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ABSTRACT
Background: In the grass family, a disproportionate number of species have been
designated as being invasive. Various growth traits have been proposed to explain the
invasiveness of grasses; however, the possibility that allelopathy gives invasive grasses
a competitive advantage has attracted relatively little attention. Recent research has
isolated plant allelochemicals that are mostly specific to the grass family that can
breakdown into relatively stable, toxic byproducts.
Methods: We conducted a meta-analysis of studies on grass allelopathy to test three
prominent hypotheses from invasion biology and competition theory: (1) on native
recipients, non-native grasses will have a significantly more negative effect compared
to native grasses (Novel Weapons Hypothesis); (2) among native grasses, their effect
on non-native recipients will be significantly more negative compared to their effect
on native recipients (Biotic Resistance Hypothesis); and (3) allelopathic impacts will
increase with phylogenetic distance (Phylogenetic Distance Hypothesis). From 23
studies, we gathered a dataset of 524 observed effect sizes (delta log response ratios)
measuring the allelopathic impact of grasses on growth and germination of recipient
species, and we used non-linear mixed-effects Bayesian modeling to test the
hypotheses.
Results:We found support for the Novel Weapons Hypothesis: on native recipients,
non-native grasses were twice as suppressive as native grasses (22% vs 11%,
respectively). The Phylogenetic Distance Hypothesis was supported by our finding of
a significant correlation between phylogenetic distance and allelopathic impact.
The Biotic Resistance Hypothesis was not supported. Overall, this meta-analysis adds
to the evidence that allelochemicals may commonly contribute to successful or high
impact invasions in the grass family. Increased awareness of the role of allelopathy in
soil legacy effects associated with grass invasions may improve restoration outcomes
through implementation of allelopathy-informed restoration practices. Examples of
allelopathy-informed practices, and the knowledge needed to utilize them effectively,
are discussed, including the use of activated carbon to neutralize allelochemicals and
modify the soil microbial community.
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INTRODUCTION
As a prime example of anthropogenic change, grasses have been deliberately moved by
human civilizations, often to feed livestock (D’Antonio & Vitousek, 1992; Fusco et al.,
2021), and their invasive spread has devastated many ecosystems (Marshall et al., 2011;
Wied et al., 2020; Kerns et al., 2020; Rhodes et al., 2021; Rayment et al., 2022). The spread of
non-native grasses can diminish native biodiversity by forming monocultures and
modifying soil characteristics and nutrient cycling (Perkins, Johnson & Nowak, 2011;
Gibbons et al., 2017;Wied et al., 2020;Musso et al., 2021; Nagy et al., 2021; Soti & Thomas,
2021). Non-native grasses may benefit from aspects of global change, including wildfire
(Davies et al., 2022), drought (Leal et al., 2021; Sommers, Davis & Chesson, 2022), and
nitrogen deposition (Cione, Padgett & Allen, 2002; Sigüenza, Corkidi & Allen, 2006).
Non-native grass establishment can lead to increased wildfire frequency and/or intensity
(D’Antonio & Vitousek, 1992; Fusco et al., 2019; Tomat-Kelly, Dillon & Flory, 2021;Walker
& Morgan, 2022), and shortened fire cycles can push an ecosystem past the threshold of
passive recovery (D’Antonio, Hughes & Tunison, 2011), which substantially increases costs
of restoration and adds urgency to restoration planning in areas recently invaded by
grasses.

Native (Hierro & Callaway, 2021), invasive (Kalisz, Kivlin & Bialic-Murphy, 2021) and
domesticated/crop grasses (Niculaes et al., 2018) are reported to have allelopathic abilities.
Across plant groups, allelochemicals differ in chemical structure and impart impacts
through different mechanisms (Cheng & Cheng, 2015), but researchers have identified
benzoxazinoids as allelochemicals that have been phylogenetically conserved within the
Poaceae family (Frey et al., 2009; Dutartre, Hilliou & Feyereisen, 2012; Niculaes et al.,
2018), with evidence supporting independent or convergent evolution of benzoxazinoids
in some dicots (Schullehner et al., 2008; Dick et al., 2012). When considered together, the
evidence of shared allelochemicals, disproportionate invasion success and impacts (Linder
et al., 2018) and the large number of grass species, the grass allelopathy literature provides
a unique opportunity to test important hypotheses in invasion biology and draw
conclusions that can inform real world practices used to reduce the impacts of invasive
grasses.

The aim of this meta-analysis was to test whether three key invasion biology theories are
supported by studies investigating potential allelopathic abilities in grasses. First, we tested
if the Novel Weapons Hypothesis (Callaway & Aschehoug, 2000;Hierro & Callaway, 2003;
Callaway & Ridenour, 2004) was supported (on native recipient species, effect size of
non-native grass < native grass). Second, we tested if the Biotic Resistance Hypothesis
(D’Antonio & Thomsen, 2004; Cummings, Parker & Gilbert, 2012) was supported (for
native grasses, effect size associated with non-native recipients < native recipients,
assuming the native grass is an important contributor to native community resistance).
Finally, we tested the hypothesis that increased phylogenetic distance is associated with
increased allelopathic impact due to expected greater similarities in secondary chemicals
among closer relatives and presumed resistance to self-produced allelochemicals
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(Phylogenetic Distance Hypothesis, co-efficient of smoothed phylogenetic distance <0)
(Wink, 2003; Zhang et al., 2020b).

MATERIALS AND METHODS
In our comprehensive search, three terms were used in database searches to identify
studies to be included in the invasive grass allelopathy metanalysis: “invas�”, “allelo�” and
“grass”, where “�” indicated a wildcard character. Thus, agriculture-focused research was
considered only if it was presented in the context of invasion. In May 2021, multiple search
engines were used to identify relevant studies for use in the meta-analysis: Web of Science,
SpringerLink, EBSCO, PubMed, Google Scholar and JSTOR (Fig. 1). Specific journals were
also searched: Journal of Chemical Ecology and Plant and Soil to allow searching a longer
timeframe in these journals which have been historically popular for allelopathy research.
Additionally, studies used in the Zhang et al. (2020b) meta-analysis (which included all
volumes of Allelopathy Journal) that used grasses as the allelopathy species (species being
tested for allelopathic potential) were included, but data from these studies was procured
independently from each article to ensure that the methodology of extracting data
remained consistent across all studies. Manya Singh performed the search strategy, and
any disagreements were discussed between Manya Singh and Curt Daehler until a
consensus was reached. This initial screening resulted in 477 studies, and after filtering for
studies that included methodology that met criteria for inferring allelopathy (as described
by Zhang et al. (2020b)), grass species as the source of potential allelopathic abilities

Figure 1 PRISMA flowchart. Full-size DOI: 10.7717/peerj.14858/fig-1

Singh and Daehler (2023), PeerJ, DOI 10.7717/peerj.14858 3/19

http://dx.doi.org/10.7717/peerj.14858/fig-1
http://dx.doi.org/10.7717/peerj.14858
https://peerj.com/


(referred to here as the ‘allelopathy species’), ecological context of invasion, and separate
reporting of control and test condition data with standard deviations or standard errors, 23
studies were left (Rasmussen & Rice, 1971; Rice, 1972; Orr, Rudgers & Clay, 2005; Blank &
Sforza, 2007; Barbosa, Pivello & Meirelles, 2008; Navarro-Cano, 2008; Rudgers & Orr, 2009;
Hussain, Ahmad & Ilahi, 2010; Meksawat & Pornprom, 2010; Harnden, Macdougall &
Sikes, 2011; Bennett, Thomsen & Strauss, 2011; Corbett & Morrison, 2012; Ghebrehiwot,
Aremu & van Staden, 2014; Greer et al., 2014; Abu-Romman & Ammari, 2015; Ismail, Tan
& Chuah, 2015; Perkins, Hatfield & Espeland, 2016; Oliveira et al., 2016; Jose et al., 2016;
Uddin et al., 2017; Chen et al., 2018; Możdże�n et al., 2020; Guido et al., 2020).

From each study, we collected the following information: author, year published, table/
figure where data are located, name of the allelopathy species (potentially allelopathic
species), name of recipient species (species impacted by the allelopathy species), mean,
standard error/deviation and sample size for both control and test conditions, lifespan of
each species (annual or perennial), origin of each species, experimental method (as
categorized by Zhang et al., 2020b), trait measured (germination or growth, for growth,
aboveground preferred, then belowground, then total), duration in days, experimental
environment (controlled or otherwise), condition of plant material allelochemicals were
sourced from (fresh or dry), plant part used to source allelochemicals (aboveground,
belowground or mixed source), dose, dose unit type, solvent and solvent polarity. Our use
of ‘recipient species’ instead of ‘test species,’ which is used in other articles (including
Zhang et al. (2020b)) to refer to the species exposed to potential allelopathy, is a change
made to improve clarity around the species pairs, as across ecology, ‘test species’ is often
used to refer to the species that is of main importance (i.e., not the recipient species, but the
species being tested for having or being involved in some key phenomena). Additional
details about data collection and the a priori power calculator used prior to running the
analyses are in the extended methods section (File S1).

To account for small sample bias, the delta log response-ratio (delta LRR) formula was
used to calculate one “observed” effect size from each pair of control and treatment means
(and standard error, sample size) (Lajeunesse, 2015). Two observed effect sizes were
dropped because both the control and treatment mean failed the Geary check (Lajeunesse,
2015, standard formula), indicating that these points violated the assumption of normality.
After dropping those points, we were left with a total of 524 observed effect sizes. Of the
whole dataset, 23% of pairs lacked a reported dose (or information that could be used to
calculate a dose), so the “mice” package was used to impute missing values based on delta
LRR, standard error, and all remaining predictors in the model (van Buuren & Groothuis-
Oudshoorn, 2011). From the “mice” function, 25 imputations were run, and for each
observation missing a dose value, the median of the 25 imputed dose values was extracted
for use in the modeling. Imputation via “mice” was done in place of the “missing values”
feature included in the brms package, because dose had to be rounded and converted to a
categorical variable to be used as a random effect, which is not supported by that feature.
Plant species names were standardized using NCBI (Schoch et al., 2020). The article text
and/or external sources were used to determine if each species was native (considered
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locally indigenous) or non-native. Other predictors collected from each study are listed in
Table S1.

In R (R Development Core Team, 2022), analyses utilized the ‘brms’ package for non-
linear, mixed-effect, multi-variate Bayesian modeling (Bürkner, 2017, 2018), using the
Student’s t-distribution for the error components due to the presence of outliers.
Predictors were chosen based on past evidence of significance (Zhang et al., 2020b) and the
hypotheses to be tested. The “tree-linked” random variables refer to effects of species
constrained by the phylogenetic covariance matrix, as a nested model (‘phyr’ package in R)
(Li et al., 2020). The “phytools” package was used to generate the phylogenetic tree used in
models (Revell, 2012), and the “aptg” package was used to generate a distance matrix for
the full set of plant species (Benjamin, 2017), and the values from the distance matrix were
included as a measure of phylogenetic distance in models. Phylogenetic distance was a log-
scaled, smoothed term to allow for the model to inherently account for a non-linear
relationship with effect size.

The non-linear model separated predictors into a “study” spline, with random effects
associated with study design (study ID, nested sub-study, nested trait measured; method
category, nested study duration; dose used), and a “species” spline, with random effects
that capture species effects (grass and recipient species, and grass and recipient species
linked to phylogenetic tree) and fixed effects for our hypotheses (origin status of grass,
origin status of recipient species, phylogenetic distance). Past reviews and meta-analyses
were referenced to determine which predictors were known to have correlations with
allelopathic effect sizes, which we then included as random effects to account for variance
(Zhang et al., 2020b).

To deal with the lack of independence among delta LRRs that came from the same
study, the “study” spline consisted of random effects study ID (and nested variables sub
study, and measured trait), dose (as a categorical variable) and experimental method
(based on Zhang et al. (2020b) classification) (and nested variable study duration, as a
categorical variable). The “species” spline consisted of random effects grass species
(allelopathy species), recipient species and both species tree-linked. The fixed effects on the
“species” spline were origin status of grass (hereafter, grass origin), origin status of
recipient species (hereafter, recipient origin), and smoothed, log-scaled phylogenetic
distance between the grass species being tested for allelopathy and the recipient species.

Prior to running the full model, an intercept model was run, which did not include any
fixed effects. After generating both models, the “loo_compare” function was used to
compare the fit of both models, based on both leave-one-out cross validation (LOO) and
widely applicable information criteria (WAIC) values (Vehtari, Gelman & Gabry, 2017).
The “hypothesis” function was used to test hypotheses at the 95% confidence level.
Explained variance was calculated from the posterior sigma estimate (regression noise
scale) and standard deviation estimates of each random effect in the intercept model.
To check for publication bias, we ran a modified intercept model with log-scaled year
published as a smoothed fixed effect in the “study” spline, and an Egger’s regression model
based on the meta-analytic residuals from the original intercept model.
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RESULTS
Power analysis determined that there was sufficient power to find a difference in average
allelopathic effect size, based on the number of studies and using Zhang et al. (2020b) as the
baseline for the difference (86%, Fig. S1) (Steidl, Hayes & Schauber, 1997). In the intercept
model, the study spline intercept was not significant (0.02, 95% CI [−0.21 to 0.25]), but the
species spline intercept was significantly negative, with grasses suppressing the growth or
germination of the recipient species by approximately 24% (−0.28, 95% CI [−0.52 to
−0.04]). Around 35% of the variance was explained by study ID and nested variables
sub-study and trait measured (15%, 8% and 11%, respectively). One-quarter of the
variance was explained by method and nested variable duration (10% and 15%
respectively). Another quarter of the variance was explained by grass species and recipient
species (9% and 15% respectively). Dose explained 9% of the variance, meaning that only
7% of the variance in the dataset was unexplained at the observation (individual effect size)
level. Phylogenetic signal from the tree-linked random effects for either the allelopathy
species or the recipient species explained <1% of the variance. The Egger’s test and
associated contoured funnel plot of the meta-analytic residuals did not indicate significant
publication bias at the p = 0.05 level (Fig. S2, y-intercept 95% CI [−0.03 to 0.04]).
Allelopathic impacts were not significantly related to publication year (Fig. S3, y-intercept
95% CI [−0.32 to 0.14], slope 95% CI [−0.29 to 0.28]). The full model was better than the
intercept model by LOO and WAIC criteria (Table S1).

The Novel Weapons Hypothesis was supported by the full model (Table 1). For native
recipients, non-native grasses on average were almost twice as suppressive (24%) as native
grasses (13%). The predicted average effect size of native grasses on native recipients, was
weakly significantly different from zero (−0.14, 95% CI [−0.29 to 0.02], 90% CI [−0.26 to
−0.01], Fig. 2). The predicted average effect size of non-native grasses on native recipients
was significantly negative (−0.27, 95% CI [−0.44 to −0.09], Fig. 2).

The Biotic Resistance Hypothesis was rejected by the full model, with weakly significant
support for the alternative hypothesis, that native grasses have more negative effects on
native recipients compared to non-native recipients, instead of vice versa (0.09, 90% CI
[0.02–0.16], Table 1). On average, native grasses suppressed native recipients 9% more
compared to non-native recipients, opposite to expectations for the Biotic Resistance
Hypothesis (positive model coefficient, Table 1). The predicted average effect size of native
grasses on non-native recipients was not significantly different from zero (−0.05, 95% CI
[−0.22 to 0.14]), with the model finding a 66% predicted probability that the average would
be negative (Fig. 3).

Table 1 Estimated difference and 95% CI for each hypothesis.

Estimate 95 LCI 95 UCI

Novel Weapons Hypothesis −0.14 −0.25 −0.03

Biotic Resistance Hypothesis 0.09 −0.01 0.19

Phylogenetic Distance Hypothesis −0.22 −0.36 −0.07

Note:
Negative differences were predicted a priori for each hypothesis test.
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Figure 2 Test of the Novel Weapons Hypothesis. Center, bean plot of distribution of predicted mean
effect size with long line showing the average prediction, overlayed on strip-chart of distribution of
predicted population. To each side, notched boxplot, overlayed with jittered points, showing distribution
of observed effect sizes. Colors represent effect of native (green, right) and non-native (magenta, left)
grasses on native recipients. Center-left, bean plot of predicted difference (light pink) between average
effect of native grasses and average effect of non-native grasses on native recipients, with long line
showing average predicted difference. Asterisks (��) denote significance at 95% CI level.

Full-size DOI: 10.7717/peerj.14858/fig-2

Figure 3 Test of the Biotic Resistance Hypothesis. Center, bean plot of distribution of predicted mean
effect size with long line showing the average prediction, overlayed on strip-chart of distribution of
predicted population. To each side, notched boxplot, overlayed with jittered points, showing distribution
of observed effect sizes. Colors represent effect of native grasses on native (green, right) and non-native
(light green, left) recipients. Center-left, bean plot of predicted difference (light pink) in average effect size
of native grasses on native recipients compared to non-native recipients, with long line showing average
predicted difference. Contrary to the hypotheses, natives had stronger impacts on natives than on non-
natives. Asterisks (��) denote significance at 95% CI level. Full-size DOI: 10.7717/peerj.14858/fig-3
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The Phylogenetic Distance Hypothesis was supported by the full model (Table 1). There
was a significant negative correlation between smoothed, log-scaled phylogenetic distance
and effect size. The co-efficient of a smoothed variable cannot be interpreted directly as
magnitude of change between intervals, but frommodel posteriors, the average allelopathic
effect size for conspecific species pairs is closer to zero, compared to other species pairs
with increasing phylogenetic distance (Fig. 4).

DISCUSSION
Support for the Novel Weapons Hypothesis and Phylogenetic Distance
Hypothesis
The Novel Weapons Hypothesis (Callaway et al., 2008) (NWH) suggests that a lack of
shared evolutionary history between non-native plants and native plants can result in
allelochemical production by non-natives that has unusually large impacts on natives.
We found that on a native recipient, non-native grasses are twice as suppressive as native
grasses, which supports NWH. Although non-native grasses may directly release
allelochemicals that have large impacts on native plants, support for NWH can also be
explained by novel microbial communities associated with non-native plants, which may
produce novel allelochemicals that the existing soil microbial community (recruited by
native plants), has not evolved the ability to degrade (Inderjit et al., 2011; Cipollini, Rigsby
& Barto, 2012). The establishment of invasive plants is generally associated with
modifications to the soil bacterial community (Torres et al., 2021), which plays a key role in
degrading allelochemicals. The identity of the microbe degrading allelochemicals may be
significant if different microbes result in different by-products, and stable by-products of
allelochemical degradation can be toxic (Macías et al., 2006, 2007; Jilani et al., 2008;
Hickman et al., 2021).

Figure 4 Test of Phylogenetic Distance Hypothesis. Post-posterior predicted mean effect size (+ 95%
CI) across phylogenetic distance (unitless, from distance matrix calculated using aptg package), overlayed
with points representing observed effect sizes (pink) and point-ranges (in blue) representing mean + SE
of observed effect sizes within y-axis bounds. Black numbers are average predicted change in effect size
for that interval of phylogenetic distance. Full-size DOI: 10.7717/peerj.14858/fig-4
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In some allelopathy studies, species are studied in a reciprocal design, where each
species is examined as both a potential allelopathic and recipient species. The native
grasses being studied may have been chosen based on their suspected susceptibility to the
soil legacy of non-native grasses, thus resulting in an over-estimation of the impact of
non-native grasses. In a reciprocal design, native grasses are tested as both an allelopathic
and a recipient species. Only three studies used a native grass as both an allelopathy
species and the recipient species of a non-native grass (Andropogon gerardi in Greer et al.,
2014 and Harnden, Macdougall & Sikes, 2011; Nassella pulchra in Chen et al., 2018), and
these points comprise just over 7% of the dataset. In a post-hoc analysis, we examined the
predicted average allelopathic effect of native grasses Andropogon gerardi and Nasella
pulchra on a native recipient species and found that the average for these grasses was more
negative than the overall average (Fig. 2), suggesting that these grasses do not bias the
NWH result by being less allelopathic than other grasses. Alternatively, native grasses used
in studies of allelopathy may have been selected as closely related analogs of invasive
species (congeneric approach, Inderjit et al., 2008). This type of species selection may bias
allelopathic impacts downward. Less than 1% of the data consisted of a species pair where
two species were of the same genus (Eragrostis, Fig. S4), but at the family level, 39% of the
data consisted of Poaceae pairs. Like other analyses of the allelopathy literature (Zhang
et al., 2020b), we found support for an increasing magnitude of allelopathic impact with
increasing phylogenetic distance, but the predicted average effect size on the grass recipient
species ranged from positive (ex. Agropyron cristatum) to negative (ex. Eragrostis
bahiensis) (Fig. S4), indicating a high degree of variation in the overall statistical pattern of
increasing allelopathic impacts with increasing phylogenetic distance. Finally, it is possible
that native grasses used in allelopathic studies were chosen based on evidence of their own
allelopathic abilities, against native or non-native species, seen in the field, which could
result in under-estimation of the difference in impact compared to non-native grasses.
Without knowing the intention of each author, it is not possible to determine how
common this explanation may be, which highlights how unstated aspects of experimental
design can influence our meta-analytic interpretation and understanding of important
phenomena.

Biotic Resistance Hypothesis
The Biotic Resistance Hypothesis (D’Antonio & Thomsen, 2004) suggests that native plants
may have stronger impacts on growth and establishment of non-native plants than they do
on other native plants. Although biotic resistance is generally discussed in the context of an
entire native community, in native plant communities that are locally characterized by one
or just a few dominant species (as is often observed in modern native grasslands), a single
plant species may be the most important contributors of biotic resistance (Prober & Lunt,
2009; Bennett et al., 2014). The weapons of a native grass would be naïve to a non-native
recipient species, so the lack of support for the Biotic Resistance Hypothesis suggests that a
difference in mechanism or magnitude of impact of weapons may be a separating feature
between grasses that have seen significant range expansion (invasive grasses), and native
grasses that have been studied for allelopathy in their native range. Observations of biotic
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resistance associated with some native grasses may result from other aspects of
competition, such as being more resilient to stressors like drought (Conti et al., 2018).
Additionally, it is possible that biotic resistance is reliant on soil characteristics, or the
degree to which the native soil microbial community has avoided disturbance (disturbance
hypothesis, Enders et al., 2020), which may be challenging to replicate in controlled
experiments, and, potentially helping to explain the lack of evidence for the Biotic
Resistance Hypothesis in our study. Finally, the greatest chance of finding evidence for the
Biotic Resistance Hypothesis would be if the native species are dominants in their native
communities. In general, we were not able to assess this, and therefore our study provides
only a weak test of the Biotic Resistance Hypothesis.

Variance explained by experimental design
The experimental design variables that were included as random effects in the intercept
model (study/sub-study/trait, method/duration, dose, species, and tree-linked species,
Figs. S4–S9) accounted for over 90% of variance in delta LRR. We included more variables
as random effects compared to other meta-analyses of the allelopathy literature (Zhang
et al., 2020b). The high level of explained variance may also be attributable to the choice of
a Student’s t-distribution over a Gaussian distribution for error terms, or to use of
non-linear over linear formulation. One source of potential bias for the intercept model
could be the imputed values for dose, as dose explained 10% of the variance in delta LRR.
The magnitude of explained variance highlights the strength of Bayesian meta-analyses for
mixed-effect modeling of complex, non-linear ecological phenomenon that are highly
context dependent.

Allelopathy-informed restoration practices
Based on our finding of support for NWH, in non-native grass-invaded areas, practices
that account for the impact of allelochemicals may contribute to improved restoration
success. Because the impact of allelopathy is dose-dependent, and the concentration of an
allelochemical is influenced by soil characteristics and processes (Kobayashi, 2004),
amendments and practices that alter these processes may result in an indirect effect on the
overall allelopathic effect. For many years, activated carbon was used as a way of
neutralizing or ameliorating allelochemical impacts in the field (Callaway & Aschehoug,
2000), but recent research suggests that in addition to a direct impact on allelochemicals,
activated carbon has a broader impact on plant-soil feedback via modifying soil
characteristics (Lau et al., 2008) and shifting the microbial community (Shan et al., 2015;
Nolan et al., 2015). This suggests that activated carbon amendments may be useful in
disrupting any dis-advantage to native plants created by soil legacy effects caused by
allelopathy and altered soil feedback more generally; however it should be noted that
carbon amendments do not universally benefit native plants (Zhang et al., 2020a), and that
benefit from carbon amendments is better predicted by plant functional traits than native/
invasive status (Knauf et al., 2021; Cole et al., 2021). Other options for field amendments to
disrupt allelochemicals include re-conditioning the soil by growing another plant less
susceptible to the allelochemicals (Li et al., 2017; Schütz et al., 2019); conducting a soil
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transplant from an area with a healthy native ecosystem or trying to reduce the
concentration of allelochemicals with the addition of specific microbes via an inoculum
approach (Gong et al., 2018; He et al., 2020; Kheirabadi et al., 2020). Four
allelopathy-informed restoration practices are summarized in Fig. 5.

Some restoration projects in grass invaded areas have included native grasses based on
their potential for resisting invasion through their functional traits (Funk et al., 2008) and/
or limiting similarity (Hess et al., 2020), but we did not find support for the Biotic
Resistance Hypothesis in our analysis. Support for the Phylogenetic Distance Hypothesis
does contribute to evidence supporting the limiting similarity hypothesis, assuming that
more closely related species will also share traits that have been evolutionarily conserved.
There are, however, concerns about the utility and practicality of basing restoration efforts
on the hypothesis that limiting similarity may lead to biotic resistance, due to the challenge
of determining the necessary degree of similarity, and due to the specific conditions or
amount of time needed for effects of limiting similarity to act (Hess et al., 2020).

Research needs for improved allelopathy-informed restoration
practices
For some of the allelopathy-informed restoration practices, background knowledge is
needed for the practice to be implemented successfully (Fig. 5). These “knowledge needs”
point to areas where there is an urgent need for additional research. Research on the ability
of specific microbes to degrade allelochemicals can contribute to the use of microbial
inoculum in restoration practices. There are commercial soil amendments that include

Figure 5 Four allelopathy informed restoration practices (out planting, microbial inoculum, soil
transplant and activated carbon). A summary of their underlying mechanisms and what is required
to utilize the practice effectively. Full-size DOI: 10.7717/peerj.14858/fig-5

Singh and Daehler (2023), PeerJ, DOI 10.7717/peerj.14858 11/19

http://dx.doi.org/10.7717/peerj.14858/fig-5
http://dx.doi.org/10.7717/peerj.14858
https://peerj.com/


specific microbes for improving plant growth, so research into these microbes may
contribute to similar commercial products that can be specifically targeted towards
grass-invaded areas. Research testing the ability of different plant species to “re-culture”
grass-invaded soil is also needed, and researchers may want to prioritize testing common
resilient native plants or domesticated crop species, as these species may be more accessible
for use in the field. Finally, the continued use of activated carbon in a variety of contexts
can contribute to an improved understanding of what contexts are appropriate for
activated carbon amendments. The consideration and simulation of climate change on the
efficacy of allelopathy-informed restoration practices is critical, as there is evidence that
some climate events like drought can increase the potency of allelochemicals (Borbély &
Dávid, 2008). In addition, innovative communication strategies are needed for research to
have meaningful impact on restoration practices outside of academia. Platforms like the
Restor Foundation’s RESTOR (restor.eco) have been developed during the UN’s Decade of
Restoration (United Nations, 2020) with the aim of collecting relevant data, but
practitioners may still need to invest substantial time and effort to determine the most
appropriate, financially feasible practice for their context.

CONCLUSIONS
The rise and fall of allelopathy as a trending research topic has left research gaps, but our
findings supporting allelopathy as a potential mechanism that can help explain strong
dominance and impact (including legacy effects) by invasive grasses. By highlighting
evidence that invasive grasses may often produce allelochemicals, we hope to stimulate
further research and promote consideration of allelochemical amelioration strategies after
invasive grass removal, as a strategy for producing tangible improvements in conservation
and restoration outcomes. It is clear that in the UN Decade of Restoration, the stakes for
restoration success are high, and when it comes to the broad impacts of invasive grasses
worldwide, allelopathy research presents an important opportunity to make major
headway.
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