East-Timor as unexplored yet important source of cashew (*Anacardium occidentale* L.) genetic diversity (#73008)

First submission

Guidance from your Editor

Please submit by 16 Jun 2022 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

14 Figure file(s) 8 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

East-Timor as unexplored yet important source of cashew (Anacardium occidentale L.) genetic diversity

Lara Guterres ^{1, 2, 3}, João Barnabë ^{2, 4}, André Barros ⁵, Alberto Bento Charrua ^{3, 6}, Maria Cristina Duarte ⁴, Maria M. Romeiras ^{2, 4}, Filipa Monteiro ^{Corresp. 2, 4}

Corresponding Author: Filipa Monteiro Email address: fmonteiro@isa.ulisboa.pt

Background. Cashew (*Anacardium occidentale* L.) is a crop currently grown in several tropical countries due to economic value of cashew nuts. Despite its enormous economic worth, limited research has been conducted on the molecular diversity of cashew genetic resources. In this study, a wide comprehensive assessment of the genetic diversity of cashew in East-Timor were screened using microsatellites (SSRs) to evaluate intraspecific diversity and population structuring.

Methods. A total of 207 individuals from 11 populations from East-Timor, together with Indonesia (1) and Mozambique (2) working as outgroup populations, were analyzed with 16 cashew-specific SSRs. A comprehensive sampling within Est-Timor was done, thus covering cashew orchards distribution in the country. Genetic diversity indices were calculated, and population structuring used determined using three different approaches: genetic distances (UPGMA and NJ), AMOVA and individual- based clustering methods through a Bayesian (STRUCTURE) and multivariate (DAPC) analyses.

Results. Population structuring revealed that the genetic diversity of cashew populations in a largely understudy country is higher than previous reported from cashew, where a narrow genetic diversity was described. A higher allelic richness was found within East-Timor populations, compared to the outgroup populations (Mozambique and Indonesia), reinforced by the presence of private alleles. Also, within East-Timor, a district- associated genetic diversity clustering into two genetic groups was depicted, which may point to multiple events of cashew introduction and to hotspots of cashew genetic diversity that should be explored for future crop improvement.

Conclusions. Considering that crop diversity underpins the productivity, resilience and adaptive capacity of agriculture, our study provides useful information regarding genetic diversity and population structure of cashew populations. This data can be also important to access an in-country genetic signature, increasing the crop market value of East-Timor cashew.

¹ Universidade Nacional Timor Lorosa'e (UNTL), Av. Cidade de Lisboa, Díli, East-Timor., Díli, East-Timor

² LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal

Nova School of Business and Economics, Universidade Nova de Lisboa, Campus de Carcavelos, Rua da Holanda, n.1, Carcavelos, 2775-405, Cascais, Portugal

⁴ Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences, University of Lisbon, 1749-017, Lisboa, Portugal

⁵ Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal

⁶ Department of Earth Sciences and Environment, Faculty of Science and Technology, Licungo University, P.O. Box 2025, Beira 2100, Beira, Mozambique

East-Timor as unexplored yet important source of cashew (Anacardium occidentale L.) genetic diversity

3

1

2

- 5 Lara Guterres^{1,2,3}, João Barnabë^{1,4}, André Barros⁵, Alberto B. Charrua^{1,2,6}, Maria C. Duarte⁴,
- 6 Maria M. Romeiras^{1,4}, Filipa Monteiro^{1,4}

7

- 8 ¹ LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated
- 9 Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da
- 10 Ajuda, 1349-017 Lisboa, Portugal
- 11 ² Nova School of Business and Economics, Universidade Nova de Lisboa, Campus de
- 12 Carcavelos, Rua da Holanda, n.1, Carcavelos, 2775-405 Cascais, Portugal.
- 13 ³ Universidade Nacional Timor Lorosa'e (UNTL), Av. Cidade de Lisboa, Díli, East-Timor.
- 14 ⁴ Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences,
- 15 University of Lisbon, 1349-017 Lisbon, Portugal.
- 16 ⁵ Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência (IGC), Rua da
- 17 Quinta Grande, 6, 2780-156 Oeiras, Portugal.
- 18 ⁶ Department of Earth Sciences and Environment, Faculty of Science and Technology, Licungo
- 19 University, P.O. Box 2025, Beira 2100, Mozambique.

20

- 21 Corresponding Author:
- 22 Filipa Monteiro^{1,4}
- 23 Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de
- 24 Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
- 25 Email address: fmonteiro@fc.ul.pt.

26 27

28 **/**

Abstract

- 29 **Background.** Cashew (Anacardium occidentale L.) is a crop currently grown in several tropical
- 30 countries due to economic value of cashew nuts. Despite its enormous economic worth, limited
- 31 research has been conducted on the molecular diversity of cashew genetic resources. In this
- 32 study, a wide comprehensive assessment of the genetic diversity of cashew in East-Timor were
- 33 screened using microsatellites (SSRs) to evaluate intraspecific diversity and population
- 34 structuring.
- 35 **Methods.** A total of 207 individuals from 11 populations from East-Timor, together with
- 36 Indonesia (1) and Mozambique (2) working as outgroup populations, were analyzed with 16
- 37 cashew-specific SSRs. A comprehensive sampling within Est-Timor was done, thus covering
- 38 cashew orchards distribution in the country. Genetic diversity indices were calculated, and
- 39 population structuring used determined using three different approaches: genetic distances

- 40 (UPGMA and NJ), AMOVA and individual- based clustering methods through a Bayesian
- 41 (STRUCTURE) and multivariate (DAPC) analyses.
- 42 **Results.** Population structuring revealed that the genetic diversity of cashew populations in a
- 43 largely understudy country is higher than previous reported from cashew, where a narrow genetic
- 44 diversity was described. A higher allelic richness was found within East-Timor populations,
- 45 compared to the outgroup populations (Mozambique and Indonesia), reinforced by the presence
- 46 of private alleles. Also, within East-Timor, a district- associated genetic diversity clustering into
- 47 two genetic groups was depicted, which may point to multiple events of cashew introduction and
- 48 to hotspots of cashew genetic diversity that should be explored for future crop improvement.
- 49 Conclusions. Considering that crop diversity underpins the productivity, resilience and adaptive
- 50 capacity of agriculture, our study provides useful information regarding genetic diversity and
- 51 population structure of cashew populations. This data can be also important to access an in-
- 52 country genetic signature, increasing the crop market value of East-Timor cashew.

Keywords

53

54 55

56 57

58 59

60

61

62

63

64

65

66

67

68

69

70 71

72

73

74

genetic diversity; SSRs; population structuring; Southeast Asia; diversity hotspots.

Introduction

Cashew (Anacardium occidentale L., Anacardiaceae) is a tropical evergreen tree that can thrive in both dry and wet tropical climates. Many tropical countries use various parts of the cashew tree for consumption, medical, and industrial purposes (Salehi et al., 2019). Among the various parts of the plant, the cashew kernel has a high market value and has acquired a status of an export-oriented commodity in several tropical countries, also known as a cash crop (Monteiro et al., 2015, 2017). The highest cashew-producing countries, mainly from West African region (Guinea-Bissau and Côte d'Ivoire) and from Southeast Asia (India and Vietnam) are mainly focused on exporting cashew nuts, from which both governments and farmers have their primary income (Havik et al., 2018). Over the past several decades, the demand for cashew has increased along with the rising of income global market demands. Cashews accounted for 17% of world tree nut production in 2019/20, making it the third most popular tree nut after almonds and walnuts (International Nut and Dried Fruit Council Foundation, 2020). The popularity of cashew is mainly because of the changed food habits towards a healthier food intake. As a rich source of plant-based protein, dietary minerals and low-fat contents, cashew has become one of the most produced and valued tree nuts worldwide, together with almonds, pistachios, and walnuts (Pradhan et al., 2020).

- 75 Despite its enormous economic worth, few research has been conducted to evaluate the
- 76 molecular diversity of cashew genetic resources. No worldwide study has been done so far, with
- only country-specific approaches using different molecular tools namely microsatellites (SSRs,
- 78 Simple Sequence Repeats) and RAPDs (Random Amplified Polymorphologic DNA), associated
- 79 with morphological characterization. Within cashew-producing countries, studies have been
- 80 conducted in characterizing genetic diversity of cashew accessions in Ivory Coast (Kouakou et
- 81 al., 2020), Nigeria (Aliyu & Awopetu, 2007) using 187 Nigerian germplasm accessions, at

- 82 Indian germplasm accessions (Archak et al., 2009), in Tanzanian cashew cultivars (Mneney,
- 83 Mantell & Bennett, 2001), in Malawi (Chipojola et al., 2009) and from its native origin in Brazil
- 84 (dos Santos et al., 2019). Overall, most studies highlight the existence of a narrow genetic
- 85 diversity within each country cashew accessions when compared with cashew native origin,
- 86 Brazil, where accessions were most distinct from the other regions of the world.
- 87 Cashew was one the many tropical crops introduced by the Portuguese in the sixteenth century as
- part of the Columbian Exchange Event (Havik et al., 2018), in which several crops and livestock
- 89 were introduced from Brazil into the African continent. Cashew was regarded as a rustic tree to
- 90 fight afforestation (Monteiro et al., 2015, 2017). In Asia, cashew has been introduced most likely
- 91 through Goa (India). Portugal's main settlement in the East Indies at a time between 1560 and
- 92 1565 (Massari, 1994). Nowadays, cashew is still known as 'paragi andi' at Kerala meaning
- 93 foreign nut, 'lanka beeja' at Orissa assuming its introduction from Sri Lanka, and 'mundiri'
- 94 indicating the shape of the nut in Tamil Nadu (India). The production of cashew trees that have
- 95 proven to be well adapted to Indian soil conditions, upheld the indigenous populations to explore
- 96 cashew products beyond its nuts, namely the creation of a local fermented brew (the *feni*) made
- 97 from ripened cashew apples. After India, cashew spread to South Asia clearly in Moluccas
- 98 (Indonesia), and there to northern Australia and North America, more specifically to Florida
- 99 (Nair, 2010). Nowadays, cashew has dispersed to other Asian regions as Vietnam, Indonesia,
- 100 Philippines, Malaysia, Thailand, and Sri Lanka (Havik et al., 2018). India and Vietnam are now
- amongst the top world cashew producers. Despite introductions at different timelines, at first,
- 102 cashew was established as a rustic tree to cope afforestation at both African and Asian countries
- 103 (Monteiro et al., 2017; Havik et al., 2018). However, at dissimilar paces, these two tropical
- regions have transformed cashew as one of the major cash generator commodity, currently with
- different stages at technological levels: African countries (except for Mozambique, Nigeria and
- 106 Côte d'Ivoire) as major raw cashew producers/exporters with few processing and/or value chain
- sectors, while in Asia a complete structured value chain and technological industry transforming
- sector is implemented, where also import raw cashew nuts at low prices from less resourceful
- 109 African countries (e.g. Guinea-Bissau, Senegal, Guinea, Burkina Faso) occurs.
- 110 East-Timor is a small island country located in Asia, bordered by Indonesia, which economy is
- 111 heavily dependent on oil and gas, since its independence in 2002. Oil and gas contributed about
- 112 80% to the country's GDP in 2012-2013 and about 99% exports. The Government is investing in
- the non-oil economy mainly in agriculture, which is the main human activity in East-Timor.
- providing subsistence to an estimated 80 percent of the population (Harmadi & Gomes, 2013).
- 115 Most farmers practice subsistence farming, with nearly absent large-scale farming and limited
- access to markets. Coffee is the main export commodity in the country largely grown at high
- elevations along with other important commercial crops as 'chimeri' (candlenut tree), vanilla and
- 118 coconut, besides staple crops production as maize in uplands and rice paddy (MAFF, 2004). The
- 119 Ministry of Agriculture, Forestry and Fisheries (MAFF) of East-Timor Strategic Plan 2014-2020,
- was implemented to contribute to the achievement of the Timor-Leste Strategic Development

- Plan 2011-2030, which sets out the priorities identified to promote economic growth in rural areas and to advance the reduction of poverty and to provide better food security (República Democrática de Timor-Leste, 2011). The MAFF of East-Timor is also targeting its attention to increase its export trade through the intensive production of cash crops, to meet global market demand, namely through the exploration of cashew as a new commodity to increase the country agriculture remittance. In the last 10 years, cashew has been considered by small farmers and the government as an alternative export crop to coffee with a high market value.
- Thus, our study focuses on the assessment of the genetic diversity of cashew populations 128 129 cultivated in East-Timor using highly informative molecular markers as microsatellites, which are effective in evaluating intra-specific genetic diversity along the evaluation of the population 130 structuring. To accomplish such objective, eleven cashew orchards from East-Timor were 131 assessed with 16 cashew-specific microsatellites (Croxford et al., 2006) applied to screen in-132 133 country genetic diversity. Besides an Indonesian population was included as an outgroup, to assess any East-Timor genetic signature; along with two populations from Mozambique, so it 134 could work as a continental outgroup. Our work is pioneer as no studies have been conducted in 135 East-Timor using a highly comprehensive sampling scheme (over 11 populations) in an 136 137 emerging cash crop, as cashew.

138

139

140

Materials & Methods

East-Timor: country and agriculture profile

141 East-Timor is a small island country comprising the eastern half of the Island of Timor; the Atauro Island, north of Díli; the Jaco Island, on the easternmost end of the island; and Oecusse, 142 143 an enclave on the northwestern side of the island, within Indonesia (Figure 1). As far as administrative division is concerned, Timor-Leste is split into 13 districts: Bobonaro, Liquiçá, 144 Díli, Baucau, Manatuto and Lautém on the north coast; Cova Lima, Ainaro, Manufahi and 145 Viqueque, on the south coast; Ermera and Aileu, the two landlocked districts; and Oecusse-146 Ambeno, the enclave in Indonesian territory. The territory has an estimated population of 147 1,183,643 (Government of Timor- Leste, 2015), distributed within an area of approximately 148 15,000 square kilometers. The capital is Díli. Since independence in 2002. East-Timor's primary 149 activities are agriculture, fisheries, and forests, which have reduced the share of the country's 150 GDP from 27.8% in 2003 to 19.8% in 2015. About 225,000 ha are cultivated land area, as among 151 152 these 165,000 ha are arable land (with different annual crops) and 60,000 ha are permanent crops for rice, corn, cassava, coffee, coconut and other industrial crops (MAFF, 2004). Agriculture in 153 East-Timor is the most important economic sector. After coffee, maize and rice paddy rises as 154 155 the most important crops, which are the main staple crops. However, land suitable for rice 156 production is limited and maize is more widely grown in the uplands including hillsides (MAFF, 157 2004).

Sampling

- 159 Cashew populations were sampled from different orchards in East-Timor, Indonesia, and
- Mozambique (Figure 1A-C). In each population, 12-18 individual plants were sampled,
- preserved in silica gel until further processing (**Table 1**). Within East-Timor (**Figure 1C**), about
- 162 11 cashew orchards populations were sampled, covering a comprehensive sampling on 6 districts
- and cashew producing regions (Figure 1D-I). A population from Indonesia was also included,
- namely in Kefamenanu (**Figure 1B**), district of Kota Kefamenanu located in the North Central
- 165 Timor Regency which is borders East-Timor's Oecusse enclave, one of few Indonesian regions
- that have a land border with other countries. Hence, such population would be essential for
- identifying possible genetic connection between a major region of Indonesia with a strong land
- 168 connection and East-Timor cashew populations sampled. Two Mozambican populations (**Figure**
- 169 1A) were included, thus working not only as a possible population outgroup between continental
- and island regions, but also due to the strong historical connection with other Portuguese
- 171 colonies during 16th and 17th centuries, where it was an important continental outpost for
- 172 Southeast Asia islands explorations (de Carvalho & Mendes, 2016; Havik et al., 2018). All DNA
- samples are stored at the Instituto Superior de Agronomia, University of Lisboa (Portugal) and
- are available upon author request.

DNA extraction

- 176 Individual leaves collected in each cashew population were used for genomic DNA (gDNA),
- 177 extracted with the InnuPREP Plant DNA Kit (Analytik Jena, Germany), following
- 178 manufacturer's instructions with minor modifications. About one hundred milligrams of each
- 179 leaf collected in the field were grinded briefly with a mortar and a pestle in liquid nitrogen, and
- then 1 cm² of roughly grinded leaves were used for subsequent gDNA extraction protocol, by
- adding 400 µl of OPT lysis solution and ground the biological material with an Eppendorf-pestle
- in a 1.5mL tube. After, an initial incubation at 65°C for 1 h was performed, followed by adding
- 183 100 µl of Precipitation Buffer and a 5-min incubation at room temperature, and the supernatant
- recovered by centrifugation at maximum speed 11.000 x g for 5 mins. The supernatant was then
- transferred to a Pre-Filter Receiver and centrifuged at 11.000 x g for 1 min. Subsequently, 4µl of
- 186 RNAse A solution (100 mg/ml) was added and samples were incubated for 30 mins at 37°C.
- After RNAse treatment, 200µl of SBS binding solution was added and then centrifuged at 11.000
- 188 x g for 2 mins. To the recovered supernatant, two washing steps with 650 µl of MS washing
- solution was performed with centrifugations at 11.000 x g for 1min. The gDNA was eluted in
- 190 40ul of AE buffer, left to incubate at room temperature for 15 mins and recovered by
- 191 centrifugation at 11,000 x g for 1 min. DNA purity and concentration were measured at 260/280
- 192 ηm and 260/230 ηm using a spectrophotometer (NanoDrop-1000, Thermo Scientific), while
- DNA integrity was verified by agarose gel electrophoresis at 0.8% in 1x TAE running Buffer
- 194 (Merck) for 30 mins at 90 Volts and then visualized in a GelDoc XR image system (BioRad,
- 195 USA).

Microsatellite genotyping

- 197 A set of 16 cashew-specific microsatellite (SSRs) markers already available (Croxford et al.,
- 198 2006) were selected, for screening the genetic diversity of the populations under study, following
- 199 3 major criteria: i) markers with a Polymorphism Information Content (PIC) value higher than
- 200 0.5, as a reference value to be considered as an informative marker, ii) markers with high allelic
- 201 diversity, iii) and dinucleotide repeats markers to enable a clearer interpretation upon
- 202 microsatellite genotyping, and thus avoiding genotyping errors.
- Before multiplexing, each SSR marker was validated in single-plex polymerase chain reactions
- (PCR) using a three-primer PCR approach (Schuelke, 2000) to assess both reaction
- reproducibility and/or presence of PCR artifacts upon fragment analysis (Monteiro et al., 2016).
- 206 Each SSR was PCR amplified in a 25μl volume reaction following cycling conditions previously
- 207 described in Croxford et al. (2006), using HotStar Taq DNA Polymerase kit (QIAGEN,
- Germany), as per manufacturer's instructions. After, SSRs amplified fragments were run in an
- 209 ABI 3130XL sequencer (Applied Biosystems) with the internal size standard GS500 LIZ
- 210 (Applied Biosystems, USA) at STAB VIDA company (Costa da Caparica, Portugal), while allele
- 211 calling was performed in GeneMapper v 3.7 (Applied Biosystems, USA). A thorough markers
- 212 selection to ensure the success of co-amplification loci was assessed by using the Multiplex
- 213 Manager software v1.2 (Holleley & Geerts, 2009), which allowed building four SSRs panels
- assembled in 4-plex PCR reactions (Multiplex A, B, C, and D; Table 2), using four universal
- 215 forward fluorescently labelled primers following Culley et al. (Culley et al., 2013). To increase
- 216 genotyping accuracy, a "PIG-tail" sequence was added at the 5' end of each of the reverse primer
- 217 (Brownstein et al., 1996). PCR multiplex amplifications were carried out using the QIAGEN
- 218 Multiplex PCR kit (OIAGEN, Germany), following the manufacturer's protocol, in a total
- volume of 25 µL with 50–100 ng gDNA and 2.5 pmol of each primer Forward and Reverse and
- 220 0.15 pmol of the tailed fluorescently labeled primers (D1–D4). Reactions were done in 96 well-
- 221 plates and on each plate one sample was repeated per run thus working as positive control for
- allele scoring. Negative PCR controls were included. Initially, a hot-start step at 95°C for 15 min
- 223 was performed, followed by a touchdown cycling protocol adapted from Croxford et al.
- 224 (Croxford et al., 2006) as follows: 5 cycles of denaturation at 95°C for 45 s, primer annealing at
- 225 68°C for 5 min with -2°C/cycle; a sequence extension at 72°C for 1 min; 5 cycles of
- denaturation at 95°C for 45 s, primers annealing (58°C for Multiplexes A, C and D and 60°C for
- 227 Multiplex B) for 2 min with -2°C/cycle and an extension step for 1 min at 72°C; 27 cycles at
- 228 95°C for 45 s, 47°C for 75 s, and 72°C for 1 min; followed by a final extension step at 72°C for
- 229 10 min. After, multiplex PCR products were run in ABI 3130XL sequencer for fragment analysis
- as described earlier and SSR allele sizes were aligned with the internal size standard, further
- 231 scored using the binning function in GeneMapper v3.7 (Applied Biosystems, USA). To improve
- 232 the SSR marker data quality, allele assignments were checked manually, and ambiguous results
- 233 were set as "missing data." Genotypic matrix generated (Guterres et al., 2022) was used for
- 234 further genetic analysis and population structuring.

Genetic diversity analysis

236 Genotyping errors were assessed using MICRO-CHECKER v2.2.3 (Van Oosterhout *et al.*, 2004), and estimation of null alleles frequency was done with the EM algorithm of Dempster et al. as 237 implemented in FreeNA (http://www.montpellier. inra.fr/URLB/). These values were computed 238 239 as described by Chapuis & Estoup (Chapuis & Estoup, 2007), with .10,000 bootstrap iterations, 240 alternatively using and not using the Excluding Null Alleles (ENA) method, after assessment of 241 null allele frequencies. Polymorphic Information Content (PIC) and genetic diversity indices were 242 calculated with Microsatellite Toolkit v.3.1.1 (Park, 2001) and GenALEx 6.5 (Peakall & Smouse, 243 2006), respectively. These included the total allele number and mean alleles per locus (Na), private alleles, inbreeding coefficient (fixation index, F), observed (H₀), and expected (H_e) 244 heterozygosity. Deviations from Hardy-Weinberg equilibrium (HWE) were assessed for each 245 locus-population combination and linkage disequilibrium (LD) to determine the extent of 246 247 distortion from independent segregation of loci using GenePop v.4.5 (Rousset, 2008). Statistical significance for both HWE and LD was tested by running a Monte Carlo Markov Chain (MCMC) 248 249 consisting of 10,000 iterations each, and p-values were corrected for multiple comparisons [p <250 0.000298, (0.05/168)] by applying a sequential Bonferroni correction (Rice, 2013).

251

252

Population structuring

- Population structure was addressed using three approaches: (i) estimating relations among
- populations using genetic distances; (ii) hierarchical genetic analysis by AMOVA; and (iii)
- 255 individual-based clustering with a Bayesian (STRUCTURE) and a multivariate (DAPC,
- 256 Discriminant Analysis of Principal Components) analyses.

257

- 258 Estimating relations using genetic distances
- 259 Distances relationships among populations were estimated with Cavalli-Sforza and Edward's
- 260 Chord genetic distances (DC, Cavalli-Sforza & Edwards, 1967)) using the INA method computed
- 261 in FreeNA (DC^{INA}), and Nei's D distance (Nei, 1972) calculated in GenALEx 6.5. Unweighted
- 262 Pair Group Method with Arithmetic Mean (UPGMA) and Neighbor-Joining (NJ) trees were
- produced using package ape v3.4. (Paradis et al., 2004) for R v4.1.0 (R Core Team, 2021) based
- on 10,000 bootstraps values, assessed by aboot function from *poppr* v2.1.0. package (Kamvar *et*
- 265 al., 2014). Trees were further edited in FigTree v1.4.2 (Rambaut, 2015). Distances relationship
- among populations was done in two separated approaches: first using the three countries (East-
- 267 Timor, Indonesia and Mozambique) populations and, second, by excluding continental
- 268 populations from Mozambique.

269

- 271 *Hierarchical genetic analysis (AMOVA)*
- 272 An Analysis of Molecular Variance (AMOVA, Weir & Cockerham, 1984; Excoffier, 2000; Hill,
- 273 2021) was done with ARLEQUIN v3.5.1.3 (Excoffier & Lischer, 2010) to assess the hierarchical
- 274 distribution of genetic variation on the populations analysed. Significance was assessed after 1000
- permutations. Two three-levels AMOVAs were pursued: one using all three countries populations
- 276 (MZB=2; IND=1; ET=11) as groups and the second, narrowed to East-Timor and Indonesia as
- groups. In each AMOVA, the total variance was partitioned into components to account for
- differences between two defined groups $[V_a, (1) \text{ MZ vs ET vs IND}; (2) \text{ ET vs IND populations}],$
- 279 differences among populations within those groups (V_b) , differences among individuals within
- populations (V_c) . Variance components $(V_a, V_b, \text{ and } V_c)$ were used to calculate the fixation indices
- 281 (F-statistics; F_{CT} , F_{SC} , F_{ST}) according to Weir & Cockerham (1984).
- 282
- 283 Individual-based clustering analyses
- 284 Identification of genetically distinct clusters were done under two different methodologies: a
- 285 Bayesian clustering analysis using STRUCTURE (Pritchard et al., 2000) and a multivariate
- analysis method, Discriminant Analysis of Principal Components (DAPC, Jombart & Balloux,
- 287 2009). These two different individual cluster assignment approaches were followed since while
- STRUCTURE uses allele frequency and LD information from the dataset directly; DAPC is a
- multivariate method which attempts to summarize the genetic differentiation between groups,
- while overlooking within-group variation and not relying on a particular population genetics
- 291 model free of HWE assumptions (Jombart & Balloux, 2009).
- 292 Overall, individual-based clustering analysis were performed under two datasets: one including
- 293 East Timor, Indonesia, and Mozambique, and the second focused in East Timor and Indonesia.
- 294 Bayesian model-based clustering algorithm implemented in STRUCTURE v.2.3.4 was used to
- 295 identify genetic clusters under a model assuming admixture and correlated allele frequencies
- 296 without using population information. In the first approach, including East-Timor vs Indonesia
- vs Mozambique, analyses were set for a burn-in period length to 100,000 followed by 1,000,000
- 298 MCMC iterations with K-values set from 1 to 14 with 10 runs computed for each K. The second
- 299 approach using East-Timor and Indonesia populations, the same settings were followed by
- 300 configuring K-values from 1 to 12 with 10 runs in each K. StructureHarvester v0.6.94 (Earl &
- Bridgett, 2012) was then used to calculate ΔK ad hoc statistics from Evanno et al. (2005). for
- 302 estimating the most likely K-value, which is based on the rate of change of the "estimated
- 303 likelihood" between successive K-values. CLUMPP v1.1.2 (Jakobsson & Rosenberg, 2007) was
- 304 used to average replicate runs for the selected K-value, for accounting problems with
- 305 multimodality and label switching between iterations of STRUCTURE runs. CLUMPP results
- were then plotted with DISTRUCT v1.1 (Rosenberg, 2004).
- DAPC was implemented in R (R Core Team, 2021) using adegenet v1.3.1 package (Jombart,
- 308 2008) using the dataset relative frequency of the alleles, since presence/absence data may not be
- 309 fully informative and thus, may overlook relevant patterns in allele frequency. The function

- 310 *find.clusters* was used to find the ideal *K*-value, based on the computation of Bayesian
- 311 Information Criterion (BIC) scores, maintaining default parameters and retaining all principal
- 312 components (PCs). Cross validation using the xvalDapc function was pursued to determine the
- 313 optimal number of PCs to retain in the Discriminant Analysis (DA). DAPC script generated by
- our analysis is available at Figshare (Barros *et al.*, 2022).

317

Results

SSRs genotyping and statistics

- 318 All 16 SSRs were tested in singleplex reactions at the estimated optimal annealing temperature,
- and only after this initial quality assessment, SSRs markers were grouped into 4-plex reactions
- 320 (Table 2). For the 16 SSRs loci, allele profiles were clear and easy to score. No errors in the
- 321 genotypic data matrix were detected, indicating the absence of potential errors associated with
- 322 stuttering bands or large allele dropout in SSRs screened. In 60 of the 224 locus-comparisons,
- the frequencies of null alleles were higher than 0.20, except for the markers mAoR33, mAoR12,
- mAoR29 and mAoR41, that were excluded after this analysis. Subsequent analsis were made
- with the remaining 12 SSRs markers (**Table 3**). Deviations from Hardy–Weinberg Equilibrium
- 326 (HWE) were observed in most loci except for mAoR48, mAoR42, mAoR3, mAoR17, mAoR35,
- with 84 locus-population combinations statistically significance (p < 0.05); while after sequential
- 328 Bonferroni correction only two loci (mAoR3 and mAoR35,) displayed significant deviations,
- matching 33 of the 168 locus population combinations (Supplementary Table S1). All 12 loci
- 330 were in linkage equilibrium after Bonferroni correction, thus being non-correlated, and alleles
- independently segregated and inherited (data not shown). Negative fixation index (F) estimates
- were observed in two loci, mAoR17 (-0.03) and mAoR7 (-0.04) (**Table 3**), which can reflect
- more heterozygotes than expected or other population structure complexities.

334 335

Genetic diversity estimates

- Overall, a total of 157 alleles were detected in the 207 individuals analyzed (Table 3). All loci
- 337 screened were polymorphic. The total number alleles per locus ranged from 4 (mAoR2) to 25
- 338 (mAoR3) with an average of 13.08 alleles per locus (**Table 3**). Overall, Polymorphic Information
- Content (PIC) values ranged from 0.40 (mAoR16) to 0.83 (mAoR17) with a mean value of 0.67
- content (116) values ranged from 0.10 (fin foretr) with a mean value of 0.07
- 340 (Table 3). In our 12-loci dataset, observed heterozygosity (H_o) varied from 0.25 (mAoR35) to 0.73
- 341 (mAoR17) with a mean of 0.40 (**Table 3**); and expected heterozygosity (H_e) varied between 0.45
- 342 (mAoR16) and 0.84 (mAoR17). The Fixation Index F (also called the Inbreeding Coefficient)
- exhibits values from -1 to +1. Values close to zero are expected under random mating, while
- substantial positive values indicate inbreeding or undetected null alleles. Negative values denote
- excess of heterozygosity, due to negative assortative mating, or selection for heterozygotes.
- Overall, positive F-values were observed across all populations (**Table 4**), thus revealing that

350 351

352

353

354 355

356

357

358 359

360

361

362 363

364

365

366

367 368

369 370

371

372

373

374375

376

377

378379

380

381

382

383

384

385

populations are at or near Hardy–Weinberg equilibrium, further supported by the lower observed heterozygosity values against the expected under HWE (**Table 4**).

By performing a population genetic diversity analysis presented at **Table 4**. East-Timor presented 10.67 alleles in average and the lowest value was from Indonesia with 3.42, the H_e was 0.67, 0.56 and 0.71 respectively (East-Timor, Indonesia and Mozambique), the H_o was 0.51, 0.47 and 0.54 following the same order, all countries populations presented a F positive variating from 0.12-0.25. The populations with the highest number of alleles were observed in East-Timor most precisely in the population of ETK which presents in average 5.17 alleles, followed by ETR3 with 5.08 alleles, while ETBAT and ETV with 2.42 and 2.25 alleles, respectively, are the lowest allelic diverse populations. The allele numbers of the SSRs by comparing each of the populations screened, enable to depict which population harbors more allelic diversity. When analyzing this parameter, we can see that ETK and ETR3 are the populations that present greater allelic diversity (Na, **Table 4**). At the level of the expected heterozygosity (H_e), the highest value was obtained for population ETK, with a value of 0.67 and the lowest value 0.45 in the population ETV. When comparing the observed heterozygosity (H₀), the highest value was obtained for the population ETTR1 with a value of 0.57, and the lowest value ETFA with 0.43. Fixation index (F) was positive in all populations except for ETSAN and ETV, the positive values in the remaining populations may indicate genetic stability and a higher rate of inbreeding. The absence or existence of private alleles is important to account for, since it can allow to identify a specific genetic signature, as private alleles are alleles that are only detected in this population. All countries presented at least one private allele, with Indonesia (0.42) and East Timor displaying a high number of private alleles (6.17).

Population structuring analyses

Estimating relations among populations through genetic distances

UPGMA and NJ trees were built using Nei's *D* and *DC*^{INA} (FreeNA) genetic distances across accessions screened for East-Timor, Indonesia, and Mozambique (Supplementary Table S2A), and, after an analysis narrowed to East-Timor and Indonesia (Supplementary Table S2B), was done. Under the two analysis approaches, similar tree topology's structure was observed with both Nei's *D* (Supplementary Figure S1, S2) and *DC*^{INA} (Figures 2 and 4) matrices, thus indicating a reliable topology regardless of the different genetic distance's algorithms used. As such, only *DC*^{INA} distances matrices-derived trees are presented in Figure 2 for East-Timor, Indonesia, and Mozambique analyses and in Figure 3 for analyses narrowed to East-Timor and Indonesia. In the UPGMA (Figure 2A) and NJ (Figure 2B) derived trees, three clusters are depicted: one cluster (I) that includes ETTR populations (ETTR1-3) from Baucau, Viqueque (ETV), Cova Lima (ETLSU) and ETLK population from Manatuto, grouped with Indonesia (IND); a second cluster (II) comprising the remaining East-Timor populations from Manatuto (ETNA), all populations from Bobonaro district (ETMA, ETBAT, ETSAN) and Manufahi population (ETLFA), and the

- 386 third (III) representing the Mozambican populations (MZB and MZD). This result support two different genetic clusters within East-Timor: one including only East-Timor populations (Cluster 387 III) and the other with a high genetic membership with the Indonesian population (Cluster II). With 388 the NJ tree (**Figure 2B**), the dendrogram derived from DC^{INA} distance matrix also presented three 389 390 different clusters: cluster I shows the same grouping with Mozambican populations as observed in the UPGMA (Figure 2A), the second cluster is configured by Bacau populations, Indonesia, and 391 populations from Viguegue (ETLV) and Cova Lima (ETLSU), and the third cluster include 392 Bobonaro populations (TLMA, ETLBAT and ETLSAN) and the remaining East-Timor 393 populations (ETLFA, ETLNA and ETLK). 394
- When observing trees without Mozambican populations (**Figure 3**), one can depict two clusters found, similarly to the elustering observed for clusters I and II in Figure 2.
- Conversely to UPGMA derived dendrograms using the whole populations dataset (**Figure 2A**, Suppl. Fig. S1A) and the East-Timor/Indonesia dataset (**Figure 3A**, Suppl. Fig. S2B), the two genetic distance algorithms produced very dissimilar NJ-generated trees (Nei's *D* distance, **Figure 400 3B**, Supplementary Fig. S2A, S2B), which may be attributed to different assumptions adopted in each clustering methods, with a strict UPGMA and a relaxed (NJ) molecular clock shown previously to have implications when inferring phylogenies considering that rates of evolution may vary among microsatellite loci (Putman & Carbone, 2014).

404405 Analysis of molecular variance

When grouping countries dataset (MZ, IND, ET), AMOVA results showed that molecular 406 variation was mainly found within individuals (76%), whereas variation among populations and 407 408 among individuals within population explained 13% of the total genetic differentiation, respectively (Table 5). Regarding East-Timor vs. Indonesia dataset, a similar scenario was 409 depicted, with genetic differentiation within individuals (73%) also higher than among individuals 410 (14%) or among populations (13%). In both cases, a high molecular variation was found within 411 412 individuals, as expected for a cross-pollinated species, as previously detected in other cashew genetic diversity studies (Freitas & Paxton, 1996). 413

414 415

Individual-based clustering using bayesian and a multivariate discriminant analysis to uncover population structure

- Two different approaches were done: 1) covering all populations from East-Timor, Indonesia, and Mozambique, and 2) excluding Mozambique, to uncover more in-depth individual clustering within East-Timor populations, using Indonesia population as outgroup.
- In the first approach, STRUCTURE was run considering the highest range of clusters conceivable (K = 1-15). This analysis assigned K = 5 as the optimal number of groups based on Evanno *et al.* (2005) ΔK method (Supplementary Figure S3). Results obtained from this first approach with all populations from East-Timor, Indonesia and Mozambique, in K = 5, Mozambique was grouped in
- 425 a single cluster (orange cluster) (Figure 4A), Manatuto populations are grouped in 2 principal

426 clusters (brown and red), Baucau populations mostly in one cluster (blue) except for ETTR3 that have a mix of all clusters except with Mozambican cluster; Cova Lima is only grouped in a single 427 cluster (green cluster) as well as Bobonaro populations grouped in the red cluster. Manufahi 428 population is mostly in a red cluster sharing genetic flow with Viqueque and Indonesia, which are 429 430 grouped in two clusters (brown) (Figure 4A).

DAPC analysis was made without any a priori group assignment. For the first dataset, the 431 clustering analysis determined that K = 10 was the one with the best combination of mean and 432 95% CI of BIC (Supplementary Figure S4). However, we do not see an "elbow" effect, rather a 433 considerable plateau in the number of clusters with a significant overlap among confidence 434 intervals for the nearby number of clusters. To make the results comparable with the ones produced 435 by STRUCTURE, we decided to use the optimal number of clusters for the later analysis, K = 5436 (Figure 4B). Using the function xvalDAPC, 40 PCs (highest successful assignment – 88.2 %, with 437 the lowest mean squared error – 0.178) were retained and 4 Discriminant Functions, thus 438

439 conserving 87.5% of variance (Supplementary Figure S5).

Cross validation using the xvalDapc function outcome the number of PCA axes retained against 440 the proportion of successful outcome prediction, which allowed retaining 40 PCA axes 441 (considering the highest successful assignment- 88%, with the lowest mean squared error, MSE-442 17%) and 2 Discriminant Functions (explaining 87.5% of cumulative variance), for inferring the 443 5 genetic clusters (Supplementary Figure S6). When displaying loading plots from both 444 discriminant functions, one can determine which variables (i.e., alleles/loci) contributed the most 445 for the five-clustering assemblage. Considering both DAPC results (K = 9 and K = 10), the same 446 variables are responsible for cluster assemblage (i.e., 172 (mAoR6), 328 (mAoR17), 174 447 448 (mAoR35), 170 (mAoR47), which highlight the importance of these alleles for cluster discrimination (Supplementary Figure S6 and S9). 449

450 451

452

453

454

455 456

457

458

459

460

461

462

463

464 465 For the Bayesian analysis of the second approach, which included East-Timor and Indonesia populations, STRUCTURE was run considering the highest range of clusters conceivable (K = 1) 13). This analysis assigned K=2 as the optimal number of groups based on Evanno et al. method (Supplementary Figure S8), with no alternative ideal K. Considering the high ΔK -values displayed for K=2, the analysis without Mozambique (**Figure 5**), two clusters were observed, the first cluster green with Baucau, Cova Lima, Manatuto and Indonesia: and the second cluster in red color with Bobonaro, Manufahi and Viqueque districts (Figure 5A). For the DAPC analysis and based on the best number of clusters from STRUCTURE, K = 2 (Figure 5B), the cross-validation allowed retaining 20 PCA axes (considering the highest successful assignment- 93.5%, with the lowest mean squared error, MSE- 10%) and 2 Discriminant Functions (explaining 96.4% of cumulative variance), for inferring the 2 genetic clusters. For K = 2, there are differences between the STRUCTURE and DAPC analyses, a different admixture scenario is depicted, namely in DAPC genetic diversity in Baucau which is not shared with Indonesia, while Bobonaro, Manufahi and Viqueque populations has a common allelic diversity to Indonesia (Figure 5B), contrarywise to STRUCTURE optimal clustering (Figure 5A). These analytical inconsistencies may be related to

different pre-requisites associated to both methods: STRUCTURE assumes that markers are not linked and that populations are panmictic (Pritchard *et al.*, 2000), while DAPC are more convenient approaches for populations that are clonal or partially clonal, which in this case STRUCTURE provides a more realist observation of the genetic diversity of cashew populations, given the panmictic nature and absence of clonal populations even in cashew varieties.

471

472

473

Discussion

- A comprehensive sampling of cashew orchards in East-Timor was conducted by collecting 11
- 475 populations from major cashew producing districts in the country, to assess and characterize the
- 476 genetic diversity and population structuring. Besides, 3 cashew orchards populations were
- 477 included outside East-Timor, namely one from Indonesia (nearest country) and two from
- 478 Mozambique, the latter working as a continental region for detecting any bias relating to
- 479 geographic isolation within East-Timor as an island country. To carry out the genetic diversity
- characterization, a total of 207 individuals belonging to 14 cashew populations from three
- 481 tropical nations (East-Timor, Mozambique, and Indonesia) were screened using 16 cashew
- 482 specific microsatellites (Croxford *et al.*, 2006).

483 484

Cashew diversity assessment

- Fourteen different cashew populations were first genotyped with 16 SSRs, and after SSRs quality
- assessment, markers were further used for subsequent genetic diversity analysis (**Table 3**). Four
- loci (mAoR12, mAoR33, mAoR41, mAoR29) were discarded due an excess of null alleles in
- almost all populations (null allele frequency >0.20), despite being polymorphic across the cashew populations analyzed and thus being an informative marker for other future diversity analysis.
- Thus, subsequent genetic diversity indices and population structuring analyses were performed
- 491 using 12 loci. PIC-values obtained were high (average PIC = 0.65, 0.38-0.82) which indicates their
- 492 high informativeness, and when compared with a recent study using 21 SSRs cashew SSR (cSSR,
- 493 Savadi et al., 2020) to screen 23 cashew accessions lower PIC values (0.33 average PIC-value,
- 494 0.10 to 0.38) were described. Deviations on PIC-values depicted in our study might be due to
- 495 differences in plant material sources compared to former reports, which may influence the number
- 496 of alleles detected at each SSR locus, though a potential influence of the lower number of SSRs
- described and their effect on loci used should not be disearded. When analyzing null alleles presence and their effect on
- 498 population structure, only 60 of the 224 locus-comparisons harbored null alleles with a frequency
- 499 higher than 0.20. Overall, based on the results of the preceding analysis, it is possible to predict
- that the SSRs loci used are suitable for downstream genetic diversity analysis.
- Genetic diversity among the countries analyzed in our study is high when compared to other
- cashew studies; more alleles were found within East-Timor, but this can be explained by the fact
- that we used more individuals and populations in East-Timor. Our results show a higher allelic

505

506

507 508

509

510

511

512 513

514

515

516517

518

519

520

521

522

523 524

525

526 527

528 529

530

531

532

533 534

535

536

537

538

richness in East-Timor populations (Na=10.67, **Table 4**) than in Mozambique (Na=3.42) and in Indonesia (Na=3.42), which highlights the high genetic diversity in East-Timor country. Nevertheless, only with the inclusion of more populations from Mozambique and Indonesia prompt analysis could be done to determine if reduced allelic diversity on cashew are effectively observed. Within East-Timor, ETK population from Manatuto district displays the highest allelic richness (Na=5.17), followed by ETTR3 from Baucau district, with ETV from Vigueque with the lowest allelic diversity obtained (Na=2.25, Table 4). Since in Vigueque district cashew orchards are less frequent in comparison with Baucau and Manatuto districts, where implementation of several orchards is occurring over the last 20 years, less diversity is observed. High allelic richness was expected in our study, as cashew is an outcrossing tree. The populations analyzed might reflect long-term genetic diversity that can be exploited in a breeding program to improve yield and nut quality. Moreover, identifying trees with high allelic richness is necessary for conserving cashew germplasm. Allelic richness data are also useful for managing germplasm collections in terms of genetic diversity (Bataillon et al., 1996). The number of private alleles found within cashew accessions is an important diversity measurement since these alleles represent genotypic-specific allelic build-up. Contrasting with previous SSRs studies in cashew (Savadi et al., 2020), private alleles were detected in our study, which may allow for the configuration of a unique genetic signature of cashew populations from different geographic regions, either by different allele frequencies or by unique alleles in each population. This is of importance in an agricultural crop like cashew, where the nuts are exported and processed in countries other than those where the product is originated and may lead to the valorization of a domestic product of a given geographical origin.

The searce of information regarding genetic diversity and population structuring in cashew is the primary impetus for this work; from 2006 to 2020, only a few papers were published especially in Southeast Asia and West Africa region. In comparison to a study done in Benin (West Africa), eight SSR markers were used to analyze sixty cashew morphotypes from three regions in the country (Chabi Sika *et al.*, 2013). This study revealed a low genetic diversity (Shannon index = 0.04) in the populations screened. In Brazil, in the Cerrado biome and coastal Restinga vegetation, wild Brazilian populations of cashew were studied (dos Santos *et al.*, 2019), and the genetic diversity in wild populations was higher than in domesticated ones, despite a weak distinction between wild and domesticated groups and with no correlation between genetic and geographical interpopulation distance. In Côte d'Ivoire, genetic diversity of cashew was studied using SSRs and revealed an overall heterozygosity deficit and a high intra-population genetic diversity among cashew populations screened (Kouakou *et al.*, 2020), which is in accordance with our results in AMOVA where most genetic diversity is depicted within populations.

Population structuring in East-Timor

540

541	AMOVA showed that most of the genetic diversity lies within individuals with little diversity
542	present among individuals or among populations. The large proportion of diversity were found
543	within accessions for the two types of groupings (countries MZ vs IND vs ET and ET vs IND)
544	suggesting a high gene flow between populations, which is in accordance with the heterozygous
545	nature and high frequency of cross pollination in cashew. Cashew is primarily an allogamous
546	species favoring cross-fertilization (Freitas & Paxton, 1996), thus allowing intraspecific
547	hybridizations and enhancing genetic variations in cashew. Outcrossing plant species tend to
548	have higher genetic variation within-populations, whereas selfing species or species with a
549	mixed mating system are often genetically less variable (Nybom, 2004). Since cashew is an
550	outcrossing, negative to low inbreeding coefficients (F) were expected, which agrees with former
551	studies (Freitas & Paxton, 1996; Layek et al., 2021).
552	Moreover, individual-based clustering methods using a bayesian approach (STRUCTURE) and
553	a multivariate analysis by DAPC allowed to assess the population structure, thus highlighting
554	that genetic diversity scattering does not follows a clear geographic trend, despite a well-defined
555	clustering observed between Mozambican populations with East-Timor/Indonesia, where few
556	genetic diversity is shared. The population structuring using genetic distances revealed similar
557	clustering with individual-based approaches, which supports results obtained under different
558	analytical methods. The unique clustering attributed to Mozambican population may be related
559	to incountry cashew varieties selection, different from the ones used by farmers in both
560	Indonesia and East-Timor, and also due to the being a continental region in comparison to the
561	geographical isolation of the island countries, Indonesia and East-Timor.
562	When narrowing to East-Timor, a complex population struturing is observed which is linked to a
563	district- associated genetic diversity. Also, surprisingly some East-Timor populations share
564	allelic diversity with the Indonesia population specifically in Viqueque (ETV) and Manatuto
565	(ETK and ETNA), and in less extent Baucau (ETTR3) and Manufahi (ETFA).
566	When excluding Mozambican populations from population structuring analysis, the genetic
567	clustering of two groups can be depicted, where Viqueque, Manufahi and Bobonaro districts
568	display a unique allelic diversity; while Baucau, Cova Lima and Manatuto has a high genetic
569	similarity with Indonesia population. These dissimilar results when including vs excluding
570	Mozambican populations, highlights the complex intraespecific genetic diversity of cashew in
571	the context of a continental (Mozambique) country where cashew orchards have been
572	implemented at long-term with improved varieties, while in Indonesia and East-Timor surely a
573	different historical context of with few progression into improved varieties is being applied.
574	These results are in accordance with previous results in India (Archak et al., 2009), where
575	cashew genetic diversity lies within geographical populations and also the sharing of allele
576	frequencies among populations does not translates into an in-country population structuring.
577	The clustering of cashew populations in this study had an uncommon, yet existing relationship
578	with geographical region under a district-wise distribution, which is contrary to previous reports
579	in India (Archak et al., 2009), where no relationship with the geographic region was observed.

580 Despite a high genetic diversity attributed to the high heterozygosity, allogamous nature and high gene flow found in cashew (Mitchell & Mori, 1987; Borges, 2018), also obtained in our study, in 581 certain East-Timor districts as Bobonaro, Viqueque and Manufahi, the dissimilar genetic 582 clustering with the remaining districts suggests a diverse genetic build-up which could be 583 584 attributed to different cashew varieties being planted. Among the cashew populations collected (associated with different geographic regions), 585 inbreeding coefficient was lowest in the northern Bobonaro district (ETSAN, F=-0.04; ETMA, 586 F=0.14; ETBAT, F=0.01, **Table 4**) and southern Viguegue district (ETV, F=-0.09), possibly 587 588 because growers from both regions easily exchange seeds with the other regions. In contrast, Covalima (south) district showed the highest inbreeding coefficient (F=0.26). Both Bobonaro 589 590 and Vigueque are districts where a significant share of exchange of planting may occurred: in Bobonaro from Indonesia and in Viqueque from Australia, its genetic richness might have 591 592 benefited from different introduced seeds and more varied germplasm imported than the other regions. 593 The difference between expected heterozygosity and observed heterozygosity might be due to 594 evolutionary factors that occurred in the studied accessions or internal genetic factors (such as 595 596 gene incompatibility). In addition, cashew grower's preference when they selected seeds for establishing new orchards might be one of the reasons. Indeed, when establishing new cashew 597 orchards, some producers used seeds from a single tree with good traits (preferentially high-598 yielding and large-nuts). Moreover, according to Ahmed & Saddi (2012), the genetic makeup of 599 600 a given population can vary over time in response to evolutionary forces that in turn affect the heterozygosity of the population relative to the Hardy-Weinberg equilibrium. Considering the 11 601 populations studied from East-Timor, population differentiation (F_{ST} = 0.129, Table 5) was 602 relatively moderate in comparison to other studies in Côte d'Ivoire (Kouakou et al., 2020) where 603 604 a low differentiation (0.014 \pm 0.004) was indicative of a common origin of Ivorian cashew trees. In India, a similarly low genetic diversity among cashew trees was associated to a relatively 605 606 recent introduction in the country (Archak et al., 2009), which is reported in other countries (e.g. 607 Benin (Kouami, 2020), except in Brazil. In the case of East-Timor, two different scenario of 608 cashew genetic diversity is conceivable, namely: i) possible multiple introductions from 609 Bobonaro and Viqueque districts, where these regions may be regarded as cashew introduction 610 hotspots in East-Timor; and ii) introduction of new cashew varieties on the remaining districts according to farmers preference. 611 612 Also, the moderate genetic variability among the populations screened could be due to the relatively recent introductions into East-Timor on evolutionary timescale and the allogamous 613 nature of cashew resulting in the high gene flow and exchange of genetic material. The 614 genetically highly divergent accessions among the studied accessions could be used in the 615 616 heterosis breeding of cashew in future to improve yield, quality and other traits.

617 East-Timor as an explored yet important source of cashew genetic diversity 618 The wide distribution of cashew in its primary center of diversity in Brazil has been attributed to water currents in which the mature fruit will float in addition to the role played by bats in seed 619 dispersal (Johnson, 1973). However, outside its center of origin, namely in India, cashew is 620 621 located mostly in marginal lands devoid of flowing water and there are no reports of bird- or bat-622 mediated seed dispersal (Archak et al., 2009). Hence, cashew distribution along the entire coastal 623 region in India in a relatively short span, of around 450 years since its introduction, has been 624 attributed to anthropogenic efforts, rather than through natural means alone (Archak et al., 2009). 625 Considering this important premise, the present genetic diversity analysis results are discussed accordingly. 626 The extent and distribution of genetic diversity as revealed by the present study provide some 627 628 clues of cashew introduction mode and expansion in East-Timor. The existence of substantial overall genetic diversity and the genetic grouping into two distinct genetic groups in East-Timor 629 point to multiple events of introduction comprising different founder populations. If the 630 introduction occurred as a one-time event, founder effect would have been reflected in low 631 genetic diversity. Furthermore, none of the genetic groups was confined to a particular 632 633 geographic region, yet instead by a surprisingly district-associated genetic diversity trend. The country's current agricultural landscapes have been heavily influenced by the stimulation of food 634 production mechanisms implemented by the Portuguese Agronomic Mission in the first three-635 quarters of the twentieth century, by promoting rice on the coastal plains and leaving the 636 637 mountains for coffee (Metzner, 2017). Nowadays, cashew expansion has been promoted mainly through the introduction of different varieties from Brazil, Indonesia, Australia and a so-called 638 "native" cashew. According to the information obtained from the National Directorate of 639 Industrial Crops and Agribusiness, the Ministry of Agriculture and Fisheries (MAFF) of East-640 641 Timor, the Portuguese brought the cashew to East-Timor (ET) in the 18th century and were 642 planted as ornamental plants in various districts. Cashew was planted by communities in Maliana 643 during the Indonesian occupation in 1983, with the help of a Timorese governor and agronomist 644 Mário Viegas Carrascalão, who encouraged cashew plantations for smallholder benefits (Buss & 645 Ferreira, 2010). After, cashew was developed as an industrial crop in the 1990's in ET under Indonesian occupation, mostly in poor and dry or semi-dry regions (Odete et al., 2017) in 10 646 647 districts with about 3.200 ha land area planted on 6.500 small farms (60% of them in the Bobonaro district). As of 2008, a significant decrease due to fires from the armed period in 1999, 648 with about 800 ha of cashew trees remained growing in ten districts (Bobonaro, Manatuto, 649 650 Oecusse, Cova Lima, Ainaro, Manufahi, Viqueque, Baucau, Lospalos and Díli). In Cova Lima 651 district, cashew orchards were implemented in 1990s and few new cashew varieties have been introduced. In Manatuto and Baucau districts, cashew orchards were planted with accessions that 652 farmers exchanged within region, namely those that gave higher yield and that were adapted to 653 654 local agro-ecological conditions. In Bobonaro and Viqueque districts, during fieldwork, land farmers reported that several cashew accessions were being introduced, namely from Indonesia 655

685

686

687

688 689

690

691

692 693

and Australia, hence such a different genetic clustering may be associated to farmers preferences that shaped current East-Timor cashew genetic diversity panorama.

It is generally believed that the Portuguese carried the cashew nut crop to Africa and India in the 658 sixteenth century, and the Spanish probably took it to the Central American countries and the 659 660 Philippines (Singh, 2018). Thus, cashew nut was introduced into India through the western coast, most probably Goa in the 16th century CE (1560) by the Portuguese (Sauer, 1993). From there, 661 cashew was spread throughout Southeast Asia and parts of Africa, with Portuguese navigators in 662 the 16th century brought seeds to India and Mozambique (Brücher, 1991) more as a source of 663 664 wine and brandy than for the nuts. Only later, cashew was seen as a tree used for preventing soil erosion in the coastal region, until the commercial engagement into cashew nuts as we know 665 today. Considering that India was an important country where cashew was first introduced in 666 Asia as a commercial crop, in future studies inclusion of Indian cashew populations could help 667 668 explain the genetic diversity within East-Timor and assist on the historical introduction in the country. As reported in India (Archak et al., 2009), in East-Timor a relatively significant genetic 669 diversity for an introduced species was observed, thus supporting the possibility of cashew being 670 671 introduced repeatedly over time. Contrary to our data, a significant level of redundancy 672 (homogenous group) within Nigerian cashew germplasm (Aliyu, 2012), thus highlighting a narrow genetic diversity within germplasm collection. This is particularly important as East-673 Timor aims to invest in the cashew nut exports by challenging directly with competitive 674 countries, as India and Vietnam in the surrounding region. In fact, evaluation and assessing 675 genetic diversity will allow to detect the presence of any East-Timor genetic signature that will 676 677 acknowledge the valorization of cashew nuts from the country, and prospect agrobiodiversity hotspots for future cashew germplasm programs. Traditional cashew breeding has been slow. 678 679 mainly due to the heterozygous nature and high frequency of cross pollination, hence necessitating the clonal propagation for maintaining the genetic integrity of a superior genotype 680 (Johnson, 1973). Yet recent advances in cashew genomics may result in the development of new 681 molecular tools and breeding strategies that increase genetic gains and speed the development of 682 superior cultivars and genetic stocks (Savadi et al., 2020). 683

This study provides useful information on genetic diversity assessment on cashew populations in a largely understudy country, where cashew nuts is becoming an important export-oriented crop, and thus the genetic diversity build-up obtained in our study point out to a cashew genetic diversity hotspot. Cashew has been implemented under a monoculture system and land cropping area has been increasing to meet global market needs (Monteiro et al., 2017), which together with a scenario of rising potential of pest and diseases (Monteiro et al., 2015; 2017) and the current narrow genetic diversity of cashew orchards is a major concern to its future sustainable production. Thus, the incorporation and exploration of genetic resources with new genetic diversity should be foreseen towards the development of varieties with improved agronomic traits, such as higher yield, biotic and abiotic stress tolerance, and to increase the genetic diversity of on-farm orchards at the short

run and to the identification of genetic resources for the development of cashew genetic management.

696 697

Conclusions

Our results show a higher allelic richness in East-Timor populations than in Mozambique and 698 699 Indonesia, reinforced by the presence of private alleles. Genetic diversity was observed within populations, in accordance with former studies. Population structuring revealed that the genetic 700 diversity seems to follow a geographic trend, with a well-defined cluster observed in 701 Mozambican populations and other with East-Timor/Indonesia. Within East-Timor, a district-702 associated genetic diversity clustering into two genetic groups was seen, which may point to 703 multiple events of cashew introduction. This study provides useful information on genetic 704 705 diversity hotspots, which can be used to improve genetics and characterize new types in a future breeding effort. East-Timor is one of the countries where cashew nuts are regarding to become a 706 707 more important crop, and the genetic diversity build-up obtained in our study point out to cashew agrobiodiversity hotspots. The findings of this study are also applicable to the development or 708 709 preservation of genetic resources for cashew in a poorly understudied country as East-Timor, towards the development of a management and conservation plan of cashew genetic resources. 710 Considering that East-Timor is engaging into cashew as an important crop, the genetic diversity 711

713 714

715

712

Acknowledgements

the crop market value, and thus competitiveness.

- 716 The authors would like to acknowledge all farmers from East-Timor for their significant
- 717 contribution during fieldwork, the Ministry of Agriculture, Forestry and Fisheries (MAFF) of

build-up obtained would be important for assessing an in-country genetic signature to increase

718 East-Timor for logistics support, and Sílvia Catarino for map representation in Figure 1.

719

720

Author Contributions

- 721 Conceptualization, F.M. and M.M.R.; methodology, F.M, L.G., J.B. and A.B.B.; formal analysis,
- 722 J.B., A.B.B., A.C. and F.M.; investigation, L.G. and J.B.; writing—original draft preparation, L.G.,
- 723 J.B. and F.M.; writing—review and editing, A.B.B., A.C., M.C.D. and M.M.R.; supervision,
- 724 M.M.R. and F.M. All authors have read and agreed to the published version of the manuscript.

725

726

Funding

- 727 This research was funded by FCT Fundação para a Ciência e a Tecnologia, I.P. under the project
- 728 GenoCash (PTDC/ASP-AGR/0760/2020). Fellowships were funded by Portuguese National
- 729 Funds through FCT, Portugal: SFRH/BD/135358/2017 to L.G. and SFRH/BD/135360/2017 to
- 730 A.C., and research units: UID/AGR/04129/2020 (LEAF); UID/BIA/00329/2020 (cE3c).

- 731 Fellowship to J.B. was funded by FAO/UN (TCP/GBS/3801). The APC was funded by Fundação
- 732 para a Ciência e Tecnologia (FCT) under the GenoCash project (PTDC/ASP-AGR/0760/2020).

734 **Data Availability Statement**

- Data is contained within the article or supplementary material. Genotypic matrix 735
- (https://doi.org/10.6084/m9.figshare.19119041.v3) **DAPC** 736 script
- 737 (https://doi.org/10.6084/m9.figshare.19117889.v3) are available at the online figshare repository.

Conflicts of Interest 738

The authors declare that they have no competing interests. 739

740 741

References

742

747

- 743 Ahmed OAMS, Saddi A. 2012. Am-Isometric operators in semi-Hilbertian spaces. Linear Algebra 744 and its applications, 436(10), 3930-3942.
- Aliyu OM, Awopetu JA. 2007. Multivariate analysis of cashew (Anacardium occidentale L.) 745 germplasm in Nigeria. Silvae Genetica 56:170–179. DOI: 10.1515/sg-2007-0026. 746
- Aliyu OM. 2012. Chapter 9: Genetic Diversity of Nigerian Cashew Germplasm. In Genetic Çalişkan M. 748 Diversity Plants, (Ed.). IntechOpen. Pp 163-184. https://doi.org/10.5772/32892.
- 750 Archak S, Gaikwad AB, Swamy KRM, Karihaloo JL. 2009. Genetic analysis and historical 751 perspective of cashew (Anacardium occidentale L.) introduction into India. Genome 52:222-230. DOI: 10.1139/G08-119. 752
- 753 Barros A, Barnabé J, Guterres L, Monteiro F. 2022. Script for performing DAPC analysis applied 754 to the study of population structure and genetic diversity in cashew from East-Timor. Figshare Software. DOI: https://doi.org/10.6084/m9.figshare.19117889.v3. 755
- Bataillon M. David J L. & Schoen D J. 1996. Neutral genetic markers and conservation genetics: 756 757 simulated germplasm collections. Genetics, 144 (1), 409-417.
- Borges D. 2018. Cultures du Timor-Oriental: processus d'objectification. Plural Pluriel revue 758 (Avalaible 759 des cultures de langue portugaise. on 760 https://www.pluralpluriel.org/index.php/revue/issue/view/16).
- Brownstein MJ, Carpten JD, Smith JR. 1996. Modulation of non-templated nucleotide addition by 761 Tag DNA polymerase: Primer modifications that facilitate genotyping. BioTechniques 762 763 20:1004–1010. DOI: 10.2144/96206st01.
- Brücher H. 1991. Useful plants of neotropical origin and their wild relatives. DOI: 10.1016/0308-764 521x(91)90152-z. 765
- 766 Buss PM, Ferreira JR. 2010. Diplomacia da saúde e cooperação Sul-Sul: as experiências da Unasul 767 saúde e do Plano Estratégico de Cooperação em Saúde da Comunidade de Países de Língua Portuguesa (CPLP). Reciis 4:106–118. DOI: 10.3395/reciis.v4i1.351pt. 768
- 769 Cavalli-Sforza LL, Edwards AW. 1967. Phylogenetic analysis. Models and estimation procedures. 770 *American Journal of Human Genetics* 19:233–257. DOI: 10.2307/2406616.
- 771 Chabi Sika K, Adoukonou-Sagbadja H, Ahoton LE, Adebo I, Adigoun FA, Saidou, A & Baba-772 Moussa, L. 2013. Indigenous knowledge and traditional management of cashew (Anacardium

- occidentale L.) genetic resources in Benin. J. Exp. Biol. Agric. Sci, 1(5), 375-382.
- 774 Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. *Molecular Biology and Evolution* 24:621–631. DOI: 10.1093/molbev/msl191.
- Chipojola FM, Mwase WF, Kwapata MB, Bokosi JM, Joyce P, Maliro MF. 2009. Morphological
 characterization of cashew (*Anacardium occidentale* L.) in four populations in Malawi.
 African Journal of Biotechnology 8:5173–5181.
- Croxford AE, Robson M, Wilkinson MJ. 2006. Characterization and PCR multiplexing of polymorphic microsatellite loci in cashew (*Anacardium occidentale* L.) and their cross-species utilization. *Molecular Ecology Notes* 6:249–251. DOI: 10.1111/j.1471-8286.2005.01208.x.
- Culley TM, Stamper TI, Stokes RL, Brzyski JR, Hardiman NA, Klooster MR, Merritt BJ. 2013.
 An Efficient Technique for Primer Development and Application that Integrates Fluorescent Labeling and Multiplex PCR. Applications in Plant Sciences 1:1300027. DOI: 10.3732/apps.1300027.
- de Carvalho BRP, Mendes H. 2016. Cashew chain value in Guiné-Bissau: Challenges and contributions for food security: A case study for Guiné-Bissau. *International Journal on Food System Dynamics* 7:1–13. DOI: 10.18461/ijfsd.v7i1.711.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data
 via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38.
- dos Santos JO, Mayo SJ, Bittencourt CB, de Andrade IM. 2019. Genetic diversity in wild populations of the restinga ecotype of the cashew (*Anacardium occidentale* L.) in coastal Piauí, Brazil. *Plant Systematics and Evolution* 305:913–924. DOI: 10.1007/s00606-019-01611-4.
- Farl DA, Bridgett M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. :359–361. DOI: 10.1007/s12686-011-9548-7.
- Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. *Molecular Ecology* 14:2611–2620. DOI: 10.1111/j.1365-294X.2005.02553.x.
- Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology Resources* 10:564–567. DOI: 10.1111/j.1755-0998.2010.02847.x.
- Excoffier L, Smouse PE, & Quattro J. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. *Genetics*, 131(2), 479-491.
- Freitas BM, Paxton RJ. 1996. The role of wind and insects in cashew (*Anacardium occidentale* L.) pollination in NE Brazil. *Journal of Agricultural Science* 126:319–326. DOI: 10.1017/s0021859600074876.
- Government of East-Timor. 2015. Population and Housing Census 2015: Preliminary Results.

 Direcção Geral de Estatística de East-Timor. Pp 1- 39. http://www.statistics.gov.tl/wp-content/uploads/2015/10/1-Preliminary-Results-4-Printing-Company-19102015.pdf.
- Guterres L, Barnabé J, Monteiro F. 2022. Genotypic matrix for studying the cashew population structure and genetic diversity in East-Timor. *Figshare Dataset*. DOI: https://doi.org/10.6084/m9.figshare.19119041.v3.
- Guterres MO. (2017). Improvements in Growing Organic Cashews in Timor-Leste (Doctoral dissertation, Charles Darwin University (Australia)).

- Harmadi SHB & Gomes RA. 2013. Developing Timor-Leste's Non-Oil Economy: Challenges and Prospects. Journal of Southeast Asian Economies, 30(3), 309–321. http://www.jstor.org/stable/43264687
- Havik PJ, Monteiro F, Catarino S, Correia AM, Catarino L, Romeiras MM. 2018. Agro-economic transitions in Guinea-Bissau (West Africa): Historical trends and current insights. Sustainability 10:1–19. DOI: 10.3390/su10103408.
- Hill W G. 1996. Genetic Data Analysis II. By Bruce S. Weir, Sunderland, Massachusetts. Sinauer Associates, Inc. 445 pages. ISBN 0-87893-902-4. Genetics Research, 68(2), 187-187.
- Holleley CE, Geerts PG. 2009. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. *BioTechniques* 46:511–517. DOI: 10.2144/000113156.
- 829 International Nut and Dried Fruit Council Foundation. 2020. Nuts and Dried Fruits Statistical Yearbook 2019/20. Reus, Spain. Pp 1-80. Available online at https://www.nutfruit.org/files/tech/1587539172_INC_Statistical_Yearbook_2019-2020.pdf 32 Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for
 - Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. 23:1801–1806. DOI: 10.1093/bioinformatics/btm233.
- Johnson JW. 1973. The botany, origin, and spread of the cashew *Anacardium occidentale* L. *Journal of Endodontics* 1:1–7. DOI: 10.1016/S0099-2399(06)81513-X.
- Jombart T, Balloux F. 2009. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. *PLoS Computational Biology* 5. DOI: 10.1371/journal.pcbi.1000455.
- Jombart T. 2008. *Adegenet*: a R package for the multivariate analysis of genetic markers. *Bioinformatics* 24: 1403–1405. doi: 10.1093/bioinformatics/btn129
- Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* 2014:1–14. DOI: 10.7717/peerj.281.
- Kouakou CK, Adopo AN, Djaha AJB, N'da DP, N'da HA, Bi IAZ, Koffi KK, Djidji H, Minhibo
 MY, Dosso M, N'guessan AÉ. 2020. Genetic characterization of promising high-yielding
 cashew (*Anacardium occidentale* L.) cultivars from Côte d'Ivoire. *Biotechnology, Agronomy* and Society and Environment 24:46–58. DOI: 10.25518/1780-4507.18464.
- Kouami N'D, Adolphe A, Hubert A-S, Barnabas W, Raphiou M, SaliouB, Vinou Yémalin Alfred
 VY. 2020. Yield and Nut Quality of 29 Cashew Mother Trees (*Anacardium occidentale* L)
 Established At the Germplasm of Ouoghi in Central Region of Benin. *International Journal* of Advanced Research 8:1144–1152. DOI: 10.21474/ijar01/11946.
- Layek U, Bera K, Bera B, Bisui S, Pattanayek SK, Karmakar P. 2021. Assessment of yield enhancement in cashew (*Anacardium occidentale* L.) by the pollinator sharing effect of magnetic bee-friendly plants in India. *Acta Ecologica Sinica* 41:243–252. DOI: 10.1016/j.chnaes.2021.05.003.
- MAFF. 2004. MAFF (Ministry of Agriculture, Forestry and Fisheries of East-Timor). :MAFF website. Available at: http://www.gov.east-ti.
- Massari F. 1994 Introduction. In "The World Cashew Economy." NOMISMA, L'Inchiostroblu,
 Bol. Italy. (A. M. Del, pp. 3–4.) 443831467999735473/102933.
- Metzner JK. 2017. Man and Environment in Eastern Timor. Canberra, ACT: Development Studies
 Centre, The Australian National University.
- Mitchell JD, Mori SA. 1987. The cashew and its relatives (*Anacardium*: Anacardiaceae). El marañón y sus parientes (*Anacardium*: Anacardiaceae). *Biblioteca OET*: M 42:v. 42, 1-76.

- 865 Año 1987.
- Mneney EE, Mantell SH, Bennett M. 2001. Use of random amplified polymorphic DNA (RAPD)
 markers to reveal genetic diversity within and between populations of cashew (*Anacardium occidentale* L.). *Journal of Horticultural Science and Biotechnology* 76:375–383. DOI: 10.1080/14620316.2001.11511380.
- Monteiro F, Catarino L, Batista D, Indjai B, Duarte MC, Romeiras MM. 2017. Cashew as a high
 agricultural commodity in West Africa: Insights towards sustainable production in Guinea Bissau. Sustainability 9:1–14. DOI: 10.3390/su9091666.
- Monteiro F, Romeiras MM, Figueiredo A, Sebastiana M, Baldé A, Catarino L, Batista D. 2015.

 Tracking cashew economically important diseases in the West African region using metagenomics. *Frontiers in Plant Science* 6:1–6. DOI: 10.3389/fpls.2015.00482.
- Monteiro F, Vidigal P, Barros AB, Monteiro A, Oliveira HR. 2016. Genetic Distinctiveness of Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources. 7:1–17. DOI: 10.3389/fpls.2016.01334.
- Nair KP. 2010. The Agronomy and Economy of Important Tree Crops of the Developing World. *Elsevier Wordmark*. DOI: ISBN: 9780123846785.
- Nei M. 1972. Genetic Distance between Populations. *The American Naturalist* 106:283–292. DOI: 10.1086/282771.
- Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. *Molecular Ecology* 13:1143–1155. DOI: 10.1111/j.1365-294X.2004.02141.x.
- Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in R
 language. 20:289–290. DOI: 10.1093/bioinformatics/btg412.
- Park SDE. 2001. Trypanotolerance in West African cattle and the population genetic effects of selection [PhD thesis]. [Dublin (Ireland)]: University of Dublin.
- Peakall R, Smouse PE. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software
 for teaching and research. *Molecular Ecology Notes* 6:288–295. DOI: 10.1111/j.1471-892
- Pradhan C, Peter N, & Dileep N. 2020. Nuts as Dietary Source of Fatty Acids and Micro Nutrients in Human Health. *In* V. Rao, L. Rao, M. Ahiduzzaman, & A. K. M. A. Islam (Eds.), Nuts and Nut Products in Human Health and Nutrition. IntechOpen. https://doi.org/10.5772/intechopen.94327
- Pritchard J K, Stephens M, & Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.
- Putman AI, Carbone I. 2014. Challenges in analysis and interpretation of microsatellite data for population genetic studies. *Ecology and Evolution* 4:4399–4428. DOI: 10.1002/ece3.1305.
- R Core Team. 2021 R: A Language and Environment for Statistical Computing. R Found. Stat.
 Comput. Vienna, Austria.
- Rambaut A. 2014. FigTree v1. 4.2, a graphical viewer of phylogenetic trees. Available from left angle bracket http://tree. bio. ed. ac. uk/software/figtree/right angle bracket.
- República Democrática de Timor-Leste. 2011 East-Timor Strategic Development Plan 2011 –
 2030. Pp 1- 228. https://www.adb.org/sites/default/files/linked-documents/cobp-tim-2014 2016-sd-02.pdf.
- 908 Rice WR. 2013. Analyzing Tables of Statistical Tests. *Evolution*, 43(1): 223-225.
- Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure.
 Molecular Ecology 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x

- Rousset F. 2008. GENEPOP'007: A complete re-implementation of the GENEPOP software for
 Windows and Linux. *Molecular Ecology Resources* 8:103–106. DOI: 10.1111/j.1471-8286.2007.01931.x.
- Salehi B, Gültekin-Özgüven M, Kirkin C, Özçelik B, Morais-Braga MFB, Carneiro JNP, Bezerra
 CF, Da Silva TG, Coutinho HDM, Amina B, Armstrong L, Selamoglu Z, Sevindik M, Yousaf
 Z, Sharifi-Rad J, Muddathir AM, Devkota HP, Martorell M, Jugran AK, Martins N, Cho WC.
 2019. *Anacardium* plants: Chemical, nutritional composition and biotechnological
 applications. *Biomolecules* 9:1–34. DOI: 10.3390/biom9090465.
- 919 Sauer JD. 1993. Historical Geography of Crop Plants. *CRC Press*. DOI: https://doi.org/10.1201/9780203751909.
 - Savadi S, Megha KSVS, Mohana BMMGS. 2020. Genetic diversity and identification of interspecific hybrids of Anacardium species using microsatellites. *Brazilian Journal of Botany* 2026. DOI: 10.1007/s40415-020-00678-5.
 - Savadi S, Muralidhara BM, Preethi P. 2020. Advances in genomics of cashew tree: molecular tools and strategies for accelerated breeding. *Tree Genetics and Genomes* 16. DOI: 10.1007/s11295-020-01453-z.
 - Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments A poor man's approach to genotyping for research and high-throughput diagnostics. *PRism* 18:1–2.
 - Singh AK. 2018. Early History of Crop Presence/Introduction in India: III. *Anacardium occidentale* L. *Cashew Nut. Asian Agri-History* 22. DOI: 10.18311/aah/2018/21389.
 - Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4:535–538. DOI: 10.1111/j.1471-8286.2004.00684.x.
- Weir BS, Cockerham CC. 1984. Estimating *F*-Statistics for the analysis of population structure.
 Evolution 38:1358–1370. doi: 10.2307/2408641.

952 953	lables
954	Table 1. Populations by country, district and location, geographical coordinates and the total
955	number of individuals sampled by population (N).
956	
957	Table 2. Loci used to screen 14 cashew populations. Primers sequences, multiplexing scheme,
958	amplicon size range (bp) and amplicon expected size (bp) are provided.
959	
960	Table 3. Marker's diversity measurements. The level of genetic diversity of each SSR marker
961	was described with the parameters of total number of alleles, Polymorphism Information Content
962	(PIC), gene diversity (expected heterozygosity, H _e), observed heterozygosity (H _o),
963	inbreeding/fixation coefficient (<i>F</i>). Total samples analyzed= 207.
964	
965	Table 4. Genetic diversity indices by a country analysis and a population approach scheme.
966	Countries: Mozambique (MZ, 2 populations), Indonesia (IND, 1 population) and East-Timor
967	(ET, 11 populations); Number of populations: 14. Sample size (N). Genetic diversity indices for
968	each group were assessed by mean alleles per locus (Na), expected heterozygosity (He) and
969 970	observed heterozygosity (HO) with corresponding standard de-viation (SD) values, private alleles and inbreeding/fixation coefficient (F).
970	aneles and moreeding/mation coefficient (F).
972	Table 5. AMOVA results including fixation indices F_{CT} , F_{SC} , and F_{ST} .
973	Table 6. Thirle vit results including invation indices I (1, 1 50, and 1 51.
974	Figures
975	
976	Figure 1 . Geographical location of cashew populations sampled in the three tropical countries:
977	Mozambique (A), Indonesia, in Kefamenanu (B) and East-Timor (C). Cashew orchards some of
978	the plantations sampled: Natarbora-Manatuto district (D), Mailiana in Bobonaro district (E),
979	Triloca in Baucau district (F), Fatucahi in Manufahi (G), Kefamenanu in Indonesia (H),
980	Viqueque (I).
981	
982	Figure 2. UPGMA (A) and NJ (B) trees generated from FreeNA using matrix DC^{INA}
983	respectively, representing the population from East-Timor, Indonesia, and Mozambique. Legend:
984	(□ Manatuto, ⊡ Bobonaro, ■ Baucau, ■ Cova Lima, ■ Manufahi, ■ Viqueque, ❖ Indonesia,
985	▲ Mozambique).
986	
987	Figure 3. UPGMA (A) and NJ (B) trees generated from <i>FreeNA</i> using matrix DC^{INA}
988	respectively, representing the population from East-Timor and Indonesia. Legend: (□ Manatuto,
989	
990	
991	


```
Figure 4. Clustering based on SSR data of the optimal K-means using STRUCTURE (A) for
 992
       populations of Mozambique, East-Timor, and Indonesia; and DAPC analyses representation of K
 993
 994
       = 5 (B).
 995
       Figure 5. Optimal K- means individual-based clustering using STRUCTURE (K = 2, A) for
 996
       populations of East-Timor and Indonesia and DAPC analyses of K=2 (B).
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
```


1032 Supplementary Materials

- 1033 **Table S1**. Hardy–Weinberg equilibrium (HWE) test for each locus-population combination using
- 1034 GenePop v4.5.
- 1035 **Table S2**. Pairwise F_{ST} (lower-left matrix) and F_{ST} ENA (upper-right matrix) between all
- 1036 populations of East-Timor, Indonesia and Mozambique.
- 1037 **Table S3**. Pairwise F_{ST} (lower-left matrix) and F_{ST} ENA (upper-right matrix) between all
- 1038 populations of East-Timor and Indonesia.
- 1039 Figure S1. UPGMA (A) and NJ (B) trees generated using matrix Nei's D distance, respectively,
- 1040 representing the population from East-Timor, Indonesia, and Mozambique.;
- 1041 Figure S2. UPGMA (A) and NJ (B) trees generated using matrix Nei's D distance, respectively,
- 1042 representing the population from East-Timor and Indonesia.
- 1043 Figure S3. STRUCTURE ad hoc statistics retrieved by StructureHarvester using 1 to 15 possible
- 1044 clusters (K). Variation of ΔK values according to Evanno et al. (2005) method for populations
- 1045 from East-Timor, Indonesia and Mozambique.
- 1046 Figure S4. DAPC results inference of the number of clusters using *find.clusters* function with a K
- 1047 = 10 (left) and K = 5 (right).
- 1048 Figure S5. Scatterplot of DAPC for K = 5 assignment.
- 1049 Figure S6. Loading plots of the two Discriminant Functions following DAPC analysis with a K =
- 1050 5.
- 1051 Figure S7. STRUCTURE ad hoc statistics retrieved by StructureHarvester using 1 to 12 possible
- 1052 clusters (K). Variation of ΔK values according to Evanno et al. (2005) method for populations
- 1053 from East-Timor and Indonesia.
- 1054 Figure S8. Number of clusters inferred by DAPC find.clusters function with a K = 5 and K = 2.
- 1055 Figure S9. Loading plot of the DF1 following DAPC analysis with a K=2, after assigning a 0.045
- 1056 as threshold.
- 1057
- 1058
- 1059
- 1060
- 1061

Geographical location of cashew populations sampled in the three tropical countries: Mozambique (A), Indonesia, in Kefamenanu (B) and East-Timor (C-I).

Cashew orchards of some the plantations sampled: Natarbora-Manatuto district (D), Mailiana in Bobonaro district (E), Triloca in Baucau district (F), Fatucahi in Manufahi (G), Kefamenanu in Indonesia (H), Viqueque (I).

Figure 1. Geographical location of cashew populations sampled in the three tropical countries: Mozambique, province of Sofala (**A**), Indonesia, in Kefamenanu (**B**) and East-Timor (**C**). Cashew orchards some of the plantations sampled: Natarbora-Manatuto district (**D**), Mailiana in Bobonaro district (**E**), Triloca in Baucau district (**F**), Fatucahi in Manufahi (**G**), Kefamenanu in Indonesia (**H**), Viqueque (**I**).

UPGMA (A) and NJ (B) trees generated from FreeNA using matrix DC^{INA} respectively, representing the population from East-Timor, Indonesia, and Mozambique.

Legend: (☐ Manatuto, ☐ Bobonaro, ☐ Baucau, ☐ Cova Lima, ☐ Manufahi, ∰Viqueque, ❖ Indonesia, ▲Mozambique).

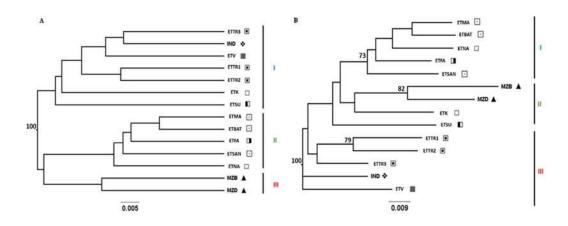


Figure 2. UPGMA (A) and NJ (B) trees generated from FreeNA using matrix DCINA respectively, representing the population from East-Timor, Indonesia, and Mozambique. Legend: (□ Manatuto, ⊡ Bobonaro, ■ Baucau, ■ Cova Lima, ■ Manufahi, ■ Viqueque, ❖ Indonesia, ▲ Mozambique).

UPGMA (A) and NJ (B) trees generated from FreeNA using matrix DC^{INA} respectively, representing the population from East-Timor and Indonesia.

Legend: (☐ Manatuto, ☐ Bobonaro, ☐ Baucau, ☐ Cova Lima, ☐ Manufahi, ☐ Viqueque, ❖Indonesia).

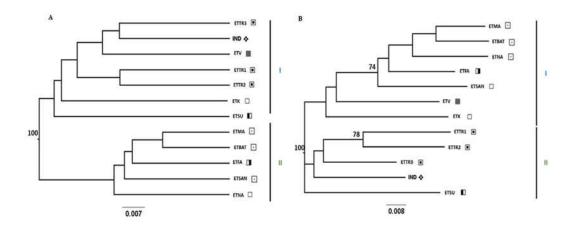


Figure 3. UPGMA (A) and NJ (B) trees generated from *FreeNA* using matrix *DC*^{INA} respectively, representing the population from East-Timor and Indonesia. Legend: (□ Manatuto, ⊡ Bobonaro, 回 Baucau, □ Cova Lima, □ Manufahi, 圖 Viqueque, ❖ Indonesia).

Clustering based on SSR data of the optimal K-means using STRUCTURE (A) for populations of Mozambique, East-Timor, and Indonesia; and DAPC analyses representation of K = 5 (B).

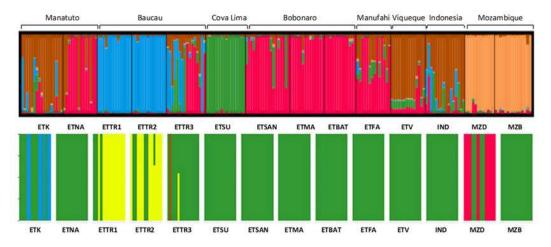


Figure 4. Clustering based on SSR data of the optimal K-means using STRUCTURE (A) for populations of Mozambique, East-Timor, and Indonesia; and DAPC analyses representation of K = 5 (B).

Optimal K- means individual-based clustering using STRUCTURE (K = 2, A) for populations of East-Timor and Indonesia and DAPC analyses of K=2 (B).

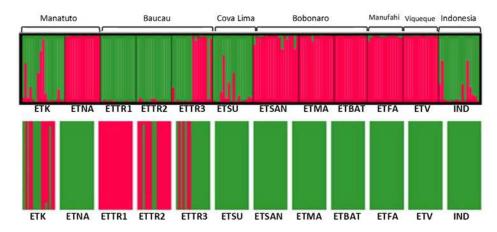


Figure 5. Optimal K- means individual-based clustering using STRUCTURE (K = 2, **A**) for populations of East-Timor and Indonesia and DAPC analyses of K=2 (**B**).

Table 1(on next page)

Populations by country, district and location, geographical coordinates and the total number of individuals sampled by population (N).

- 1 Table 1. Populations by country, district and location, geographical coordinates and the total
- 2 number of individuals sampled by population (N).

Country	District	Location	Population	Latitude	Longitude	N
	Manatuto	Kribas	ETK	-8.650	125.983	17
	Manatuto	Natarbora	ETNA	-8.974	126.045	14
			ETTR1	-8.490	126.370	14
	Baucau	Triloca	ETTR2	-8.491	126.370	14
			ETTR3	-8.487	126.370	16
East Timor (ET)	Cova Lima	Suai	ETSU	-9.432	125.108	16
		Sanirin	ETSAN	-8.925	124.986	18
	Bobonaro	Maliana	ETMA	-8.966	125.156	14
		Batugade	ETBAT	-8.965	124.966	13
	Manufahi	Fatucahi	ETFA	-9.032	125.968	14
	Viqueque	Viqueque	ETV	-8.907	126.273	14
Indonesia (IND)	Kota Kefamenanu	Kefamenanu	IND	-9.437	124.485	16
Mozambique (MZ)	Sofala	Beira	MZB	-19.723	34.982	12
	Solala	Dondo	MZD	-19.571	34.715	15

Table 2(on next page)

Loci used to screen 14 cashew populations. Primers sequences, multiplexing scheme, amplicon size range (bp) and amplicon expected size (bp) are provided.

Following Culley *et al.* [19], D1 (6-FAM): M13 (-21), 5'-TGTAAAACGACGGCCAGT-3'; D2 (NED,): T7term, 5'-CTAGTTATTGCTCAGCGGT-3'; D3 (VIC): M13modA, 5'-TAGGAGTGCAGCAAGCAT-3'; D4 (PET): M13modB, 5'-CACTGCTTAGAGCGATGC-3'. Underlined sequence at each reverse primer (GTTTCTT) identifies the "PIG-tail".

- 1 Table 2. Loci used to screen 14 cashew populations. Primers sequences, multiplexing scheme,
- 2 amplicon size range (bp) and amplicon expected size (bp) are provided.

Locus	Repeat motif	Primers (5'-3')	Tailed Primer	Size range (Expected Size)	Multiplex
mAoR6	$(AT)_5(GT)_{12}$	F: CAAAACTAGCCGGAATCTAGC	D2	118–186 (143)	
		R: GTTTCTTCCCCATCAAACCCTTATGAC	_		
mAoR17	(GA) ₂₄	F: GCAATGTGCAGACATGGTTC	D1	122-184 (124)	_
		R: <u>GTTTCTT</u> GGTTTCGCATGGAAGAAGAG	_		A
mAoR7	$(AT)_2(GT)_5AT(GT)_5$	F: AACCTTCACTCCTCTGAAGC	D4	158-198 (178)	-
		R: GTTTCTTGTGAATCCAAAGCGTGTG	_		
mAoR48	(GAA) ₆ (GA) ₃	F: CAGCGAGTGGCTTACGAAAT	D3	130-186 (177)	_
		R: GTTTCTTGACCATGGGCTTGATACGTC	_		
mAoR3	$(AC)_{12}(AAAAT)_2$	F: CAGAACCGTCACTCCACTCC	D4	140-282 (231)	
		R: GTTTCTTATCCAGACGAAGAAGCGATG	_		
mAoR42	(CAT) ₉ TAT(CTT) ₇	F: ACTGTCACGTCAATGGCATC	D2	160-232(204)	- В
		R: GTTTCTTGCGAAGGTCAAAGAGCAGTC	_		
mAoR52	(GT) ₁₆ (TA) ₂	F: GCTATGACCCTTGGGAACTC	D1	142-244 (202)	_
		R: GTTTCTTGTGACACAACCAAAACCACA	_		
mAoR11	(AT) ₃ (AC) ₁₆	F: ATCCAACAGCCACAATCCTC	D3	142-248 (234)	_
		R: GTTTCTTCTTACAGCCCCAAACTCTCG	_		
mAoR2	(CA) ₁₀ (TA) ₆	F: GGCCATGGGAAACAACAA	D3	172-322 (366)	
		R: GTTTCTTGGAAGGGCATTATGGGTAAG	_		
mAoR33	(CT) ₁₈ (AT) ₁₉	F: CATCCTTTTGCCAATTAAAAACA	D4	322-404 (354)	_
		R: GTTTCTTCACGTGTATTGTGCTCACTCG	_		C
mAoR35	(AG) ₁₄	F: <u>T</u> CTTTCGTTCCAATGCTCCTC	D2	142-180 (165)	_
		R: GTTTCTTCATGTGACAGTTCGGCTGTT	_		
mAoR47	$(TAAA)_2(TA)_7(AAT)$	F: AAGAGCTGCGACCAATGTTT	D1	166-272 (161)	-
		R: GTTTCTTCTTGAACTTGACACTTCATCCA	_		
mAoR12	(AC) ₁₂ ATAC(AT) ₄	F: CACCAAGATTGTGCTCCTG	D2	322-362 (324)	
		R: GTTTCTTAAACTACGTCCGGTCACACA	_		
mAoR16	(GT) ₈ (TA) ₁₇ (GT) ₃	F: GGAGAAAGCAGTGGAGTTGC	D1	245-335 (256)	-
		R: GTTTCTTCAAGTGAGTCCTCTCACTCTCA	_		D
mAoR29	(TG) ₁₀	F: GGAGAAGAAAGTTAGGTTTGAC	D3	164-364 (316)	_
		R: GTTTCTTCGTCTTCTTCCACATGCTTC	_		
mAoR41	(ACC) ₇ (AC) ₃	F: GCTTAGCCGGCACGATATTA	D4	162-177 (151)	_
	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	R: GTTTCTTAGCTCACCTCGTTTCGTTTC	_		

Table 3(on next page)

Marker's diversity measurements.

The level of genetic diversity of each SSR marker was described with the parameters of total number of alleles, Polymorphism Information Content (PIC), gene diversity (expected heterozygosity, H_e), observed heterozygosity (H_o), inbreeding/fixation coefficient (F). Total samples analyzed= 207.

- 1 Table 3. Marker's diversity measurements. The level of genetic diversity of each SSR marker was described
- 2 with the parameters of total number of alleles, Polymorphism Information Content (PIC), gene diversity
- $\ \ \, \text{3} \quad \, \text{(expected heterozygosity, H_e), observed heterozygosity (H_o), inbreeding/fixation coefficient (F). Total samples } \\$

4 analyzed= 207.

Locus	Allele number	PIC	H_{e}	H_{o}	F
mAoR48	11	0.64	0.69	0.49	0.2
mAoR6	17	0.68	0.71	0.55	0.11
mAoR17	19	0.83	0.84	0.73	-0.03
mAoR7	15	0.77	0.8	0.64	-0.04
mAoR11	16	0.66	0.69	0.47	0.19
mAoR3	25	0.74	0.76	0.48	0.24
mAoR42	14	0.65	0.69	0.59	0.03
mAoR52	14	0.67	0.7	0.57	0.05
mAoR2	4	0.48	0.57	0.44	0.13
mAoR35	9	0.62	0.65	0.28	0.48
mAoR47	7	0.63	0.69	0.49	0.06
mAoR16	6	0.4	0.45	0.34	0.03
Mean	13.08	0.65	0.69	0.51	0.12

Table 4(on next page)

Genetic diversity indices by a country analysis and a population approach scheme.

Countries: Mozambique (MZ, 2 populations), Indonesia (IND, 1 population) and East-Timor (ET, 11 populations); Number of populations: 14. Sample size (N). Genetic diversity indices for each group were assessed by mean alleles per locus (Na), expected heterozygosity (H_e) and observed heterozygosity (H_o) with corresponding standard deviation (SD) values, private alleles and inbreeding/fixation coefficient (F).

1 Table 4. Genetic diversity indices by a country analysis and a population approach scheme.

- 2 Countries: Mozambique (MZ, 2 populations), Indonesia (IND, 1 population) and East-Timor (ET,
- 3 11 populations); Number of populations: 14. Sample size (N). Genetic diversity indices for each
- 4 group were assessed by mean alleles per locus (Na), expected heterozygosity (He) and observed
- 5 heterozygosity (H_O) with corresponding standard deviation (SD) values, private alleles and
- 6 inbreeding/fixation coefficient (*F*).

			Na					Private	
	N	Na	SD	H_{e}	H _e SD	H_{o}	$H_{o} SD$	Alleles	F
Countries									
East Timor (ET)	164	10.67	4.96	0.670	0.033	0.506	0.012	6.17	0.24
Indonesia (IND)	16	3.42	1.93	0.561	0.063	0.465	0.037	0.42	0.12
Mozambique									
(MZ)	27	5.50	2.28	0.711	0.028	0.535	0.028	1.92	0.25
Mean	69	6.530	3.057	0.647	0.0413	0.502	0.0257	2.837	0.203
Populations									
ETK	17	5.17	1.75	0.67	0.04	0.56	0.04	1.08	0.14
ETNA	14	3.75	1.14	0.65	0.03	0.56	0.04	0.17	0.10
ETTR1	14	3.83	1.53	0.65	0.04	0.57	0.04	0.33	0.06
ETTR2	14	3.67	1.72	0.58	0.06	0.49	0.04	0.50	0.11
ETTR3	16	5.08	2.54	0.59	0.06	0.51	0.04	0.67	0.07
ETSU	16	3.58	1.44	0.65	0.04	0.46	0.04	0.58	0.26
ETSAN	18	3.58	1.83	0.57	0.05	0.57	0.03	0.33	-0.04
ETMA	14	3.00	0.85	0.57	0.03	0.46	0.04	0.00	0.14
ETBAT	13	2.42	0.79	0.48	0.05	0.45	0.04	0.00	0.01
ETFA	14	2.75	0.75	0.51	0.05	0.43	0.04	0.08	0.10
ETV	14	2.25	0.62	0.45	0.06	0.45	0.04	0.08	-0.09
IND	16	3.42	1.93	0.56	0.06	0.47	0.04	0.42	0.12
MZB	12	4.33	1.50	0.69	0.03	0.51	0.04	1.00	0.23
MZD	15	3.50	1.17	0.65	0.03	0.56	0.04	0.50	0.12
Mean	14.79	3.60	1.40	0.59	0.05	0.50	0.04	0.41	0.09

Table 5(on next page)

AMOVA results including fixation indices $F_{\rm CT}$, $F_{\rm SC}$, and $F_{\rm ST}$.

The genetic differentiation between countries and East-Timor vs Indonesia populations is denoted as $F_{\rm CT}$, among individuals within populations as $F_{\rm SC}$ and within individuals as $F_{\rm ST}$. *p < 0.001.

1 Table 5. AMOVA results including fixation indices $F_{\rm CT}$, $F_{\rm SC}$, and $F_{\rm ST}$

Source of variation	df	Sum of Squares	Variance	Variation	Fixation indices
			components	(%)	
Countries (MZ, IND,					_
ET)					
Among pops	13	168.537	$V_a = 0.34692$	12.6	$F_{\text{CT}} = 0.128*$
Among individuals	193	523.90	$V_{\rm b} = 0.30894$	11.22	$F_{SC}=0.126*$
Within individuals	207	434.00	$V_{\rm c} = 2.09662$	76.17	$F_{\rm ST} = 0.238*$
Countries (ET, IND)					
Among pops	11	91.172	$V_{\rm a} = 0.16546$	12.97	$F_{\rm CT} = 0.273*$
Among individuals	168	288.058	$V_{\rm b} = 0.12973$	14.4	$F_{SC} = 0.165*$
Within individuals	180	221.00	$V_{\rm c} = 1.22778$	72.63	$F_{\rm ST} = 0.129*$

The genetic differentiation between countries and East-Timor vs Indonesia populations is denoted as $F_{\rm CT}$, among individuals within populations as $F_{\rm SC}$ and within individuals as $F_{\rm ST}$. *p < 0.001.