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ABSTRACT

The RNA-binding metabolic enzyme LTA4H is a novel target for cancer chemopreven-
tion and chemotherapy. Recent research shows that the increased expression of LTA4H
in laryngeal squamous cell carcinoma (LSCC) promotes tumor proliferation, migration,
and metastasis. However, its mechanism remains unclear. To investigate the potential
role of LTA4H in LSCC, we employed the improved RNA immunoprecipitation and
sequencing (iRIP-Seq) experiment to get the expression profile of LTA4H binding RNA
in HeLa model cells, a cancer model cell that is frequently used in molecular mechanism
research. We found that LTA4H extensively binds with mRNAs/pre-mRNAs and
IncRNAs. In the LTA4H binding peak, the frequency of the AAGG motif reported to
interact with TRA284 was high in both replicates. More notably, LTA4H-binding genes
were significantly enriched in the mitotic cell cycle, DNA repair, RNA splicing-related
pathways, and RNA metabolism pathways, which means that LTA4H has tumor-related
alternative splicing regulatory functions. QRT-PCR validation confirmed that LTA4H
specifically binds to mRNAs of carcinogenesis-associated genes, including LTBP3,
ROR2, EGFR, HSP90BI, and IncRNAs represented by NEAT1. These results suggest
that LTA4H may combine with genes associated with LSCC as an RNA-binding protein
to perform a cancer regulatory function. Our study further sheds light on the molecular
mechanism of LTA4H as a clinical therapy target for LSCC.
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o _ Laryngeal cancer is not only the most common malignancy of the head and neck, but
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Declarations can be found on also the second most common respiratory system tumor after lung cancer. 95 to 98% of
page 13 laryngeal cancers are squamous cell carcinomas (LSCC) (Zuo et al., 2016). Research shows
DOI 10.7717/peerj.14875 that nearly 180,000 new cases of throat cancer and nearly 100,000 throat cancer deaths
® Copyright were reported worldwide in one year (Bray et al., 2018). Due to the proneness to recurrence
2023 Ren et al. and metastasis, the five-year overall survival rate for LSCC has been approximately 50% in
Distributed under recent years (Cavaliere et al., 2021). Due to LSCC’s uncertain molecular mechanism, over
Creative Commons CC-BY 4.0 60% of patients were already at late stages when the disease was discovered (Steuer et al.,
OPEN ACCESS 2017). An increasing amount of research demonstrates that the formation and development
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of LSCC is related to molecular mechanisms. Studies have shown that the prognosis of
patients with LSCC with down-regulated HLA class I antigen was worse (Ogiro et al., 2006).
It has also been reported that the ANXATI interaction with FPR2/ALX promote proliferation
and metastasis of LSCC (Gastardelo et al., 2014). Studies have revealed lincRNA HOTAIR
is highly expressed in LSCC and promotes methylation of PTEN (Li et al., 2013). Hence,
to better identify biomarkers and explore effective new therapeutic strategies, it is essential
to reveal the LSCC’s carcinogenic mechanism.

Genes, miRNAs and IncRNAs all play key roles in tumor genesis and development. In
recent years, researchers have found that many genes, miRNAs and IncRNAs are key factors
of LSCC (Zhang et al., 2016). Gao et al. (2019) detected LTA4H expression in LSCC and
normal tissue by qPCR. The results showed that LTA4H was significantly up-regulated
in LSCC tissues than in normal tissue. A recent study screened 275 differential proteins
associated with laryngeal cancer through PPI (protein-interaction) network analysis. GO
function was significantly enriched in RNA processing and respiratory electron transport
chains, and LTA4H was one of the up-regulated proteins (Peyvandi et al., 2018). More
importantly, studies have demonstrated that increased LTA4H expression in LSCC is
associated with a poor prognosis, and knockdown of LTA4H successfully suppresses the
growth, invasion and migration of laryngeal carcinoma cells (Gao et al., 2019; Peyvandi
et al., 2018). However, more study is necessary to fully understand the specific molecular
mechanism of LTA4H in laryngeal carcinoma.

There is increasing evidence that LTA4H is overexpressed in many malignant cancers,
which promotes cancer cell proliferation. For example, it has been identified that LTA4H
is overexpressed in esophageal adenocarcinoma and through inflammation-augmenting
effect and growth-stimulatory effect to promote carcinogenesis (Chen et al., 2004). Studies
have also shown that LTA4H can enhance aminopeptidase and epoxide hydrolase activity
to promote colon cancer growth (Jeong et al., 2009). Activation of 5-LOx/LTA4H can
stimulate oral epithelial cell proliferation and inflammation, which is the main way to
promote oral cancer (Guo et al., 2011; Sun et al., 2006).

As a zinc-dependent epoxide hydrolase and aminopeptidase, the active site of
Leukotriene A4 hydrolase (LTA4H) can be the target action site of related inhibitors (Chen
et al., 2004; Haeggstrom, 20045 Vo, Jang ¢ Jeong, 2018). LTA4H is being investigated as
a new target for cancer treatment due to its role in inflammatory response and tumor
progression. As a hydrolase, LTA4H performs its classic biological functions, including
chemotaxis, endothelial cell adhesion, and leukocyte activation, by acting on the last step
of the arachidonic acid metabolic process (Haeggstrom, 2018; Oh & Olefsky, 2016; Snelgrove
et al., 2010). As an aminopeptidase, it involves in inflammation and host defensed though
grading proline-glycine-proline (PGP), a neutrophil chemokine that is also a biomarker
for chronic obstructive pulmonary disease (Haeggstrom, 2004; Snelgrove et al., 2010).
Furthermore, LTA4H is believed to function as an RBP in the post-transcriptional control
of specific mRNAs (Castello et al., 2012b; Castello, Hentze ¢ Preiss, 2015). RBPs not only
interact with mRNAs directly, but also bound to proteins and other diverse RNAs to play
crucial roles (Gerstberger, Hafner ¢ Tuschl, 2014; Hamosh et al., 2005). A growing body
of evidence show RBPs can promote cancer cell growth, angiogenesis, and metastasis by
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regulating numerous target genes related to tumor development (Kang, Lee ¢» Lee, 2020).
We hypothesized that LTA4H might interact with the RNAs of cancer-related critical
genes at the transcriptional or post-transcriptional levels to control the expression of those
genes, thus affecting the proliferation, invasion and metastasis of tumors (including LCSS)
cells. However, whether LTA4H binds to mRNAs in cancer cells remains unclear. We
hypothesized that LTA4H might interact with the RNAs of cancer-related critical genes at
the transcriptional or post-transcriptional levels to control the expression of those genes.

To validate our hypotheses, we used improved RNA immunoprecipitation and
sequencing (iRIP-Seq) method (Ke et al., 2021) on LTA4H in modal HeLa cells (Capouillez
et al., 2009) to explore its RNA-binding characteristics in cancer cells. The finding
demonstrates that LTA4H extensively binds to mRNAs/ pre-mRNAs and IncRNAs. And
we have identified some crucial LTA4H-bound genes that regulate cancer development,
like NEAT1, LINC00657, LTBP3 and ROR2. These results reveal the underlying molecular
mechanisms of LTA4H as a clinical therapeutic target for LCSS, which has significant
effects on diagnostic and therapeutic applications.

MATERIALS & METHODS

Cloning and plasmid construction

Hot fusion primer pairs were created using CE Design V1.04. Each primer contained
a 17-30 bp sequence from the pIRES-hrGFP-1a vector and a gene-specific sequence
fragment.

F-primer: agcccgggcggatccgaattc ATGCCCGAGATAGTGGATACCTG

R-primer: gtcatccttgtagtcctcgagATCCACTTTTAAGTCTTTCCCCAC.

At 37 °C for 2 to 3 h, we digested the pIRES-hrGFP-1a vector with EcoRI and Xhol
(NEB). The enzyme-digested vector was purified on a Qiagen column kit using 1.0%
agarose gel. HeLa cells’ total RNA was obtained using Trizol. Oligo dT primers were used
to transcribe the purified RNA for cDNA. Following that, PCR amplification was used to
synthesize the inserted fragment. PCR insert and linearized vector digested with EcoRI and
Xhol (NEB) were combined in a PCR microtube and ligated with Vazyme’s ClonExpress(®)
IT One Step Cloning Kit (Vazyme, Nanjing, Jiangsu, China). Chemical transformation was
used to introduce plasmids into Escherichia coli strains. We incubated cells overnight at
37 °C on LB agar plates containing 1uL/ml ampicillin. Finally, 28 cycles of colony PCR
were performed on the backbone vectors using universal primers to screen colonies.

Cell culture and transfections

The China Center for Type Culture Collection (CCTCC), Wuhan, Hubei, China provided
human cervical carcinoma (CC) cell lines, HeLa (CCTCC@GDCO0009). In Dulbecco’s
modified Eagle’s medium (DMEM), which contains 10% fetal bovine serum (FBS),

100 ug/mL streptomycin and 100 U/mL penicillin, we cultivated HeLa cells at 37 °C and
5% CO2. Following the manufacturer’s instructions, HeLa cells were transfected using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Transfected cells were collected after
48 h for RT-qPCR and western blot analyses.
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Assessment of gene overexpression

To evaluated the effect of LTA4H overexpression, we used GAPDH (glyceraldehyde
3-phosphate dehydrogenase) as a control gene. The synthesis of cDNA was carried out
according to standard procedures, and we performed RT-qPCR using Bestar SYBR Green
RT-PCR Master Mix (DBI Bioscience, Shanghai, China) on a Bio-Rad $S1000. Additional
file contains primer information. After normalizing to GAPDH mRNA concentration level,
each transcript was quantified using 2-A ACT method (Livak ¢ Schmittgen, 2001). The
GraphPad Prism software (San Diego, CA, USA) was then used for comparison with the
paired Student’s -test.

Immunoprecipitation

HelLa cells were lysed on ice for 5 min with ice-cold lysis buffer (1 xPBS, 0.5% sodium
deoxycholate, 0.1% SDS, 0.5% NP40) containing RNase inhibitors (Takara, 2313) and
protease inhibitors (329-98-6; Solarbio). In order to remove cell debris, the mixture
was forcefully shaken and centrifuged for 20 min at 13,000 x g at 4 °C. The centrifuged
supernatant was incubated overnight at 4 °C with DynaBeads protein A/G bound to normal
IgG or anti-Flag LTA4H antibody. The beads were washed twice with low salt washing
buffer, high salt washing buffer and 1X PNK buffer solution respectively, and the samples
were suspended in the Elution Buffer to extract RNA from the LTA4H-RNA complex.

Western blot

Resuspend sample with 40 ul Elution Buffer 50 mM Tris-Cl (PH = 8.0), 10mM EDTA
(PH = 8.0), 1%SDS; incubate it at 70 °C, 1,400 rpm for 20 min. The supernatant was
put in a fresh EP tube. The complex was separated on a 10% SDS-PAGE gel after being
boiled in boiling water with 1X SDS sample buffer for 10 min. with TBST buffer (20 mM
Tris-buffered saline and 0.1% Tween-20) contained 5% non-fat milk power, we diluted
the primary antibody: flag antibody (1:2,000, F7425; Sigma), actin (1:2,000, 66 CUSABIO).
The membranes were soaked in the primary antibody incubation solution and incubated
at room temperature for 1 h. The membranes were then soaked in the HRP-conjugated
secondary antibody incubation solution and incubated at room temperature for 1 h.
The enhanced chemiluminescence (ECL) reagent (170506; Bio-Rad, Hercules, CA, USA)
was used to detect the binding secondary antibody (anti-mouse or anti-rabbit 1:10,000)
(Abcam).

iRIP-seq library preparation and sequencing

TRIzol (Invitrogen) was used to isolate the RBP-bound RNAs from the immunoprecipita-
tion of anti-Flag. In accordance with the manufacturer’s instructions, complementary DNA
(cDNA) libraries were prepared using KAPA RNA Hyper RNA binding protein connects

the future Prep Kit (KK8541; KAPA). On the Illumina HiSeq X Ten platform, the cDNA

libraries were sequenced for 150 bp paired-ends.

Data analysis
Only uniquely mapped reads were used for the subsequent analysis after reads were matched
onto the genome using TopHat 2 (Kim et al., 2013) .“ABLIRC” strategy was utilized to
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determine the genomic locations where LTA4H binds (Xia ef al., 2017). Peaks were formed
from reads that had at least one base pair of overlap. Using computational simulation,
reads with the same number and lengths as reads in peaks were generated randomly for
each gene. For the purpose of generating random max peak height from overlapping reads,
the outputting reads were further mapped to the same genes. The whole procedure was
done 500 times. All observed peaks with heights greater than those of random maximum
peaks (p-value 0.05) were chosen. The simulation independently analyzed the IP and input
samples, removing the IP peaks that overlapped the input peaks. The peaks were used for
motifs analysis with the Hypergeometric Optimization of Motif Enrichment (HOMER)
software (Heinz et al., 2010).

Functional enrichment analysis

GO term and KEGG path enrichment analysis was performed using KOBAS 2.0 server
(Xie et al., 2011). According to the annotation information of peak associated gene, the
GO Term of each gene was counted, and significance of each Term was analyzed by
Benjamini—-Hochberg FDR (BH) and hypergeometric test to determine the degree of

enrichment.

Reverse transcription qPCR validation

RT-qPCR was performed using total RNA from the iRIP-seq library preparation. Using
the M-MLV Reverse Transcriptase (Vazyme), RNA was reverse transcribed into cDNA.
Real-time PCR was carried out with the StepOne RealTime PCR System using the HieftTM
gPCR SYBR® Green Master Mix (Low Rox Plus; Yeasen, Pudong, China). Denaturation
at 95 °C for 5 min was followed by 40 cycles of denaturation at 95 °C for 15 s, annealing
and extension at 60 °C for 30 s under PCR cycling conditions. PCR amplifications were
carried out in triplicate for each sample.

Statistical analysis

The statistical software SPSS 16.0 (Chicago, IL, USA) was used to manipulate the
experimental data, which were all presented as mean standard deviation (SD). All
experiments were run at least three times independently, and P < 0.05 was considered

significant.

RESULTS

Deregulated expression of LTA4H in various cancers

Previous researches have shown that LTA4H is significantly expressed in several
malignancies and affects the initiation and growth of tumors (Chen et al., 2004; Guo et
al., 2011; Jeong et al., 2009; Sun et al., 2006). In order to explore the relationship between
LTA4H and laryngeal squamous cell carcinoma (LSCC), or more broadly head and neck
squamous cell carcinoma (HNSCC), we first studied the expression level of LTA4H in
LSCC tissues and normal tissues through The Cancer Genome Atlas (TCGA) database
(Fig. 1A). Box plot and scatter diagram were used to display the expression levels of LTA4H
(Transcripts Per Million (TPM)). According to the finding, LSCC tissues had lower levels of
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Figure 1 Expression and survival analysis of LTA4H. (A) Transcription levels of LTA4H in LSCC and
normal samples from The Cancer Genome Atlas (TCGA) database. (B) Survival analysis of LTA4H in
HNSCC from The Cancer Genome Atlas (TCGA) database.

Full-size &4l DOI: 10.7717/peerj.14875/fig-1

LTA4H than normal control tissues. The results obtained by Gao et al. (2019) with TCGA
database are also LTA4H downregulation in LSCC. However, the author then detected
LTA4H expression in LSCC and normal tissue by qPCR, and have proved that TA4H in
LSCC tissues was significantly up-regulated (Gao et al., 2019). In addition, we also studied
the association between LTA4H expression level and prognosis in HNSCC and normal
tissues (Fig. 1B). A blue curve represented the low expression group, while a red curve
represented the high expression group. A significant finding was that HNSCC patients
with high expression of LTA4H had a poor prognosis. Therefore, the potential function of
LTA4H in laryngeal squamous cell carcinoma deserves further study.

Characterization of the LTA4H-RNA interaction map by iRIP-seq
analysis

To explore the potential function of LTA4H in LSCC, we obtained a LTA4H-bound RNA
profile in modal HeLa cells by applying theiRIP-seq approach. The iRIP-seq is an advanced
technique for studying RBPs, which achieves the precision of CLIP-seq to obtain both direct
and indirect binding sites of protein and RNA accurately, whereas maintains the simplicity
of RIP-seq. Labelled antibody and control antibody were used for immunoprecipitation,
and two separately replicate experiments were performed. For immunoprecipitation, two
separate iRIP repetitions were carried out using flag-tagged LTA4H. The western blots of
both IP samples showed the presence of the protein Flag- LTA4H, but the IgG control did
not (Fig. 2A). Then, we performed paired-end sequencing for the cDNA libraries using the
[lumina HiSeq X Ten platform, and obtained the high-quality clean reads. After removing
the adapter sequences and low-quality reads, we were left with 30,619,638 and 49,122,624
reads for IP group and input control of replicate 1, and 28,885,522 and 40,002,548 reads
from those of the replicate 2 (Table S1). Next, using TopHat 2, we mapped the sequencing
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Figure 2 Transcriptome-wide identification of LTA4H binding targets using iRIP-seq method. (A)
Western blotting analysis of LTA4H expression. (B) Scatter plot showing Pearson correlation between IP
and input samples and between the two IP replicates. (C) Reads distribution across reference genome. Er-
ror bars represent mean & SEM. *** p < 0.001, ** p < 0.01. (D) Venn diagram showing the overlap of
LTA4H binding peaks obtained from two replicates of iRIP-seq. The peaks were called by ABLIRC algo-
rithm. (E) Bar plot showed the classification of LTA4H targets in common in two replicates. (F) Distribu-
tion of peaks across reference genome. (G) The top ten over represented motifs in LTA4H binding peaks.
Full-size & DOLI: 10.7717/peer;j.14875/fig-2

=

reads to reference genomes GRCh38 (Kim et al., 2013). About 77.23-78.94% of them were
aligned and about 39.85-83.65% were matched uniquely. The uniquely mapped reads are
overwhelmingly from mature mRNAs. The percentage of splice reads among the uniquely
aligned reads was substantially greater in the IP sample compared with the control sample,
indicating that LTA4H might have an involvement in the splicing role (Table 52).
Correlation analysis of IP and input samples by comparing Reads per kilo base of a gene
per million reads (RPKM) (Mortazavi et al., 2008) of the same gene revealed transcripts were
obviously enriched in IP samples than input control, which indicated that the specificity
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of the LTA4H-bound RNA was good (Fig. 2B). We also made correlation analysis between
the two IP replicates, and the results showed that R =0.917, which indicated that the two
groups of IP samples had good repeatability (Fig. 2B). The results of these two groups of
samples are almost the same, which indicated that the iRIP-seq experiment is reliable. The
reads distribution across reference genomic regions showed LTA4H binding reads tend to
concentrate in the CDS, the intron regions than input control reads, as well as in 3’ UTR,
5" UTR and noncoding exons regions (Fig. 2C).

In order to eliminate the interference caused by gene expression quantity for predicting
LTA4H specific binding sites, we adopted the ABLIRC method (Chi ef al., 2009) to identify
LTA4H-bound peaks precisely. There were 29,242 overlapping peaks in the two replication
groups in Hela cells, indicating the overlap of peaks from the two sets of experiments is
relatively high (Fig. 2D). Interesting, after sorting according to the number of reads on
overlapping peaks, the top peaks were mainly located in mRNAs and IncRNAs (Fig. 2E).
The results demonstrated that LTA4H has an extensive capability for RNA binding and
may function as a regulator by interacting to mRNAs and IncRNAs. Peak distribution
across reference genomic regions revealed that the LTA4H binding peaks located in the
intron region accounted for a large proportion (66.93% and 63.20%), followed by CDS
region (Fig. 2F).

Then, HOMER was employed to obtain sequence motif enriched within LTA4H peaks.
The results showed UG-rich motif and GA-rich motif were presented as the first two motifs
of LTA4H peaks of two replicates, which may be the key sites of LTA4H binding to its
target (Fig. 2G). We found a high frequency of motif AAGG in both repeats in LTA4H
binding peaks. It has recently been reported that TRA2B interacts with motif AAGG to
promote cancer cell growth by disrupting gene expression processes associated with aging
(Kajita et al., 2016). Our results suggest that LTA4H may interact with TRA2B for binding
of the motif AAGG to regulate gene expression in cancerous cells.

In conclusion, the obtained LTA4H-binding RNA map will help our understanding of
the overall regulatory mechanism of LTA4H-RNA association during gene expression in
Hela cells.

Analysis of pre-mRNA and mRNAs associated by LTA4H

Further, the LTA4H overlapped peak associated genes were compared to the Gene Ontology
database for enrichment biological process analysis. We found that LTA4H-bound genes
were involved in gene expression, mitotic cell cycle, viral replication and DNA repair
(Fig. 3A). Next, the DEseq package was used to identify the LTA4H-bound differentially
enriched genes (DEGs) (Anders ¢» Huber, 2010). Among the 14,170 DEGs, there were
2,776 enriched genes and 11,394 non-enriched genes related to LTA4H. We constructed a
volcanic map to show the significantly enriched genes associated with LTA4H, all of which
are associated with oncogenesis, including IncRNAs NEAT1 and LINC00657, and mRNAs
ROR2, LTBP3, HSP90B1 and EGFR (Fig. 3B). To explore the potential biological role of
these enriched genes, we continued to analyze the enriched genes using the GO database,
and it showed they were mainly involved in negative regulation of transcription, mitotic
cell cycle, gene expression, and viral replication (Fig. 3C).
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Figure 3 Analysis of the targets bound by LTA4H. (A) The top 10 enriched GO biological processes of
the LTA4H-bound genes by ABLIRC algorithm in two replicates. (B) Potential targets identified by DEseq.
(C) The top 10 enriched GO biological processes of the LTA4H-bound genes by DEseq. (D) Venn diagram
showing the overlap of LTA4H bound genes obtained from two replicates by ABLIRC algorithm and DE-
seq. (E) The top 10 enriched GO biological processes of the LTA4H- bound genes by both ABLIRC algo-
rithm and DEseq. (F) The reads density landscape of LTA4H- binding peaks across LTBP3 (left). Quantifi-
cation of LTBP3 expression by qRT-PCR using iRIP-seq data (right).

Full-size Gl DOI: 10.7717/peerj.14875/fig-3

Next, we performed an overlap analysis of LTA4H bound genes from ABLIRC algorithm
and DEG from DEseq. Running DEseq identified fewer enriched genes, which were well
overlapped by the LTA4H-bound genes by ABLIRC and resulted in 2425 overlapped genes
(Fig. 3D). The results demonstrated a significant association between LTA4H-bound and

enriched gene expression. GO analysis showed the 2425 overlapped genes were mainly

clustered at gene expression, mitotic cell cycle, viral replication and DNA repair (Fig. 3E).

To further verify the presence of Flag-LTA4H protein binding on target genes, we next

showed the distribution of reads binding location and coverage depth compared to Peak

associated genes. The results across LTBP3 show the two replicates were consistent, and the

IP groups were obviously biased towards the intron and exon regions than input control,
which was the potential binding region of LTA4H on LTBP3 (Fig. 3L, left panel). And
further, we used this gene to verify that it directly interacts with mRNA by RT-qPCR (Fig.
3F, right panel). In comparison to the control group, LTBP3 was considerably higher in
the IP group. Similarly, mRNAs EGFR, ROR2 and HSP90B1 were distinctly enriched in IP
samples compared to the input samples and the results of subsequent validation were as
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Figure 4 LTA4H binds to IncRNA involved in laryngeal squamous cell carcinoma. (A-B) The reads
density landscape of LTA4H-binding peaks across IncRNAs (left). Quantification of LINC00657 and

NEAT]1 expression by qRT-PCR using iRIP-seq data (right).
Full-size & DOI: 10.7717/peerj.14875/fig-4

expected (Fig. S1). Taken together, our results suggest that LTA4H and mRNAs are closely

interacted in Hela cells.

Analysis of LTA4H-bound IncRNAs

We also conducted the reads density landscape for IncRNAs that LTA4H highly enriched.
The results across the cancer-promoting gene LINC00657 show there are many LTA4H-
bound peaks in IP compared with input (Fig. 4A, left panel). In the validation experiment,
LINC00657 was found to be significantly enriched in IP1, and there was no obvious bias in
IP2 compared with the control group, which was considered to be related to experimental
error (Fig. 4A, right panel). It may also be that the peak site is not enriched in IP2, that
is, LTA4H may not bind LINC00657 specifically, they just bind randomly. The exact
mechanism of LTA4H binding to LINC00657 has not been fully clarified and needs further
study. NEAT1 had an obvious bias in IP groups, and we know that dysregulation of NEAT1
plays a key carcinogenic role (Chen et al., 2015; Wang et al., 2016) (Fig. 4B, left panel).
Besides that, NEAT1 has been verified to be significantly enriched in the IP group (Fig. 4B,
right panel). In summary, we hypothesized that LTA4H is preferentially bound to genes
related to tumor formation and progression.
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DISCUSSION

As an essential hydrolase for LTB4 production (Vo, Jang ¢ Jeong, 2018), upregulated
LTA4H has been found to be linked with various malignancies, such as colon, esophageal,
and lung cancer (Chen et al., 2003a; Chen et al., 2004; Jeong et al., 2009). In The Cancer
Genome Atlas (TCGA) database, the decrease in LTA4H levels in the LSCC was unexpected.
We think it could be related to the small number of laryngeal squamous cell carcinoma
TCGA database, leading to inconsistency with the previous experimental results (Gao

et al., 2019; Peyvandi et al., 2018). The low expression of LTA4H in laryngeal cancer
tissues was consistent with previous studies (Gao et al., 2019; Rodrigues-Lisoni et al.,
2010). Importantly, further data showed that patients’ survival times were considerably
shorter when their LTA4H expression was higher, suggesting that LTA4H may have a
neoplastic role in HNSCC. On the one hand, numerous investigations have revealed that
Leukotriene can control tumor growth by influencing interactions between the stromal
cells and tumor epithelial cells, creating the favorable conditions for tumor genesis. So
inflammatory mediators can be detected in the tumor microenvironment (Colotta et al.,
2009; Wang & Dubois, 2010). On the other hand, two recent mRNA-interacting protein
identification studies reported the activity of LTA4H binding to mRNA (Castello et al.,
2012a; Castello, Hentze ¢ Preiss, 2015). Thus, we speculate that LTA4H not only participates
in the regulation of cancer through the inflammatory mediator pathway, but also controls
the expression of cancer key genes by interacting with mRNA at the transcriptional or
post-transcriptional level. However, to understand the specific mechanism of LTA4H in
tumor cells, more study is necessary.

Herein, we used iRIP-seq to identify interactions between LTA4H and RNAs in Hela
cells. We analyzed the binding characteristics of LTA4H as RNA binding protein binding to
RNAs and found that IP groups were highly enriched comparing with input groups. This
indicates that many pre-mRNAs /mRNAs are specifically bound by LTA4H, confirming
the function of LTA4H binding RNA. Surprisingly, we found that LTA4H targets were not
only enriched in mRNAs, but also in IncRNAs, suggesting that LTA4H was also involved
in non-coding processes.

We also analyzed the peaks of LTA4H proteins by using the ABLIRC algorithm from
iRIP-seq results. The binding peak of LTA4H was mainly enriched in the Intron region and
CDS region, indicating that LTA4H has functional RNA targets. Importantly, GO results
revealed that LTA4H-bound proteins were considerably overrepresented in pathways
associated with cancer, including mitotic cell cycle, DNA repair, RNA splicing related
pathways and RNA metabolism pathways. We know that genomic instability is a common
feature of most cancer cells, and DNA damage affects genomic stability (Brickelmann, De
Jong & Jachimowicz, 20205 Negrini, Gorgoulis & Halazonetis, 2010). In addition, defective
DNA repair can lead to a predisposition to cancer (Chen et al., 2003b). In eukaryotic cells,
RNA splicing is a highly complex fine-tuning step in gene expression, while tumor genes
are prone to deactivation mutations at splicing sites (Rhine et al., 2018). A study indicated
that RBPs influence the development of various cancers by controlling the metabolism of
many transcripts, which confirms the relevance of our findings (Pereira, Billaud e Almeida,
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2017). These results gave us a new hint that LTA4H may bind to cancer-related IncRNAs
and mRNAs and regulate their expression and splicing levels, which may be a previously
unknown molecular regulatory mechanism of LTA4H in cancer.

In our study, we obtained six enriched genes associated with carcinogenesis from
14,170 DEGs. Among them, studies have been shown that mRNAs such as ROR2, LTBP3,
HSP90B1, and EGFR have some close links with the occurrence and treatment of LSCC.
Upregulated ROR2 and Wnt5a have shown to represent poor tumor stage and lymphatic
metastasis in LSCC, suggesting that ROR2 was an independent prognostic factor (Zhang
et al., 2017). Wnt5a, which interacts with RoR2 physically and functionally, has been
demonstrated to be related to the growth of many different cancers (Asem et al., 2016;
Oishi et al., 2003). Likewise, early-stage head and neck neoplasm patients with high levels
of LTBP3 have a poor prognosis for survival (Deryugina et al., 2018). It has been shown that
HSP90BI is regulated by Mir-99a-3p to participate in the pathogenesis of head-neck cancer
(Okada et al., 2019), and the highly expressed HSP90B1 represents the poor prognosis of
many tumors, including breast cancer and lung cancer (Lin et al., 2020; Liu et al., 2019).
EGFR knockdown suppressed LSCC cell growth, infiltration and migration, and EGFR
inhibitors were proved to have anti-laryngeal cancer effects in vitro and in vivo (Ren, Wang
& Qi, 2021; Yang et al., 2020). These results show that LTA4H interacting mRNAs are
involved in regulating cancer proliferation, invasion, and metastasis in LSCC.

We also found LTA4H widely binds to IncRNAs such as NEAT1 and LINC00657,
which have recently been investigated for a variety of cellular roles (Mercer, Dinger
& Mattick, 2009; Wilusz, Sunwoo ¢ Spector, 2009). Previous studies have reported that
many IncRNAs interact with RBPs to play regulatory functions. For example, MALAT1
binds serine/arginine (SR) proteins to regulate alternative splicing (Tripathi et al., 2010).
And NEAT]I can regulate transcription, miRNA processing and alternative splicing by
binding RBP (Cooper et al., 2014; Imamura et al., 2014; Jiang et al., 2017). We also found
some links between these targeted genes and laryngeal cancer and other similar cancers.
NEAT1 levels were significantly upregulated in LSCC, which predicted a poor prognosis
(Wang et al., 2016). Others have shown activation of NEAT1 expression also promoted
proliferation, migration, and invasion of Esophageal squamous cell carcinoma (Chen ef al.,
2015). LINC00657 has been shown to play a regulatory function as an oncogene in ESCC
(Sun et al., 2018). These results suggest that LTA4H may bind IncRNAs to participate in
transcriptional and post-transcriptional regulation to promote cancer development and
result in a poor prognosis. It could reveal a novel mechanism by which LTA4H regulates
LSCC and may become a possible target for clinical treatment of laryngeal carcinoma. If
further studies in LSCC cells and clinical samples clarify the regulatory function of LTA4H
and IncRNA interaction, new ideas will be provided for clinical treatment. In addition, we
plan to conduct functional studies of LTA4H in the future, such as comparing laryngeal
cancer cells with cells that overexpress LTA4H/LTA4H knockdown, to validate the findings
from the RIP-seq analyses.
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CONCLUSION

In summary, this is the first time we found that LTA4H preferentially binds to the mRNAs
and IncRNAs of cancer-related functional pathway genes in tumor cells by iRIP-Seq
experiments and shows enriched binding in specific intron and CDS regions of these
genes. Therefore, we speculated that LTA4H not only participates in the regulation of
cancer through the inflammatory mediator pathway, but also influences the production of
different subtypes of proteins by binding the RNA of target genes to regulate the alternative
splicing process, thus regulating the proliferation, migration, and invasion of LSCC. To
better understand how LTA4H regulates the alternative splicing of target genes, more
research should be done. Therefore, our discoveries could shed light on the underlying
mechanism of LTA4H in promoting tumor development and provide a new potential
anti-tumor target.
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