans, April, 1996). Indonesia-Australia Development Cooperation, Agricultural and Regional Planning Assistance Program East Timor, Kantor Wilayah Departmen Pertanian Propinsi Timor Timur, Jalan Estrada de Balide, Dili, Timor Timur 88112, Indonesia.
- 710 Archak S, Gaikwad AB, Swamy KRM, Karihaloo JL. 2009. Genetic analysis and historical perspective of cashew (*Anacardium occidentale* L.) introduction into India. *Genome* 52:222–230. DOI: 10.1139/G08-119.
- Barros A, Barnabé J, Guterres L, Monteiro F. 2022. Script for performing DAPC analysis applied to the study of population structure and genetic diversity in cashew from East-Timor. *Figshare Software*. DOI: https://doi.org/10.6084/m9.figshare.19117889.v3.
- Bataillon M, David J L, & Schoen D J. 1996. Neutral genetic markers and conservation genetics:
 simulated germplasm collections. *Genetics*, 144 (1), 409-417.
- 718 Borges D. 2018. Cultures du Timor-Oriental: processus d'objectification. *Plural Pluriel revue*719 *des cultures de langue portugaise*. (Avalaible on https://www.pluralpluriel.org/index.php/revue/issue/view/16).
- Brownstein MJ, Carpten JD, Smith JR. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. *BioTechniques* 20:1004–1010. DOI: 10.2144/96206st01.
- Buss PM, Ferreira JR. 2010. Diplomacia da saúde e cooperação Sul-Sul: as experiências da
 Unasul saúde e do Plano Estratégico de Cooperação em Saúde da Comunidade de Países de
 Língua Portuguesa (CPLP). *Reciis* 4:106–118. DOI: 10.3395/reciis.v4i1.351pt.
- 727 Cavalli-Sforza LL, Edwards AW. 1967. Phylogenetic analysis. Models and estimation procedures. *American Journal of Human Genetics* 19:233–257. DOI: 10.2307/2406616.
- Sika KC, Adoukonou-Sagbadja H, Ahoton LE, Adebo I, Adigoun FA, Saidou, A & Baba-Moussa, L. 2013. Indigenous knowledge and traditional management of cashew (*Anacardium occidentale* L.) genetic resources in Benin. J. Exp. Biol. Agric. Sci, 1(5), 375-382.
- 733 Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population

- differentiation. *Molecular Biology and Evolution* 24:621–631. DOI: 10.1093/molbev/msl191.
- Chipojola FM, Mwase WF, Kwapata MB, Bokosi JM, Joyce P, Maliro MF. 2009. Morphological
 characterization of cashew (*Anacardium occidentale* L.) in four populations in Malawi.
 African Journal of Biotechnology 8:5173–5181.
- Croxford AE, Robson M, Wilkinson MJ. 2006. Characterization and PCR multiplexing of
 polymorphic microsatellite loci in cashew (*Anacardium occidentale* L.) and their cross species utilization. *Molecular Ecology Notes* 6:249–251. DOI: 10.1111/j.1471 8286.2005.01208.x.
- Culley TM, Stamper TI, Stokes RL, Brzyski JR, Hardiman NA, Klooster MR, Merritt BJ. 2013.
 An Efficient Technique for Primer Development and Application that Integrates Fluorescent
 Labeling and Multiplex PCR. Applications in Plant Sciences 1:1300027. DOI:
 10.3732/apps.1300027.
- de Carvalho BRP, Mendes H. 2016. Cashew chain value in Guiné-Bissau: Challenges and contributions for food security: A case study for Guiné-Bissau. *International Journal on Food System Dynamics* 7:1–13. DOI: 10.18461/ijfsd.v7i1.711.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38.
- dos Santos JO, Mayo SJ, Bittencourt CB, de Andrade IM. 2019. Genetic diversity in wild populations of the restinga ecotype of the cashew (*Anacardium occidentale* L.) in coastal Piauí, Brazil. *Plant Systematics and Evolution* 305:913–924. DOI: 10.1007/s00606-019-01611-4.
- Farl DA, Bridgett M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. :359–361. DOI: 10.1007/s12686-011-9548-7.
- Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the
 software STRUCTURE: A simulation study. *Molecular Ecology* 14:2611–2620. DOI:
 10.1111/j.1365-294X.2005.02553.x.
- Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology Resources* 10:564–567. DOI: 10.1111/j.1755-0998.2010.02847.x.
- Freitas BM, Paxton RJ. 1996. The role of wind and insects in cashew (*Anacardium occidentale* L.) pollination in NE Brazil. *Journal of Agricultural Science* 126:319–326. DOI: 10.1017/s0021859600074876.
- Fox JJ. 2003. Drawing from the past to prepare for the future: responding to the challenges of food security in East Timor. *In* Agriculture: New Directions for a New Nation East Timor (Timor-Leste), da Costa H, Piggin C, Fox J, da Cruz CJ (eds.). *Proceedings of workshop 1–3 October 2002, Dili, East Timor ACIAR Proceedings* 113: 105-114.
- Government of East-Timor. 2015. Population and Housing Census 2015: Preliminary Results.
 Direcção Geral de Estatística de East-Timor. Pp 1- 39. http://www.statistics.gov.tl/wp-content/uploads/2015/10/1-Preliminary-Results-4-Printing-Company-19102015.pdf.
- Guterres L, Barnabé J, Monteiro F. 2022. Genotypic matrix for studying the cashew population structure and genetic diversity in East-Timor. *Figshare Dataset*. DOI: https://doi.org/10.6084/m9.figshare.19119041.v3.
- Harmadi SHB & Gomes RA. 2013. Developing Timor-Leste's Non-Oil Economy: Challenges and Prospects. Journal of Southeast Asian Economies, 30(3), 309–321.

- 780 http://www.jstor.org/stable/43264687
- 781 Havik PJ, Monteiro F, Catarino S, Correia AM, Catarino L, Romeiras MM. 2018. Agro-782 economic transitions in Guinea-Bissau (West Africa): Historical trends and current insights. 783 Sustainability 10:1–19. DOI: 10.3390/su10103408.
- Hill W G. 1996. Genetic Data Analysis II. By Bruce S. Weir, Sunderland, Massachusetts. 784 785 Sinauer Associates, Inc. 445 pages. ISBN 0-87893-902-4. Genetics Research, 68(2), 187-786
- 787 Holleley CE, Geerts PG. 2009. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques 46:511–517. DOI: 10.2144/000113156. 788
- 789 (International Nut and Dried Fruit Council Foundation. 2020. Nuts & Dried Fruits Statistical 790 Yearbook 2019 2020. Pp 1-80. Available https://www.nutfruit.org/files/tech/1587539172 INC Statistical Yearbook 2019-2020.pdf 791
- 792 Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for 793 dealing with label switching and multimodality in analysis of population structure. 23:1801– 1806. DOI: 10.1093/bioinformatics/btm233. 794
- 795 Johnson JW. 1973. The botany, origin, and spread of the cashew Anacardium occidentale L. 796 *Journal of Endodontics* 1:1–7. DOI: 10.1016/S0099-2399(06)81513-X.
- 797 Jombart T, Balloux F. 2009. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. *PLoS Computational Biology* 5. DOI: 798 799 10.1371/journal.pcbi.1000455.
- Jombart T. 2008. Adegenet: a R package for the multivariate analysis of genetic markers. 800 Bioinformatics 24: 1403–1405. doi: 10.1093/bioinformatics/btn129
- 802 Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* 2014:1–14. DOI: 803 804 10.7717/peeri.281.
- 805 Kouakou CK, Adopo AN, Djaha AJB, N'da DP, N'da HA, Bi IAZ, Koffi KK, Djidji H, Minhibo MY, Dosso M, N'guessan AÉ. 2020. Genetic characterization of promising high-yielding 806 807 cashew (Anacardium occidentale L.) cultivars from Côte d'Ivoire. Biotechnology, Agronomy 808 and Society and Environment 24:46–58. DOI: 10.25518/1780-4507.18464.
- Kouami N'D, Adolphe A, Hubert A-S, Barnabas W, Raphiou M, SaliouB, Vinou Yémalin Alfred 809 VY. 2020. Yield and Nut Quality of 29 Cashew Mother Trees (Anacardium occidentale L) 810 811 Established At the Germplasm of Ouoghi in Central Region of Benin. *International Journal* 812 of Advanced Research 8:1144–1152. DOI: 10.21474/ijar01/11946.
- Layek U, Bera K, Bera B, Bisui S, Pattanayek SK, Karmakar P. 2021. Assessment of yield 813 enhancement in cashew (Anacardium occidentale L.) by the pollinator sharing effect of 814 magnetic bee-friendly plants in India. Acta Ecologica Sinica 41:243-252. DOI: 815 10.1016/j.chnaes.2021.05.003. 816
- MAFF. 2004. MAFF (Ministry of Agriculture, Forestry and Fisheries of East-Timor). :MAFF 817 818 website. Available at: http://www.gov.east-ti.
- Massari F. 1994 Introduction. In "The World Cashew Economy." NOMISMA, L'Inchiostroblu, 819 820 Bol. Italy. (A. M. Del, pp. 3–4.) 443831467999735473/102933.
- 821 Mitchell JD, Mori SA. 1987. The cashew and its relatives (Anacardium: Anacardiaceae). El marañón y sus parientes (Anacardium: Anacardiaceae). Biblioteca OET: M 42:v. 42, 1-76. 822 823 Año 1987.
- 824 Mneney EE, Mantell SH, Bennett M. 2001. Use of random amplified polymorphic DNA 825 (RAPD) markers to reveal genetic diversity within and between populations of cashew

- (Anacardium occidentale L.). Journal of Horticultural Science and Biotechnology 76:375–383. DOI: 10.1080/14620316.2001.11511380.
- Monteiro F, Catarino L, Batista D, Indjai B, Duarte MC, Romeiras MM. 2017. Cashew as a high agricultural commodity in West Africa: Insights towards sustainable production in Guinea-Bissau. *Sustainability* 9:1–14. DOI: 10.3390/su9091666.
- Monteiro F, Romeiras MM, Figueiredo A, Sebastiana M, Baldé A, Catarino L, Batista D. 2015.

 Tracking cashew economically important diseases in the West African region using metagenomics. *Frontiers in Plant Science* 6:1–6. DOI: 10.3389/fpls.2015.00482.
- Monteiro F, Vidigal P, Barros AB, Monteiro A, Oliveira HR. 2016. Genetic Distinctiveness of Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources. *Frontiers in Plant Science* 7:1–17. DOI: 10.3389/fpls.2016.01334.
- Moumouni K, Vianney TW, Larbouga B, Issa W. 2022. Genetic diversity assessment among 18 837 elite cashew tree genotypes (Anacardium occidentale L.) selected in Western Burkina Faso. 838 839 Plant Journal of Breeding and Crop Science 14(1): 1-11. https://doi.org/10.5897/JPBCS2021.0986 840
- Nei M. 1972. Genetic Distance between Populations. *The American Naturalist* 106:283–292. DOI: 10.1086/282771.
- Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. *Molecular Ecology* 13:1143–1155. DOI: 10.1111/j.1365-294X.2004.02141.x.
- Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in R language. 20:289–290. DOI: 10.1093/bioinformatics/btg412.
- Park SDE. 2001. Trypanotolerance in West African cattle and the population genetic effects of selection [PhD thesis]. [Dublin (Ireland)]: University of Dublin.
- Peakall R, Smouse PE. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6:288–295. DOI: 10.1111/j.1471-8286.2005.01155.x.
- Peng RK, Christian K, Gibb, K. 2009. The Improvement of Cashew Crop in East Timor. Report to the Ministry of Agriculture and Fisheries of East Timor.
- Pradhan C, Peter N, & Dileep N. 2020. Nuts as Dietary Source of Fatty Acids and Micro Nutrients in Human Health. *In* V. Rao, L. Rao, M. Ahiduzzaman, & A. K. M. A. Islam (Eds.), Nuts and Nut Products in Human Health and Nutrition. IntechOpen. https://doi.org/10.5772/intechopen.94327
- Pritchard J K, Stephens M, & Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.
- R Core Team. 2021 R: A Language and Environment for Statistical Computing. R Found. Stat.
 Comput. Vienna, Austria.
- Rambaut A. 2014. FigTree v1. 4.2, a graphical viewer of phylogenetic trees. Available from left angle bracket http://tree. bio. ed. ac. uk/software/figtree/right angle bracket.
- República Democrática de Timor-Leste. 2011 East-Timor Strategic Development Plan 2011 2030. Pp 1- 228. https://www.adb.org/sites/default/files/linked-documents/cobp-tim-2014-2016-sd-02.pdf.
- Rice WR. 2013. Analyzing Tables of Statistical Tests. *Evolution*, 43(1): 223-225.
- Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure.

 Molecular Ecology 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x
- 871 Rousset F. 2008. GENEPOP'007: A complete re-implementation of the GENEPOP software for

872	Windows and Linux. Molecular Ecology Resources 8:103-106. DOI: 10.1111/j.1471-
873	8286.2007.01931.x.
874 875	Salehi B, Gültekin-Özgüven M, Kirkin C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Da Silva TG, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M
876	Yousaf Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Martins N
877	Cho WC. 2019. Anacardium plants: Chemical, nutritional composition and biotechnologica
878	applications. <i>Biomolecules</i> 9:1–34. DOI: 10.3390/biom9090465.
879	Savadi S, Megha KSVS, Mohana BMMGS. 2020. Genetic diversity and identification of
880	interspecific hybrids of Anacardium species using microsatellites. Brazilian Journal of
881	Botany 2026. DOI: 10.1007/s40415-020-00678-5.
882	Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments A poor
883	man's approach to genotyping for research and high-throughput diagnostics. <i>PRism</i> 18:1–2.
884 885	Singh AK. 2018. Early History of Crop Presence/Introduction in India: III. <i>Anacardiun occidentale</i> L. <i>Cashew Nut. Asian Agri-History</i> 22. DOI: 10.18311/aah/2018/21389.
886	Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER: Software
887	for identifying and correcting genotyping errors in microsatellite data. <i>Molecular Ecology</i>
888	Notes 4:535–538. DOI: 10.1111/j.1471-8286.2004.00684.x.
889	Weir BS, Cockerham CC. 1984. Estimating F-Statistics for the analysis of population structure
890	Evolution 38:1358–1370. doi: 10.2307/2408641.
891	
892	
893	
894	
895	
896	
897	
898	
899	
900	
901	
902	
903	
904	
905	
906	
907	
908	
909	
010	

911 912	Tables
913 914	Table 1. Populations by country, district and location, geographical coordinates and total individuals sampled (N).
915	
916 917 918	Table 2. Loci used to screen 14 cashew populations. Primers sequences, multiplexing scheme amplicon size range (bp) and amplicon expected size (bp) are provided.
919 920 921 922 923 924	Table 3. Marker's diversity measurements. The level of genetic diversity of each SSR marker was described with the parameters of total number of alleles, Polymorphism Information Content (PIC), gene diversity (expected heterozygosity, H_e), observed heterozygosity (H_o) inbreeding/fixation coefficient (F). About 207 individuals from 14 populations were analyzed for each locus.
925 926 927 928 929 930 931	Table 4. Genetic diversity indices by a country analysis and a population approach scheme Countries: Mozambique (MZ, 2 populations), Indonesia (IND, 1 population) and East-Timor (ET, 11 populations); Number of populations: 14. Sample size (N). Genetic diversity indices for each group were assessed by mean alleles per locus (Na), expected heterozygosity (He) and observed heterozygosity (HO) with corresponding standard deviation (SD) values, private alleles (P_A) and inbreeding/fixation coefficient (F).
932 933 934 935	Table 5. AMOVA results including fixation indices $F_{\rm CT}$, $F_{\rm SC}$, and $F_{\rm ST}$. Legend: $V_{\rm a}$, variance among populations; $V_{\rm b}$, variance within populations; $V_{\rm c}$, variance within individuals.
936	Figures
937 938 939 940 941 942 943	Figure 1 . Geographical location of cashew populations studied at Mozambique (A), Indonesia (B) and East-Timor (C), and illustrative orchards from East-Timor (D-H) and Indonesia (I). Legend: Illustrative orchards from some plantations sampled in East-Timor (D-H): Natarbora-Manatuto district (D), Mailiana in Bobonaro district (E), Triloca in Baucau district (F), Fatucahi in Manufahi (G), Viqueque (H); and in Kefamenanu in Indonesia (I).
944 945	Figure 2. UPGMA (A) and NJ (B) trees generated from <i>FreeNA</i> using matrix DC^{INA} of East-Timor, Indonesia, and Mozambique dataset. Legend: (\square Manatuto, \square Bobonaro, \blacksquare Baucau, \blacksquare
946	Cova Lima ■ Manufahi ■ Viguegue ❖ Indonesia ▲ Mozambigue)

PeerJ

940	rigure 5. OPOMA (A) and NJ (b) trees generated from FreeNA using matrix DC presenting
949	East-Timor and Indonesia populations. Legend: (□ Manatuto, ⊡ Bobonaro, ■ Baucau, ■ Cova
950	Lima, ■ Manufahi, Viqueque, Indonesia).
951	
952	Figure 4. Clustering based on SSR data of the optimal K-means using STRUCTURE (A) for
953	populations of Mozambique, East-Timor, and Indonesia; and DAPC analyses representation of K
954	=5 (B).
955	
956	Figure 5. Optimal K - means individual-based clustering using STRUCTURE ($K = 2$, A) for
957	populations of East-Timor and Indonesia and DAPC analyses of $K=2$ (B).
958	
959	
960	
961	
962	
963	
964	
965	
966	
967	
968	
969	
970	
971	
972	
973	
974 975	
976	
977	
978	
979	
980	
981	
982	
983	
984	
985	
986	
987	

990

Supplementary Materials

- 991 **Table S1**. Hardy–Weinberg equilibrium (HWE) test for each locus-population combination
- 992 using GenePop v4.5.
- 993 Table S2. Linkage Disequilibrium (LD) test for each locus-population combination using
- 994 GenePop v4.5.
- 995 **Table S3**. Pairwise F_{ST} (lower-left matrix) and F_{ST} ENA (upper-right matrix) between all
- 996 populations of East-Timor, Indonesia and Mozambique.
- 997 **Table S4**. Pairwise F_{ST} (lower-left matrix) and F_{ST} ENA (upper-right matrix) between all
- 998 populations of East-Timor and Indonesia.
- 999 Figure S1. UPGMA (A) and NJ (B) trees generated using matrix Nei's D distance, respectively,
- 1000 representing the population from East-Timor, Indonesia, and Mozambique.;
- 1001 Figure S2. UPGMA (A) and NJ (B) trees generated using matrix Nei's D distance, respectively,
- 1002 representing the population from East-Timor and Indonesia.
- 1003 Figure S3. STRUCTURE ad hoc statistics retrieved by StructureHarvester using 1 to 15 possible
- 1004 clusters (K). Variation of ΔK values according to Evanno et al. (2005) method for populations
- 1005 from East-Timor, Indonesia and Mozambique.
- 1006 Figure S4. DAPC results inference of the number of clusters using *find.clusters* function with a
- 1007 K = 10 (left) and K = 5 (right).
- 1008 Figure S5. Scatterplot of DAPC for K = 5 assignment.
- 1009 Figure S6. Loading plots of the two Discriminant Functions following DAPC analysis with a K
- 1010 = 5.
- 1011 Figure S7. STRUCTURE ad hoc statistics retrieved by StructureHarvester using 1 to 12 possible
- 1012 clusters (K). Variation of ΔK values according to Evanno et al. (2005) method for populations
- 1013 from East-Timor and Indonesia.
- 1014 Figure S8. Number of clusters inferred by DAPC find.clusters function with a K = 5 and K = 2.
- 1015 **Figure S9.** Loading plot of the DF1 following DAPC analysis with a K=2, after assigning a
- 1016 0.045 as threshold.

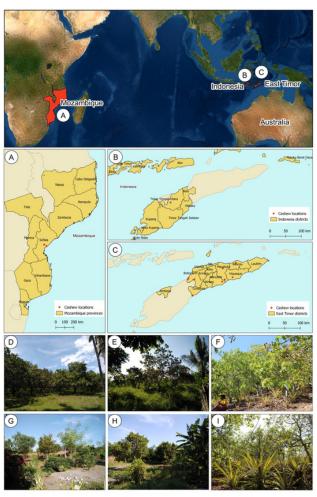


Figure 1

Figure 1. Geographical location of cashew populations studied at Mozambique (A), Indonesia, in Kefamenanu (B) and East-Timor (C), and illustrative orchards from East-Timor (D-H) and Indonesia (I).

Illustrative orchards from some plantations sampled in East-Timor (D-H): Natarbora-Manatuto district (D), Mailiana in Bobonaro district (E), Triloca in Baucau district (F), Fatucahi in Manufahi (G), Viqueque (H); and in Kefamenanu in Indonesia (I).

Figure 1. Geographical location of cashew populations <u>studied at Mozambique</u> (**A**), Indonesia, in Kefamenanu (**B**) and East-Timor (**C**), and illustrative orchards from East-Timor (**D**-**H**) and Indonesia (**1**).

Legend: Illustrative orchards from some plantations sampled in East-Timor (D-H):
Natarbora-Manatuto district (D), Mailiana in Bobonaro district (E), Triloca in Baucau district (F), Fatucahi in Manufahi (G), Viqueque (H): and in Kefamenanu in Indonesia (I).

Eliminou: sampled in the three tropical countries:

Eliminou: . Cashew

Eliminou: of the

Eliminou: Kefamenanu in Indonesia

Eliminou:

Eliminou: Viqueque

Figure 2

UPGMA (A) and NJ (B) trees generated from FreeNA using matrix DC^{INA} of East-Timor, Indonesia, and Mozambique dataset.

Legend: (☐ Manatuto, ☐ Bobonaro, ☐ Baucau, ☐ Cova Lima, ☐ Manufahi, ☐ Viqueque, ❖ Indonesia, ▲Mozambique).

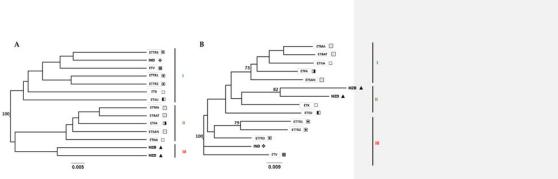


Figure 2. UPGMA (A) and NJ (B) trees generated from *FreeNA* using matrix *DC*^{INA} of East-Timor, Indonesia, and Mozambique dataset. Legend: (□ Manatuto, □ Bobonaro, □ Baucau, □ Cova Lima, □ Manufahi, ▦ Viqueque, ❖ Indonesia, ▲ Mozambique).

Eliminou: respectively representing the population from Eliminou: dataset

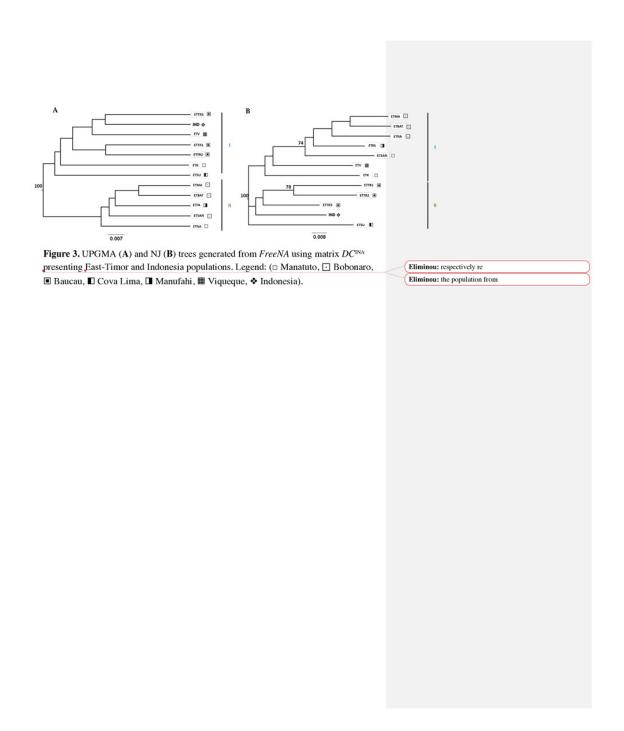


Figure 3

UPGMA (A) and NJ (B) trees generated from FreeNA using matrix DC^{INA} presenting East-Timor and Indonesia populations.

Legend: (☐ Manatuto, ☐ Bobonaro, ■ Baucau, ■ Cova Lima, ■ Manufahi, ■ Viqueque, ❖ Indonesia).

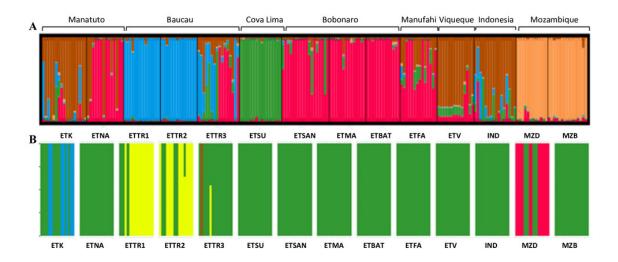


Figure 4

Clustering based on SSR data of the optimal K-means using STRUCTURE (A) for populations of Mozambique, East-Timor, and Indonesia; and DAPC analyses representation of K=5 (B).

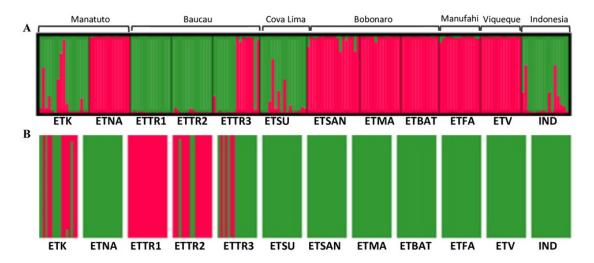

Figure 4. Clustering based on SSR data of the optimal K-means using STRUCTURE (**A**) for populations of Mozambique, East-Timor, and Indonesia; and DAPC analyses representation of K = 5 (**B**).

Figure 5

Optimal K- means individual-based clustering using STRUCTURE (K = 2, A) for populations of East-Timor and Indonesia and DAPC analyses of K=2 (B).

Figure 5. Optimal K- means individual-based clustering using STRUCTURE ($K = 2, \mathbf{A}$) for populations of East-Timor and Indonesia and DAPC analyses of K=2 (\mathbf{B}).

Table 1(on next page)

Populations by country, district and location, geographical coordinates and total individuals sampled (N).

- 1 Table 1. Populations by country, district and location, geographical coordinates and the total
- 2 number of individuals sampled by population (N).

Country	District	Location	Population	Latitude	Longitude	N
	Monotuto	Kribas	ETK	-8.650	125.983	17
	Manatuto	Natarbora	ETNA	-8.974	126.045	14
			ETTR1	-8.490	126.370	14
	Baucau	Triloca	ETTR2	-8.491	126.370	14
		1111000	ETTR3	-8.487	126.370	16
East Timor (ET)	Cova Lima	Suai	ETSU	-9.432	125.108	16
	Bobonaro	Sanirin	ETSAN	-8.925	124.986	18
		Maliana	ETMA	-8.966	125.156	14
		Batugade	ETBAT	-8.965	124.966	13
	Manufahi	Fatucahi	ETFA	-9.032	125.968	14
	Viqueque	Viqueque	ETV	-8.907	126.273	14
Indonesia (IND)	Kota Kefamenanu	Kefamenanu	IND	-9.437	124.485	16
Mozambique (MZ)	Sofala	Beira	MZB	-19.723	34.982	12
	Solala	Dondo	MZD	-19.571	34.715	15
<u>Total</u>						<u>207</u>

Table 2(on next page)

Loci used to screen 14 cashew populations. Primers sequences, multiplexing scheme, amplicon size range (bp) and amplicon expected size (bp) are provided.

Following Culley *et al.* [19], D1 (6-FAM): M13 (-21), 5'-TGTAAAACGACGGCCAGT-3'; D2 (NED,): T7term, 5'-CTAGTTATTGCTCAGCGGT-3'; D3 (VIC): M13modA, 5'-TAGGAGTGCAGCAAGCAT-3'; D4 (PET): M13modB, 5'-CACTGCTTAGAGCGATGC-3'. Underlined sequence at each reverse primer (GTTTCTT) identifies the "PIG-tail".

- 1 Table 2. Loci used to screen 14 cashew populations. Primers sequences, multiplexing scheme,
- 2 amplicon size range (bp) and amplicon expected size (bp) are provided.

Locus	Repeat motif	Primers (5'-3')	Tailed Primer	Size range (Expected Size)	Multiplex
mAoR6 (AT) ₅ (GT) ₁₂		F: CAAAACTAGCCGGAATCTAGC	D2	118–186 (143)	
		R: GTTTCTTCCCCATCAAACCCTTATGAC	_		
mAoR17 (GA) ₂₄		F: GCAATGTGCAGACATGGTTC	D1	122-184 (124)	_
		R: GTTTCTTGGTTTCGCATGGAAGAAGAG	_		A
mAoR7	$(AT)_2(GT)_5AT(GT)_5$	F: AACCTTCACTCCTCTGAAGC	D4	158-198 (178)	_
		R: GTTTCTTGTGAATCCAAAGCGTGTG	_		
mAoR48	(GAA) ₆ (GA) ₃	F: CAGCGAGTGGCTTACGAAAT	D3	130-186 (177)	_
		R: GTTTCTTGACCATGGGCTTGATACGTC	_		
mAoR3	$(AC)_{12}(AAAAT)_2$	F: CAGAACCGTCACTCC	D4	140-282 (231)	
		R: <u>GTTTCTT</u> ATCCAGACGAAGAAGCGATG	_		
mAoR42	(CAT) ₉ TAT(CTT) ₇	F: ACTGTCACGTCAATGGCATC	D2	160-232(204)	- В
		R: <u>GTTTCTT</u> GCGAAGGTCAAAGAGCAGTC	_		
mAoR52 (GT) ₁₆ (TA) ₂	(GT) ₁₆ (TA) ₂	F: GCTATGACCCTTGGGAACTC	D1	142-244 (202)	-
		R: <u>GTTTCTT</u> GTGACACAACCAAAACCACA	_		
mAoR11 (AT) ₃ (AC)	(AT) ₃ (AC) ₁₆	F: ATCCAACAGCCACAATCCTC	D3	142-248 (234)	-
		R: GTTTCTTCTTACAGCCCCAAACTCTCG	_		
mAoR2	(CA) ₁₀ (TA) ₆	F: GGCCATGGGAAACAACAA	D3	172-322 (366)	
		R: <u>GTTTCTT</u> GGAAGGGCATTATGGGTAAG	_		
mAoR33	$(CT)_{18}(AT)_{19}$	F: CATCCTTTTGCCAATTAAAAACA	D4	322-404 (354)	_
		R: GTTTCTTCACGTGTATTGTGCTCACTCG	_		C
mAoR35	(AG) ₁₄	F: <u>T</u> CTTTCGTTCCAATGCTCCTC	D2	142-180 (165)	_
		R: GTTTCTTCATGTGACAGTTCGGCTGTT	_		
mAoR47	$(TAAA)_2(TA)_7(AAT)$	F: AAGAGCTGCGACCAATGTTT	D1	166-272 (161)	_
		R: GTTTCTTCTTGAACTTGACACTTCATCCA	_		
mAoR12	(AC) ₁₂ ATAC(AT) ₄	F: CACCAAGATTGTGCTCCTG	D2	322-362 (324)	
		R: <u>GTTTCTT</u> AAACTACGTCCGGTCACACA	_		
mAoR16	(GT) ₈ (TA) ₁₇ (GT) ₃	F: GGAGAAAGCAGTGGAGTTGC	D1	245-335 (256)	_
		R: GTTTCTTCAAGTGAGTCCTCTCACTCTCA	_		D
mAoR29	(TG) ₁₀	F: GGAGAAGAAAGTTAGGTTTGAC	D3	164-364 (316)	-
		R: GTTTCTTCGTCTTCTTCCACATGCTTC	_		
mAoR41	(ACC) ₇ (AC) ₃	F: GCTTAGCCGGCACGATATTA	D4	162-177 (151)	-
		R: GTTTCTTAGCTCACCTCGTTTCGTTTC	_		

3

Table 3(on next page)

Marker's diversity measurements.

The level of genetic diversity of each SSR marker was described with the parameters of total number of alleles, Polymorphism Information Content (PIC), gene diversity (expected heterozygosity, H_e), observed heterozygosity (H_o), inbreeding/fixation coefficient (F). About 207 individuals from 14 populations were analyzed for each locus.

- 1 Table 3. Marker's diversity measurements. The level of genetic diversity of each SSR marker was described
- 2 with the parameters of total number of alleles, Polymorphism Information Content (PIC), gene diversity
- 3 (expected heterozygosity, H_e), observed heterozygosity (H_o), inbreeding/fixation coefficient (F). About Total
- 4 samples analyzed=207 individuals from 14 populations were analyzed for each locus.

Locus	Allele number	PIC	H _e	H_{o}	F
mAoR48	11	0.64	0.69	0.49	0.2
mAoR6	17	0.68	0.71	0.55	0.11
mAoR17	19	0.83	0.84	0.73	-0.03
mAoR7	15	0.77	0.8	0.64	-0.04
mAoR11	16	0.66	0.69	0.47	0.19
mAoR3	25	0.74	0.76	0.48	0.24
mAoR42	14	0.65	0.69	0.59	0.03
mAoR52	14	0.67	0.7	0.57	0.05
mAoR2	4	0.48	0.57	0.44	0.13
mAoR35	9	0.62	0.65	0.28	0.48
mAoR47	7	0.63	0.69	0.49	0.06
mAoR16	6	0.4	0.45	0.34	0.03
<u>Total</u>	<u>157</u>				
Mean	13.08	0.65	0.69	0.51	0.12

Table 4(on next page)

Genetic diversity indices by a country analysis and a population approach scheme.

Countries: Mozambique (MZ, 2 populations), Indonesia (IND, 1 population) and East-Timor (ET, 11 populations); Number of populations: 14. Sample size (N). Genetic diversity indices for each group were assessed by mean alleles per locus (Na), expected heterozygosity (H_e) and observed heterozygosity (H_o) with corresponding standard deviation (SD) values, private alleles (P_A) and inbreeding/fixation coefficient (F).

- 1 Table 4. Genetic diversity indices by a country analysis and a population approach scheme.
- 2 Countries: Mozambique (MZ, 2 populations), Indonesia (IND, 1 population) and East-Timor (ET,
- 3 11 populations); Number of populations: 14. Sample size (N). Genetic diversity indices for each
 - group were assessed by mean alleles per locus (Na), expected heterozygosity (He) and observed
- beterozygosity (H_0) with corresponding standard deviation (SD) values, private alleles (P_A) and
- 6 inbreeding/fixation coefficient (*F*).

7

	N	Na	Na SD	H _e	H _e SD	H _o	H _o SD	<u>P</u> <u>A</u>	F
Countries									
East Timor (ET)	164	10.67	4.96	0.670	0.033	0.506	0.012	<u>6</u>	0.24
Indonesia (IND)	16	3.42	1.93	0.561	0.063	0.465	0.037	<u>0</u>	0.12
Mozambique (MZ)	27	5.50	2.28	0.711	0.028	0.535	0.028	<u>2</u>	0.25
Mean	69	6.53	3.06	0.647	0.0413	0.502	0.0257	Ξ	0.20
Populations									
ETK	17	5.17	1.75	0.67	0.04	0.56	0.04	1	0.14
ETNA	14	3.75	1.14	0.65	0.03	0.56	0.04	<u>0</u>	0.10
ETTR1	14	3.83	1.53	0.65	0.04	0.57	0.04	<u>0</u>	0.06
ETTR2	14	3.67	1.72	0.58	0.06	0.49	0.04	<u>0</u>	0.11
ETTR3	16	5.08	2.54	0.59	0.06	0.51	0.04	<u>0</u>	0.07
ETSU	16	3.58	1.44	0.65	0.04	0.46	0.04	<u>0</u>	0.26
ETSAN	18	3.58	1.83	0.57	0.05	0.57	0.03	<u>0</u>	-0.04
ETMA	14	3.00	0.85	0.57	0.03	0.46	0.04	<u>0</u>	0.14
ETBAT	13	2.42	0.79	0.48	0.05	0.45	0.04	<u>0</u>	0.01
ETFA	14	2.75	0.75	0.51	0.05	0.43	0.04	<u>0</u>	0.10
ETV	14	2.25	0.62	0.45	0.06	0.45	0.04	<u>0</u>	-0.09
IND	16	3.42	1.93	0.56	0.06	0.47	0.04	<u>0</u>	0.12
MZB	12	4.33	1.50	0.69	0.03	0.51	0.04	<u>1</u>	0.23
MZD	15	3.50	1.17	0.65	0.03	0.56	0.04	0	0.12
Mean	14.79	3.60	1.40	0.59	0.05	0.50	0.04	Ξ	0.09

Table 5(on next page)

AMOVA results including fixation indices $F_{\rm CT}$, $F_{\rm SC}$, and $F_{\rm ST}$.

Legend: $V_{\rm a}$, variance among populations; $V_{\rm b}$, variance within populations; $V_{\rm c}$, variance within individuals. The genetic differentiation between countries and East-Timor vs Indonesia populations is denoted as $F_{\rm CT}$, among individuals within populations as $F_{\rm SC}$ and within individuals as $F_{\rm ST}$. *p < 0.001.

Table 5. AMOVA results including fixation indices F_{CT} , F_{SC} , and F_{ST} . Legend: V_a , variance among

populations; V_b , variance within populations; V_c , variance within individuals.

2
3

Source of variation	df	Sum of Squares	Variance	Variation	Fixation indices
			components	(%)	
Countries (MZ, IND,					_
ET)					
Among pops	13	168.537	$V_{\rm a} = 0.34692$	12.6	$F_{\rm CT}$ =0.128*
Among individuals	193	523.90	$V_{\rm b} = 0.30894$	11.22	$F_{SC}=0.126*$
Within individuals	207	434.00	$V_{\rm c} = 2.09662$	76.17	$F_{\rm ST} = 0.238*$
Countries (ET, IND)					
Among pops	11	91.172	$V_{\rm a} = 0.16546$	12.97	$F_{\rm CT} = 0.273*$
Among individuals	168	288.058	$V_{\rm b} = 0.12973$	14.4	$F_{SC} = 0.165*$
Within individuals	180	221.00	$V_{\rm c} = 1.22778$	72.63	$F_{\rm ST} = 0.129*$

The genetic differentiation between countries and East-Timor vs Indonesia populations is denoted as $F_{\rm CT}$, among individuals within populations as $F_{\rm SC}$ and within individuals as $F_{\rm ST}$. *p < 0.001.