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ABSTRACT
Background. Global shifts in climatic patterns have been recorded over the last decades.
Such modifications mainly correspond to increased temperatures and rainfall regime
changes, which are becoming more variable and extreme.
Methods. We aimed to evaluate the impact of future changes in climatic patterns on
the distribution of 19 endemic or threatened bird taxa of the Caatinga. We assessed
whether current protected areas (PAs) are adequate and whether they will maintain
their effectiveness in the future. Also, we identified climatically stable areas that might
work as refugia for an array of species.
Results. We observed that 84% and 87% of the bird species of Caatinga analyzed in
this study will face high area losses in their predicted range distribution areas in future
scenarios (RCP4.5 and RCP8.5, respectively). We also observed that the current PAs in
Caatinga are ineffective in protecting these species in both present and future scenarios,
even when considering all protection area categories. However, several suitable areas
can still be allocated for conservation, where there are vegetation remnants and a
high amount of species. Therefore, our study paves a path for conservation actions
to mitigate current and future extinctions due to climate change by choosing more
suitable protection areas.

Subjects Biodiversity, Conservation Biology, Ecology, Zoology, Climate Change Biology
Keywords Climatic stability, Conservation policy, Dry forest, Extinctions, Gap analysis,
Protected areas

INTRODUCTION
Global shifts in climatic patterns have been recorded over the last decades. They consist
mainly of increased temperatures and changes in rainfall regimes, which have become
more variable and extreme (Bindoff et al., 2013; Marzeion, Jarosch & Gregory, 2014; Meier
et al., 2014). Severe climate changes, which could result in increased aridity, are predicted
for several tropical biomes (Salazar, Nobre & Oyama, 2007;Marengo, Torres & Alves, 2017;
Anjos & Toledo, 2018). In South America, for instance, savannas might replace some
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forested locations, and semi-desert areas might expand throughout the Northeast region
of Brazil (Oyama & Nobre, 2003). Such changes imply significant climate alterations soon,
causing great shifts in interactions among biological communities, such as the dynamics
of predation, herbivory, competition and hostplant associations (Newbold et al., 2015; Pecl
et al., 2017). Once this process is unraveling quite rapidly, species might not have enough
time to adapt to the novel environmental conditions, resulting in significant biodiversity
loss and the disruption of ecological services (Nobre, Reid & Veiga, 2012; Pecl et al., 2017).

The maintenance of biodiversity and ecosystem service depends mainly on the ability
of organisms to adapt to these future climate changes (Hughes, 2000). Therefore, species
exposed to fast climatic alterations will face a higher extinction risk (Parmesan & Yohe,
2003; Foden et al., 2008; Nogués-Bravo et al., 2010). However, responses to the effects
of these changes are not uniform and vary from one species to another and between
different taxonomic groups (Jetz, Wilcove & Dobson, 2007; Bellard et al., 2012; Şekercioĝlu
et al., 2012). Therefore, species are expected to move throughout the geographical space
towards isotherms that ensure their optimal development, maintaining the best possible
functioning of their physiological processes (Forrest, 2015;Rafferty, Caradonna & Bronstein,
2015). In this way, species can respond to climate change by adapting to new conditions,
changing their geographic distribution, or becoming extinct (Jezkova & Wiens, 2016; Lenoir
& Svenning, 2015).

This change in species distributionmight affect the probability of these species persisting
in areas allocated for conservation, thus, representing a massive challenge for developing
approaches that protect several species (Hannah et al., 2013; Lemes & Loyola, 2013).
Currently, protected areas (PAs) are the pillars for the protection and maintenance
of biodiversity. However, climate change is rarely considered in the establishment of PAs
(Jones et al. , 2017), which can result in inadequate protection of biological diversity (Araújo
et al., 2011; Baldi et al. , 2017; Carvalho et al., 2022). Therefore, evaluating the effectiveness
of protected areas is essential since suitable and enough areas for conservation might
become insufficient or unsuitable shortly (Lemes, Melo & Loyola, 2014). Thus, climate
change creates a significant challenge for developing systematic planning for species
conservation.

The Caatinga (dry forests in Northeastern Brazil) is among the most vulnerable
Brazilian domains to climate variability extremes. Global and regional predicted climate
change scenarios show that the region will be affected by reduced rainfall and increased
temperatures, contributing to increased aridity and subsequent desertification (Marengo,
Torres & Alves, 2017; MMA, 2007). Approximately 94% of the Caatinga region is under
moderate to high susceptibility to desertification (Vieira et al., 2015; Vieira et al., 2020). In
addition, temperatures in the area are projected to increase by 4 ◦C in the RCP 8.5 scenario
(Marengo, Torres & Alves, 2017). Thus, the combination of reduced rainfall, increased
temperature, soil degradation, and desertification can make this region one of the world’s
most vulnerable to climate change (IPCC, 2014).

Furthermore, the Caatinga has undergone a rapid and sudden environmental alteration
derived directly or indirectly from human activities (Andrade et al., 2005; Marinho et al.,
2016;MMA, 2007). Original landscapes in this domain have become highly heterogeneous
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mosaics due to high habitat loss and fragmentation. Approximately 46% of the Caatinga is
estimated to have already been deforested (MMA, 2011). Such environmental degradation
and the consequent habitat loss might reduce even more options for conservation, thus,
restricting essential conservation areas in a future climate scenario. This domain has the
lowest number of protected areas and the most limited protected extension among all
Brazilian domains, corresponding to only 9% of its territory (Brasil, 2020). Due to all these
factors, the Caatinga represents an ideal tropical model for studies on the effects of climate
change on species distribution. The region is one of the world’s largest and most biodiverse
tropical drylands (Silva, Leal & Tabarelli, 2017;Araújo et al., 2022), owning 554 bird species
(Araújo et al., 2022). Regarding organisms sensitive to environmental changes, birds serve
as bioindicators. They are considered critical organisms for maintaining ecological balance
due to their ability to disperse seeds (Viana et al., 2016; Pauw , 2019; González-Varo et
al., 2021), insect population control and pollination (Whelan, Wenny & Marquis, 2008).
Currently, Caatinga birds already suffer from the severe effects during years of intense
drought, with increased vulnerability, population declines and even local extinctions,
mainly of pollinators (Toledo-Lima & Pichorim, 2020). Thus, this group is an excellent
model for understanding the effects of future climate change.

Considering this scenario, our objective was to understand the effects of climate change
predicted for the future on the distribution of endemic bird species in the Caatinga, using
for this themethodology of ecological nichemodeling. Additionally, we aimed to determine
which areas are the richest and most stable under different climate scenarios, assessing
whether the current PAs are adequate and whether they maintain their effectiveness in the
future.

METHODS
Study area
Caatinga covers 844,453 km2 and is the only domain restricted to Brazil. This Brazilian
biome is part of a complex of forest vegetation types with unique characteristics throughout
theNeotropics, named SeasonallyDryTropical Forests (SDTFs;Pennington, Lewis & Ratter,
2006). This biome extends from 2◦54′S to 17◦21′S latitudes and occupies the Brazilian
northeast and parts of Minas Gerais (Andrade-Lima, 1981; Paim & Franca-Rocha, 2009;
Tabarelli & Da Silva, 2003). It is considered one of the most complex ecoregions worldwide
(Nimer, 1972; Reis, 1976). The Caatinga is situated at the convergence zone of several highly
unstable airmasses. Also, this biome ismarked by Brazil’s strongest insolation, high thermal
averages (26–29 ◦C), low relative humidity percentages, and scarce and irregular rainfalls
(annual 250–800 mm). Finally, it is a reasonably seasonal domain, with rains distributed
through a short period of the year (2–3 months) and extensive periods of cyclic droughts
(Nimer, 1972; Reis, 1976).

Herein, we assessed 127 protection areas (PAs) distributed throughout the Caatinga
domain (Fig. 1). Of those, 38 are Strictly Protected Areas (SPA), 52 are Sustainable Use
Areas (SUA), and 37 are Indigenous Lands (IL).
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Figure 1 Map of the study area showing the location of the Caatinga domain. The areas in pink are
Strictly Protected Areas, blue areas represent Sustainable Use Areas, and areas in green correspond to In-
digenous Lands. Broadview of the location of the Caatinga domain in South America. Location of Protec-
tion Areas in the Caatinga domain. Shapefile provided by MMA (Ministério do Meio Ambiente do Brasil -
Ministry of the Environment).

Full-size DOI: 10.7717/peerj.14882/fig-1

Target species and occurrence dataset
In this study, we selected 19 bird taxa from Caatinga that can be more sensitive to
climate change, all the bird taxa included in the analysis were based in the following
criteria: restricted distribution (endemic, near-endemic) and/or threatened status by
The International Union for Conservation of Nature red list - IUCN (see Table S1 and
Table S2 in Supporting Information).We gathered distribution data for each taxon based
on literature reports, online databases Species Link (http://splink.cria.org.br/), Xeno-
canto (http://www.xeno-canto.org/), Wikiaves (http://www.wikiaves.com.br/), Vertnet
(http://www.vertnet.org/index.html), Ebird (http://www.ebird.org/), specimens held in
Museu Paraense Emílio Goeldi, and personal data (PVC, GSRG,MPDS). All the occurrence
records were adequately checked, undergoing a strict analysis process by bird experts.
Therefore, we obtained a total of 1,523 unique occurrences (Table S1). We followed the
taxonomy adopted by the Brazilian Committee of Ornithological Records (Pacheco et
al., 2021). We controlled sampling bias on georeferenced data by removing duplicate
records and leaving a single record per pixel. We used a thinning technique using the
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package spThin (Aiello-Lammens et al. , 2015) to reduce autocorrelation in occurrence
data. Afterward, we used Moran’s I and variograms that minimize spatial autocorrelation
to define the thinning distance (Andrade, Velazco & De Marco, 2020).

Environmental data
For the current scenario, we used 19 environmental variables available at WorldClim
version 2.0 (http://www.worldclim.org/current; Hijmans et al., 2005) at a scale of ∼5 km2.
To avoid collinearity between the climate variables, we performed a principal component
analysis (PCA) to reduce the dimensions, thus using as predictors of the response functions
the axes that explained 95% of the total variance (De Marco & Nóbrega, 2018). To maintain
the dimensionality of climate data over time, the coefficients obtained from the PCA
performed with present climate data were used to compute scores for future climate
data (Sillero & Barbosa, 2021). For future scenarios, we used the same climatic variables
from the general circulation models (Atmosphere-Ocean General Circulation-AOGCMs)
available for 2070. We performed a cluster analysis to select the AOGCMs proposed by
Varela, Lima-Ribeiro & Terribile (2015) because it aims to maximize uncertainties between
climate models. The selected AOGCMs were: CCSM4 (CC), HadGEM2-AO (HD), IPSL-
CM5A-LR (IP), MIROC-ESM (#) (MR), MRI-CGCM3 (MG). We used two representative
concentration pathways (RCP4.5 and 8.5) to assess the effect of climate change on target
species distribution.

Data partition and modeling proceedings
We used the ‘‘leave-one-out’’ (LOO) method proposed by Pearson et al. (2007) to predict
the distribution of species with less than 20 occurrence records so that we could partition
the occurrences and evaluate whether the produced distributions were reliable. The LOO
method is recommended when modeling species with a small number of occurrences
since it indicates if they are not within the modeled distribution area (Lima-Ribeiro &
Diniz-Filho, 2012). For our species the lowest number of occurrence records was six, in the
literature it is estimated that theminimumnumber of occurrence records should be three to
five in order to have reliable predictions (Almeida, Côrtes & De Marco, 2010; Lima-Ribeiro
& Diniz-Filho, 2012). Thus, we jackknifed the observations to produce occurrences subsets
with n-1 occurrences for our data input. After, we used these subsets to predict the
distribution of the species. The occurrence record that was left out was used to evaluate
the goodness-of-fit of the models. For distribution predictions to be considered reliable, p
values must be less than 0.05, indicating that there would be no relevant sampling bias in
the occurrence data set used to model species distributions. Conversely, p-values greater
than 0.05 indicate an unreliable outcome.

For species with more than 20 occurrences, models were generally evaluated by cross-
validation, considering the independent data set. However, it is necessary to have some
caution when maximizing the independence of training and test subsets (Roberts et al.,
2017). Therefore, we have partitioned the occurrence data similarly to the checkerboard
partition method (Muscarella et al., 2014; Valavi et al., 2019; Velazco et al., 2019), using
the ENMTML R package (Andrade, Velazco & De Marco, 2020) available on GitHub
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(https://github.com/andrefaa/ENMTML). Data were geographically partitioned based on
grids of different sizes. We then chose the grid size that maximized the independence and
environmental similarity between the subsets. In this approach, both subsets are used first
to adjust the model and then later to evaluate the model.

Many algorithms are used to predict species distribution based on different statistical
approaches and data inputs. Algorithm performance varies depending on the modeling
condition (Norberg et al. , 2019; Qiao, Soberon & Peterson, 2015) and is one of the primary
sources of model uncertainty (Thuiller et al., 2019). Thus, multiple algorithms allow
us to identify the most suitable species and report model uncertainty (Norberg et al. ,
2019; Thuiller et al., 2019). We used three algorithms (Maxent, SVM, and random forest)
encompassing a range of statistical techniques for modeling species distributions. Maxent,
SVM, andRandomForest were fitted using the R software v.3.5.1 (R Core Team, 2018), with
the packages maxent v.0.1.2 (Phillips, 2017), kernlab v.0.9-25 (Karatzoglou et al., 2004) and
randomForest v.4.6-12 (Liaw &Wiener, 2002), respectively. We evaluated models using
the Jaccard Index (Jaccard, 1908). This index calculates similarity between the predictions
and observations of the partitioned data, varies between 0 and 1 (Leroy et al., 2018). Index
value closer to 1 means greater correspondence between predictions and observations,
consequently, lower number of false positives and negatives, and better evaluated models
(Leroy et al., 2018).

We made an ensemble forecast procedure to obtain the final ENM for each species
(Araujo & New, 2007). The ensemble was obtained by calculating the arithmetic average
of the suitability predicted by the best algorithms for each species. Therefore, the final
model is the mean of the algorithms whose performances were greater than or equal to
the algorithms’ average Jaccard value. For predicting the future distribution of birds, after
performing the ensemble forecast to construct a single consensus model of the algorithms
for a given GCMs, a new average of suitability values among the five GCMswas estimated to
obtain a single future projection for each emission scenario. Subsequently, suitability maps
(current and designed models) were transformed into binary maps based on the threshold
values calculated from the Jaccard index (Pearson et al., 2007; Marco Jr & Siqueira, 2009).
Finally, we performed pre- and post-processing modeling procedures with the ENMTML
R package (Andrade, Velazco & De Marco, 2020;Mendes et al., 2020).

Stacked species distribution models
We performed stacked-species distribution models (S-SDM) of all species to obtain species
richness maps in the different scenarios in both current and future scenarios. This method
has already been shown to be effective in several different situations (Distler et al., 2015;
Guisan & Theurillat, 2000; Wisz et al., 2008). First, we stacked the current and future areas
to obtain stability areas for each species and thus obtained a common (stable) area for each
species in all predictions. Subsequently, we built a richness map with all stable areas by
stacking stable regions of all species. For all stackings, we used the raster calculator tool of
QuantumGis 2.8.
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Effectiveness of protected areas and conservation status of species
We used the shapefiles provided by the Ministry of Environment’s Cadastro Nacional
de Unidades de Conservação do Ministério do Meio Ambiente (national registry of PAs;
MMA, 2021) that contains Strictly Protection Areas (SPA), Sustainable Use Areas (SUA),
and Indigenous Lands (IL) to represent the PAs. In total, the final dataset consisted of 127
PAs. We performed the analysis considering three types of PAs varying according to their
protection levels: (1) Only SPA; (2) SPA + SUA; and (3) SPA + SUA + IL (Fagundes, Vogt
& De Marco, 2016). The method employed in the gap analysis admits that species with
restricted distribution must have all their occurrence area within PAs as they are more
susceptible to extinction (Purvis et al., 2000).

However, widely distributed taxa should have at least 10% of their occurrence extension
protected. Therefore, species with distribution areas covering less than 1,000 km2 must
have 100% of their distribution protected, while those with more than 250,000 km2 must
have at least 10% of their geographic distribution under protection. For species with
intermediate distributional range sizes, a calculation is performed through interpolation
using a logarithmic transformation, following the methods proposed by Rodrigues et al.
(2003).

Finally, considering current and future scenarios, we classified species, regarding the
targed of protection, as (1) protected (P) when the target percentage (≥90%) of species
distribution size was within PAs; (2) partially protected (PP) when only one portion of the
target percentage (<90% ≥ 20%) lays within PAs; (3) gaps (G) when only a percentage
(<20%) of the target was within PAs, and (4) not protected (NP) when a 0 part of the target
percentage was within the PAs (Frederico, Zuanon & De Marco, 2018; Velazco et al., 2022).

We evaluated the PA effectiveness using a null model approach: the ability of PAs to
retain higher richness thanwould be expected by chance. For this, we compared the number
of species within each PA with the estimated number of predicted species found within the
PA according to a null model. This null model randomly allocated PAs within the Caatinga,
maintaining their size, shape, and orientation (see Lemes & Loyola, 2013; Ferro et al., 2014;
Ribeiro et al., 2016). In each run, we calculated the average value of species richness based
on the cells encompassed by each PA for both current and future scenarios. PAs were
effective if their observed species richness was greater than or equal to the null species
richness obtained from randomizations in at least 95% of runs (i.e., PAs with p< 0.05).

We also identified the representativeness degree of the species within the PAs in current
and future scenarios (Araújo et al., 2011). We calculated the representativeness degree
within the PAs network as the mean percentage overlap (MPO) for each species. MPO
corresponds to the mean percentage of overlap between the PAs in the Caatinga biome
and the given species occurring within the PAs. First, we calculated the spatial overlap
of each cell with the PAs polygons. Then, we used null models to test whether the MPO
of each species was statistically significant, considering the range size of the species. The
MPO value observed for a given species was compared to the MPO values obtained from
1,000 random species with an equivalent size interval. This meant the same number of
grid cells modeled for the species but extracted randomly within all study extent. Such a
procedure allows us to identify whether the representativeness of a given species within
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the PAs considered, along with their MPO value, was significantly higher or lower than
expected at random, considering a significance level of p< 0.05 (Araújo et al., 2011).

All five criteria of the IUCNRed List (criterian A–E) must be taken into account to assess
the conservation status of species. However, in some cases, classification can also be done if
at least one of the criteria is considered (UNEP-WCMC, 2016). One may adopt this strategy
when detailed information about species is unavailable, making it challenging to meet all
IUCN criteria for assessing their conservation status. Thus, we calculated the area occupied
by the species given current and future scenarios to determine the distribution dynamics of
adequate areas for the studied species and assess their extinction risk. We assigned to each
climate scenario a threat category from the IUCN and Natural Resources (IUCN, 2019;
Thuiller et al., 2005; Akçakaya et al., 2006; Rodríguez et al., 2015). Following the IUCN Red
List criterion A3(c), we use the following thresholds for each threat category: Extinct (EX):
100% projected area loss within a maximum of 100 years; Critically Endangered (CR): ≥
80% area loss; Endangered (EN): area loss <80% and ≥ 50%; Vulnerable (VU): area loss
<50% and ≥ 30%; Near Threatened (NT): loss <30%. Despite being a simplistic approach
and taking into account only the effects of climate change, it can provide us with an
overview of the threats for each species individually, thus being vital for decision-makers
in conserving these species. We performed all analyses in R software v4.0.3 (R Core Team,
2020) using the raster package (Hijmans, 2015).

RESULTS
Species distribution models
We built SDMs for 19 bird species from the Caatinga domain. The values for model
evaluation (Jaccard) varied between 0.63 (Herpsilochmus sellowi) and 0.96 (Anodorhynchus
leari, see Table S1). Sixteen out of the 19 studied species will lose suitable occurrence areas
under RCP4.5, and 17 will lose areas under RCP 8.5. The number of highly vulnerable
species, which lost more than 40% of their original ranges, was six and 11 in RCP 4.5 and
RCP 8.5 scenarios, respectively (Table S2). In RCP 4.5, Anodorhynchus leari (62%) had
the most significant area loss. Pyrrhura griseipectus faced a reduction of 91% of its original
distribution in RCP8.5 (see Fig. S1 for maps of each species). On the other hand, our
results showed that suitable areas would expand for three species in RCP4.5: Nyctidromus
hirundinaceus, Penelope jacucaca, and Xiphocolaptes falcirostris, with gains of 0.2%, 3%,
and 15% in their geographical ranges, respectively. Penelope jacucaca, and Xiphocolaptes
falcirostris, in turn, expanded their ranges by 2% and 14%, respectively, in RCP8.5 (see Fig.
S1).

Species richness and stable areas
According to the models for the current scenario, the regions with the highest taxonomic
richness are located in a small part of the Caatinga where few PAs exist. Analyzing
taxonomic representativeness within the PAs in future scenarios, we observed a loss of
areas with high species richness (Fig. 2). Areas of high richness harbor between 13 and 16
species in both present and future predictions. However, we notice a significant decrease
in species numbers in the richest areas. This was especially true in the RCP 8.5 projection,
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Figure 2 Richness maps of endemic and/or endangered bird taxa in the Caatinga domain. Richness
maps of endemic and/or endangered bird taxa in the Caatinga domain for both present and future (RCP
4.5 and RCP 8.5) generated from stacking distribution models of all species. Darker areas correspond to
areas where there is higher taxa richness. Shapefile of the domain provided by MMA (Ministério do Meio
Ambiente do Brasil-Ministry of the Environment).

Full-size DOI: 10.7717/peerj.14882/fig-2

where areas became smaller and more sparsely distributed (Fig. 2). A decrease in richness
from the present to the two future scenarios is also observed for the other species richness
ranges (Fig. 2).

In climatically stable areas, in the overlapping ranges of the species, we observed that
there are minimal ranges, for the maximum range of overlap (13–16 species), in the two
future scenarios, especially in RCP 8.5, where we observed only 42 km2 of range (two
cells) (Fig. 3). In the stable area in the RCP4.5 projection, we detected the presence of few
PAs: Chapada do Araripe Environmental Protection Area (APA), APA Serras e Brejos do
Capibaribe, APA Ambiente das Onças, APA, Boqueirão da Onça, APAMarimbus-Iraquara,
Parque Nacional do Catimbau, Estação Ecológica Raso da Catarina, Parque Estadual do
Morro do Chapéu, Floresta Nacional de Contendas do Sincorá, Terra Indígena Xukuru
(TI), TI Pipipã, TI Kambiwá, TI Brejo do Burgo, TI Pankararé. There was no PA in the
stable area with a high overlapping range of species for RCP8.5. We also verified that the
range size of overlapping species considerably decreased from RCP4.5 to RCP8.5. In the
following range of overlap (9–13 species) are all PAs encompassed in the maximum range
of RCP4.5 with the addition of the Serra das Confusões National Park.

PA effectiveness and conservation status of species
In the current scenario, the gap analysis including only SPAs showed that no species was
considered protected and one specie is as unprotected (Table 1). Therefore, SPA areas
alone cannot effectively protect the bird species analyzed here. Considering the SPA+SUA,
no species could be regarded as protected. Seventy-eight percent of species were partially
protected, 15% corresponded to gaps, and 5% were not protected. Finally, in the broader
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Figure 3 Richness map of stable areas with endemic and/or endangered bird taxa in the Caatinga do-
main by stacking stable areas of all species.Darker areas correspond to areas with higher taxa richness.
Shapefile of the domain provided by MMA (Ministério do Meio Ambiente do Brasil-Ministry of the Envi-
ronment.

Full-size DOI: 10.7717/peerj.14882/fig-3

Table 1 Effectiveness of protected areas and conservation status of species. Summary with the number of Caatinga bird species classified in each
protection category and level of Protected Areas in the gap analysis for present (current) and futures scenarios (RCP 4.5 and RCP 8.5). Strictly Pro-
tection Areas (SPA), Sustainable Use Areas (SUA), and Indigenous lands (IL).

Present Future 4.5 Future 8.5

SPA SPA +SUA SPA +SUA+IL SPA SPA +SUA SPA +SUA+IL SPA SPA +SUA SPA +SUA+IL

Protected (P) 0 0 1 0 0 1 0 0 0
Partially Protected (PP) 2 15 14 6 14 13 5 14 14
Gaps (G) 16 3 3 11 4 4 12 4 4
Not protected (NP) 1 1 1 2 1 1 2 1 1
Total 19 19 19 19 19 19 19 19 19

protection scenario (SPA+SUA+IL), only one species was considered protected; 73% were
partially protected, 15% remained within the gap category, and 5% were not protected.

In future scenario RCP4.5, where only SPA areas were considered, no species met the
criteria of the protected status (Table 1). Likewise, the gap analysis, including SPAs, shows
that no species met the requirements to be protected (Table 1), while 5% of species were
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not protected. Considering the SPA+SUA scenario, no species is considered protected,
73% are partially protected, 21% are gap, and 5% fall into the non-protected status. In the
broader protection scenario (SPA+SUA+IL), only one species was protected; 68% were
partially protected, 21% remained as gaps, and 10% were not protected. In future scenario
RCP8.5, where only SPA areas were considered, no species reached the protected status
(Table 1), and 10% of species were not protected. Considering the SPA+SUA scenario,
none of the species was protected; 73% were partially protected, 21% were gaps, and 5%
were not protected. Lastly, in the broader protection scenario (SPA+SUA+IL), we did not
find any protected species; 73% are partially protected, 21% fell into the gap category, and
5% were not protected.

The species A. leari, Lepidocolaptes wagler, and P. griseipectus in all scenarios and
all categories of PAs were considered as gap species. In contrast, Sclerurus cearensis is
considered a gap only in future scenarios regardless of the categories of PAs. Rhopornis
ardesiacus in current and future, and all PAs categories met the criteria of a not protected
species. Interestingly, these four species are currently classified as Endangered (EN) by the
IUCN.

Interestingly, ineffective PAs in the current period remained ineffective in 2070. Under
future climatic conditions, for RCP 4.5, we remain with <9% of PAs considered ineffective,
while in RCP 8.5, this value decreased to 6% (Table S3).

The MPO between the distribution of bird species and the network of protected areas
(PAs) in the Caatinga revealed inadequate protection. In the current scenario, the average
percentage of overlap was 0.11% (ranging from 0.02 to 0.15%) (Table S3). In the future,
the average percentage of overlap was 0.11% (ranging from 0.04 to 0.13%) for RCP 4.5
(Table S3) and 0.09% (ranging from 0.01 to 0.14%) for RCP8.5 (Table S3). The MPO
relationship evidenced a more precarious conservation scenario for species within and
below the random range. The protection of existing PAs was respectively equal to or worse
than expected by a random distribution of the existing PAs (Table S3). Within the scenario
of poor protection of Caatinga bird species, none had an MPO value above the expected
by chance in the present and the future, representing 52.63%, 21.05%, and 21.05% of
the species presented MPO not significantly different from the expected by chance in the
current and future scenarios, respectively (Table S3). In even less favorable conditions,
47.36%, 78.94%, and 78.94% of bird species in the Caatinga were less representative than
expected in current and future scenarios (RCP 4.5 and RCP 8.5), respectively (Table S3).

According to IUCN criterion A3(c), for the RCP 4.5 scenario, 42% of Caatinga bird
species and 68% of species are projected to be threatened in RCP 8.5 by 2080 (Table S2).
Our results also indicated that for RCP 4.5, four species were classified as EN and four as
VU. For RCP 8.5, there will be three CR, four EN, and six VU species.A. leari, P. griseipectus,
and S. cearenses had the most significant impact on their threat status, especially the RCP
8.5 scenario, classified as CR species. A summary of the impacts of future climate change
on the conservation status of each species is shown in Table S2.
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DISCUSSION
We observed that 84% and 87% of the bird species of Caatinga analyzed in this study will
lose significant portions of their predicted range distributions in the RCP4.5 and RCP8.5
future scenarios, respectively. Still, in RCP8.5, the most pessimistic scenario, species will
lose more areas than in RCP 4.5. Additionally, we observed that the current PAs network
design in the Caatinga was ineffective in protecting endemic and endangered bird species
in current or future climatic scenarios, even when all PAs were considered.

Our results show an apparent reduction in the number of suitable areas for most species
in response to climate changes, which corroborates a pattern already observed for other
taxonomic groups (Caten et al., 2017; Collevatti et al., 2012; Loyola et al., 2012; Terribile
et al., 2012). This pattern probably reflects the effect of shifts in rainfall regimes, which
might be more drastic in tropical regions (Moura & Hastenrath, 2004; Nobre et al., 2007).
The loss of suitable habitat due to projected future climate change for species of STDFs
is already well known. Silva et al. (2019) showed that, throughout the Caatinga biome,
areas of suitable habitat for endemic plant species would be reduced under both optimistic
and pessimistic future climate change scenarios. Simoes et al. (2019) found that endemic
cacti species are threatened with extinction due to the retraction of environmentally
suitable areas. This area reduction for plants in STDFs was also reported in other works
(Oyama & Nobre, 2003; De Andrade et al., 2017, Marengo, Torres & Alves, 2017). Garcia,
Ortega-Huerta & Martinez-Meyer (2013) suggested an average reduction of about 64% in
the geographic range of all endemic amphibians in Mexican STDFs by the year 2080 as a
consequence of climate change. Peterson et al. (2002) revealed a reduction of up to 50% in
the current distribution of 20% of 1870 Mexican mammals, birds, and butterflies until the
year 2050. Prieto-Torres et al (2020) investigated birds from the dry forests of Central and
South America and found that 75% of the bird species in these forests will face a reduction
of climatically suitable areas.

The birds experiencing the highest reduction in suitable areas (over 60%), A. leari, P.
griseipectus, Rhopornis ardesiacus, and Sclerurus cearensis, were species having a restricted
distribution and highly associated with specific microhabitats. Despite the great effort
toward protecting Rhopornis ardesiacus, e.g., by creating a National Park and a Wildlife
Refuge in Boa Nova (Bahia, Brazil), this species is still losing its natural habitat due to
deforestation in other areas where it occurs. Aside from the strong anthropic pressure and
area loss due to climate changes, R. ardesiacus is suffering from increased luminosity inside
forests, which decreases food availability and reproductive resources for this species. This
higher luminosity causes a decrease in the vegetative growth of bromeliads of the genus
Aechmea, with which R. ardesiacus closely interacts (Luiz, 2010; Villegas, 2006; Luiz et al.,
2015). Moreover, besides facing significant area loss (40% and 60%, RCP 4.5 and RCP
8.5, respectively), this species was found under the not protected category in all situations
assessed herein.

The Pyrrhura griseipectus is also predicted to undergo a high loss of suitable areas (60%
and 91%, RCP 4.5 and RCP 8.5, respectively). It can be found in ‘‘brejos de altitude’’
and dry forests destroyed due to property speculation, with only 13% of its original

Gonçalves et al. (2023), PeerJ, DOI 10.7717/peerj.14882 12/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.14882


area remaining (Albano & Girão, 2008; Girão, Albano & Campos, 2010). Moreover, illegal
trade of individuals and deforestation of its natural habitats are the main threats to
this bird. Our results reinforce the widely accepted idea that significant changes in the
biota’s spatial ranges of dry forests will occur during the 21st century (Golicher, Cayuela
& Newton, 2012; Rojas-Soto, Sosa & Ornelas, 2012; Collevatti et al., 2012; Prieto-Torres et
al., 2016; Silva et al., 2019). Species in forested habitats in the Caatinga will suffer a more
significant reduction than the species of the ‘‘Depressão sertaneja.’’ Thus, it seems plausible
that species will track their climatic niches dispersing to higher areas, where they can
find similar climatic conditions to their current distributions (Meir & Pennington, 2011;
Prieto-Torres & Rojas-Soto, 2016). Potential migrations to higher altitudes could produce
local extinctions or contractions in the spatial distribution of habitat specialists and species
with small ranges. Species that live in more elevated areas would face the most significant
challenges because they might not be able to move to colder areas since they do not exist
in the Caatinga (Pacifici et al., 2017).

The unique climatic conditions of Caatinga have caused adaptive singularities in its
biota, which has led to the development of unique physiological adaptations and specific
reproductive behaviors, thus showing higher plasticity in their ecological traits (Rodrigues,
1996; Rodrigues, 2003; Vieira, Santana & Arzabe, 2009). Although species are inserted and
adapted to the current climatic conditions in theCaatinga andhave been shapedduring their
evolutionary history, they might not have the intrinsic ability to adapt to climate change of
themagnitude predicted for the future at a short temporal scale. In tropical regions, tropical
species already experience not only climatic conditions close to their physiological tolerance
limits but also faster rates of climate change (Deutsch et al., 2008; Domingos et al., 2014).
Thus, exceeding these climatic limits can reduce their ability to cope with changes in climate
(Huey et al., 2012; Kingsolver, Diamond & Buckley, 2013; Khaliq et al., 2014). Khaliq et al.
(2014) found in their studies that tropical endotherms have narrower thermal safetymargins
and were already experiencing maximum temperatures close to their thermal limits.
However, this tolerance varies among bird orders. For example, Caprimulgiformes appear
to have higher heat tolerance limits than Passeriformes (McKechnie et al., 2016;McKechnie
et al., 2017; Smit et al., 2018; Albright et al., 2017; Pollock et al. , 2021). This seems to be
compatible with our result since the geographic range of Nyctidromus hirundinaceus
(Caprimulgiformes) barely changed in our projections for the future.

Protecting areas in the current and the future scenarios
Richness in all investigated scenarios and stable areas maps suggest essential areas for the
biome’s southern, central and eastern regions. The southern portion of Caatinga is not
currently protected. However, it is an area of high species richness and has been identified as
a high-priority biodiversity conservation spot by the BrazilianMinistry of the Environment
(MMA, 2021). Furthermore, this region is home to sites of interest for establishing new
areas of integral protection due to extensive natural remnants (MMA, 2021; Antongiovanni,
Venticinque & Fonseca, 2018; Antongiovanni et al., 2020). The south of the Caatinga is
fundamental for the conservation of cacti species (Carvalho et al., 2022) and one of the
few areas in eastern Brazil capable of safeguarding different Cactaceae species in climate
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change scenarios in the next 60 years (Simoes et al., 2019). The east and central parts are
also crucial for conserving endemic plants from the Caatinga dry forest (Silva et al., 2019),
corroborating the pattern found in the present study. In our predictions, we found that the
richest site is located in the central region of the domain. However, the natural vegetation
of this area is not only currently highly fragmented (Antongiovanni, Venticinque & Fonseca,
2018) but also is very susceptible to desertification (Salazar, Nobre & Oyama, 2007) due to
the high temperatures, decreased rainfall, soil degradation, and their combination (Darkoh,
1998; Geist & Lambin, 2004; Sivakumar, 2007).

Although protected areas provide an essential service in protecting species, their current
configuration in the Caatinga is inefficient for conserving the bird species studied herein,
even considering all protection categories (PI+US+IL). Most protected areas we assessed
tend to protect areas of low species richness, and just a few PAs protected high species
numbers. The role of PAs in protecting species has been discussed regarding several taxa
in different domains (Lemes, Melo & Loyola, 2014; Carvalho et al., 2017; Oliveira et al.,
2017). For instance, PAs do not preserve restricted/rare Odonata species in the Cerrado
(Nóbrega & De Marco, 2011). PAs in the Amazon do not fully protect fish biodiversity in
watercourses. Prieto-Torres et al (2018), when evaluating the PAs of several neotropical dry
forests, found that the current network covers less than 15% of the distribution ranges of
80% of bird species. The authors also detected that it would be necessary to double the area
enclosed within the PAs so that their biodiversity could be more efficiently sheltered. The
ineffectiveness of PAs in Caatinga might be directly related to their small number and size.

Another issue that has been discussed is which types of PAs are more effective for
biodiversity conservation:more restricted use sites (e.g., National Parks, Biological Reserves,
Ecological Stations) or sustainable use units (e.g., National Forests, Extractive Reserves;
Locke & Dearden, 2005; Sims, 2010; Ferraro et al., 2013; Carranza et al., 2014). Teixeira et
al. (2021) found that fully protected PAs reduce deforestation within their limits. This
author also emphasized the ineffectiveness of sustainable use of PAs, especially the ones
classified as ‘‘Áreas de Proteção Ambiental’’ (APAs). The same issue has already been
reported in other domains such as the Cerrado (Carranza et al., 2014; Françoso et al., 2015;
Paiva, Brites & Machado, 2015) and the Amazon (Nepstad et al., 2006; Adeney, Christensen
Jr & Pimm, 2009; Soares-Filho et al., 2010; Nolte et al., 2013).

PAs cover 9% of the Caatinga region (Brasil, 2020); only 1.8% are fully protected areas,
while 7.2% consist of sustainable use areas, where the direct use of natural resources is
permitted by law (Brasil, 2020). According to our gap analysis, it is worth noting that
Sustainable Use PAs are of great importance since they partially protect our target species.
Thus, it becomes essential to reassess the protection category of these PAs, given that
sustainable use areas are not quite efficient for containing human disturbances, as we
previously mentioned (Antongiovanni, Venticinque & Fonseca, 2018; Antongiovanni et al.,
2020). Most of the Caatinga PAs face problems related to administrative management, such
as the absence of land tenure regularization and the lack of a management plan. Around
92.5% of the Caatinga protected areas do not only have a management plan (Brasil, 2020)
but suffer fromboth the lack of human resources and financial support (Drummond, Franco
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& Ninis, 2009). Along with deforestation, PAs also regularly face synergetic, agricultural,
cattle grazing, and burning activities (Feliciano et al., 2003; CSR/IBAMA, 2014).

Therefore, it is crucial to evaluate the role of protected areas in adequately protecting
Caatinga’s biodiversity. It is equally important to note that, in addition to climatic
conditions, the long-term viability of the endemic bird species of Caatinga will also
depend on the persistence of vegetation remnants (which still exist). That is, preserving
those remnants still within PAs and creating ecological corridors between the external
fragments to make it possible for the species to move across the landscape. In this regard,
conservation efforts should be directed towards expanding current PAs, possibly changing
the protection category of PAs, and implementing priority areas for conservation proposed
by the MMA. In addition, the creation of ecological dispersion corridors within stable areas
to avoid population isolation and increase their viability under climate change should be
considered (Beier & Noss, 1998).

It is also worth highlighting that all thesemeasures would help us achieve the biodiversity
conservation goals proposed in 2013 by the National Biodiversity Commission (Conabio,
2013). One of these proposals was to improve the Brazilian biodiversity conservation status
by creating new PAs and other protected areas to protect at least 30% of the Amazon
and 17% of the other terrestrial biomes, including the Caatinga (Brasil, Ministério do Meio
Ambiente, 2013). However, only 9% of the Caatinga territory is covered by protected areas,
and none of our studied species are under the protection of the current PAs. Lastly, we also
emphasize the need for environmental education initiatives to increase awareness of the
locals about the importance of both biodiversity and PAs.

CONCLUSIONS
In this study, we verified the inefficiency of the PAs in protecting the endemic bird species
of Caatinga. Still, despite showing the significant vulnerability of the species to climate
change, our results also show us possibilities to increase the viability of these species in the
future. Here, we offer possibilities to direct efforts toward maintaining and implementing
ecological corridors and expanding PAs.
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Gonçalves et al. (2023), PeerJ, DOI 10.7717/peerj.14882 16/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.14882


• André Felipe Alves de Andrade analyzed the data, authored or reviewed drafts of the
article, and approved the final draft.
• Marcos Pérsio Dantas Santos conceived and designed the experiments, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.14882#supplemental-information.

REFERENCES
Adeney JM, Christensen Jr NL, Pimm SL. 2009. Reserves protect against deforestation

fires in the Amazon. PLOS ONE 4(4):e5014 DOI 10.1371/journal.pone.0005014.
Aiello-LammensME, Boria RA, Radosavljevic A, Vilela B, Anderson RA. 2015. spThin:

an R package for spatial thinning of species occurrence records for use in ecological
niche models. Ecography 38:541–545 DOI 10.1111/ecog.01132.
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