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Optimal control simulations of musculoskeletal models can be used to reconstruct motions
measured with optical motion capture to estimate joint and muscle kinematics and
kinetics. These simulations are mutually and dynamically consistent, in contrast to
traditional inverse methods. Commonly, optimal control simulations are generated by
tracking generalized coordinates in combination with ground reaction forces. The
generalized coordinates are estimated from marker positions using, for example, inverse
kinematics. Hence, inaccuracies in the estimated coordinates are tracked in the
simulation. We developed an approach to reconstruct arbitrary motions, such as change of
direction motions, using optimal control simulations of 3D full-body musculoskeletal
models by directly tracking marker and ground reaction force data. For evaluation, we
recorded three trials each of straight running, curved running, and a v-cut for 10
participants. We reconstructed the recordings with marker tracking simulations, coordinate
tracking simulations, and inverse kinematics and dynamics. First, we analyzed the
convergence of the simulations and found that the wall time increased three to four times
when using marker tracking compared to coordinate tracking. Then, we compared the
marker trajectories, ground reaction forces, pelvis translations, joint angles, and joint
moments between the three reconstruction methods. Root mean squared deviations
between measured and estimated marker positions were smallest for inverse kinematics
(e.g., 7.6 ± 5.1 mm for v-cut). However, measurement noise and soft tissue artifacts are
likely also tracked in inverse kinematics, meaning that this approach does not reflect a
gold standard. Marker tracking simulations resulted in slightly higher root mean squared
marker deviations (e.g., 9.5 ± 6.2 mm for v-cut) than inverse kinematics. In contrast,
coordinate tracking resulted in deviations that were nearly twice as high (e.g., 16.8 ± 10.5
mm for v-cut). Joint angles from coordinate tracking followed the estimated joint angles
from inverse kinematics more closely than marker tracking (e.g., root mean squared
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deviation of 1.4 ± 1.8 deg vs. 3.5 ± 4.0 deg for v-cut). However, we did not have a gold
standard measurement of the joint angles, so it is unknown if this larger deviation means
the solution is less accurate. In conclusion, we showed that optimal control simulations of
change of direction running motions can be created by tracking marker and ground
reaction force data. Marker tracking considerably improved marker accuracy compared to
coordinate tracking. Therefore, we recommend reconstructing movements by directly
tracking marker data in the optimal control simulation when precise marker tracking is
required.
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ABSTRACT16

Optimal control simulations of musculoskeletal models can be used to reconstruct motions measured

with optical motion capture to estimate joint and muscle kinematics and kinetics. These simulations

are mutually and dynamically consistent, in contrast to traditional inverse methods. Commonly, optimal

control simulations are generated by tracking generalized coordinates in combination with ground reaction

forces. The generalized coordinates are estimated from marker positions using, for example, inverse

kinematics. Hence, inaccuracies in the estimated coordinates are tracked in the simulation. We developed

an approach to reconstruct arbitrary motions, such as change of direction motions, using optimal control

simulations of 3D full-body musculoskeletal models by directly tracking marker and ground reaction

force data. For evaluation, we recorded three trials each of straight running, curved running, and a

v-cut for 10 participants. We reconstructed the recordings with marker tracking simulations, coordinate

tracking simulations, and inverse kinematics and dynamics. First, we analyzed the convergence of

the simulations and found that the wall time increased three to four times when using marker tracking

compared to coordinate tracking. Then, we compared the marker trajectories, ground reaction forces,

pelvis translations, joint angles, and joint moments between the three reconstruction methods. Root

mean squared deviations between measured and estimated marker positions were smallest for inverse

kinematics (e.g., 7.6 ± 5.1 mm for v-cut). However, measurement noise and soft tissue artifacts are likely

also tracked in inverse kinematics, meaning that this approach does not reflect a gold standard. Marker

tracking simulations resulted in slightly higher root mean squared marker deviations (e.g., 9.5 ± 6.2 mm

for v-cut) than inverse kinematics. In contrast, coordinate tracking resulted in deviations that were nearly

twice as high (e.g., 16.8 ± 10.5 mm for v-cut). Joint angles from coordinate tracking followed the estimated

joint angles from inverse kinematics more closely than marker tracking (e.g., root mean squared deviation

of 1.4 ± 1.8 deg vs. 3.5 ± 4.0 deg for v-cut). However, we did not have a gold standard measurement of

the joint angles, so it is unknown if this larger deviation means the solution is less accurate. In conclusion,

we showed that optimal control simulations of change of direction running motions can be created by

tracking marker and ground reaction force data. Marker tracking considerably improved marker accuracy

compared to coordinate tracking. Therefore, we recommend reconstructing movements by directly

tracking marker data in the optimal control simulation when precise marker tracking is required.
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INTRODUCTION44

Kinematics and kinetics of walking or running are estimated from measurements with optical motion45

capture in various fields of biomechanical research. While research often focuses on straight walking or46
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running, change of direction (COD) motions are also crucial in everyday life. Cutting maneuvers are, for47

example, performed frequently in multi-directional team sports (Fox, 2018). Non-contact COD maneuvers48

or rapid decelerations have been identified as the primary cause of anterior cruciate ligament (ACL)49

injuries (Donnelly et al., 2017; McLean et al., 2004). In the last years, a great number of biomechanical50

studies (e.g., Barengo et al. (2014)) were conducted to develop and analyze the effect of injury prevention51

training programs like FIFA 11+ (Bizzini et al., 2011). However, in those studies, little attention was52

spent on the method that was used to estimate the kinematic and kinetic variables like joint angles, joint53

moments, or muscle forces.54

Inverse methods, i.e., inverse kinematics and dynamics, combined with static or dynamic optimization55

using a human model are widely used to obtain joint and muscle kinematics and kinetics from marker56

positions and ground reaction forces (GRFs) (Seth et al. (2018); see Fig. 1A). However, whereas these57

methods have the advantage that they are rapid to solve and easy to apply, they also have major weaknesses.58

Inverse kinematics estimates the generalized coordinates of the model, i.e., global translation, global59

orientation, and joint angles, for each time step separately. Since time dependency is not taken into60

account, inverse kinematics is prone to track measurement noise. This means that, when measurement61

noise causes a sudden change in a marker position, inverse kinematics will also estimate a sudden change62

in the respective joint angle, even though it is unrealistic for humans to move in a non-smooth fashion. In63

a second step, joint moments are estimated with inverse dynamics. While inverse dynamics takes time64

dependency into account, it allows for dynamic inconsistencies, i.e., inconsistencies between kinematics65

and kinetics. These inconsistencies are caused by modeling errors and inaccuracies in the measured data66

and typically result in residual forces and moments at the last segment (Faber et al., 2018). However, there67

is no physical cause for these residuals and it is difficult to trace which model parameter or measurement68

error contributed to the residuals. Therefore, residuals are hard to interpret and researchers are advised to69

prevent residuals that are large enough to influence the study conclusion (Hicks et al., 2015). After inverse70

dynamics, muscle forces can be computed using static or dynamic optimization to resolve the muscle71

redundancy problem. Past studies found minor differences in muscle forces obtained from dynamic72

compared to static optimization for walking (Anderson and Pandy, 2001) and even for running (Lin et al.,73

2012). However, more recent evidence highlights that muscle activation, and thus muscle efficiency,74

is influenced when neglecting tendon compliance (De Groote et al., 2016; Miller et al., 2012). Hence,75

modeling muscle dynamics is especially important for faster motions such as running or sprinting.76
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Figure 1. Processing pipelines of the three reconstruction methods. In this paper, we compare inverse

methods (A) with coordinate tracking simulation (B), and marker tracking simulation (C) to reconstruct

measurements of straight running, curved running and a v-cut.

Open-loop optimal control simulation of a human model is an alternative to inverse methods for77

estimating various biomechanical variables from a measured motion, which results in mutually and78

dynamically consistent kinematics and kinetics. In open-loop optimal control simulations, also called79

trajectory optimization, joint and muscle kinematics and kinetics of the model are obtained by minimizing80

an objective while accounting for system dynamics. When open-loop optimal control simulations are used81

to reconstruct movements, it is assumed that the skeletal or musculoskeletal model is perfect and does not82
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contain modeling errors. For reconstructing a measured movement with optimal control simulations, the83

objective often combines a tracking term minimizing the difference between measured and simulated data84

with an energy-related term. Optimal control simulations have gained increased attention in recent years85

due to methodological advances. The exploration of direct collocation methods combined with the implicit86

formulation of the system dynamics allows the optimal control problem to be solved efficiently (De Groote87

et al., 2016; Nitschke et al., 2020; van den Bogert et al., 2011). Furthermore, the increasing availability of88

toolboxes facilitates access to the methodology (Dembia et al., 2020; Michaud et al., 2022; Patterson and89

Rao, 2014). Optimal control simulations cannot only be used to reconstruct measured motions but also to90

predict responses to environmental changes (Dorschky et al., 2019; van den Bogert et al., 2011, 2012) or91

task changes (Lin et al., 2018; Nitschke et al., 2020). Predictive simulations can either track related data92

as reference or predict novel movements without any input from measurements.93

Reconstructive optimal control simulations are traditionally generated by tracking generalized co-94

ordinates or joint angles in combination with measured GRFs (e.g., Dembia et al. (2020); Haralabidis95

et al. (2021); Heinrich et al. (2014); Lin et al. (2018); Nitschke et al. (2020); van den Bogert et al. (2011,96

2012); see Fig. 1B). Since generalized coordinates are used as kinematic states of the model and are thus97

optimization variables, tracking of coordinates is computationally more efficient than tracking of other98

biomechanical variables which are not part of the optimization variables. However, the coordinates have99

to be estimated from marker data before simulation using, for example, inverse kinematics. Hence, the100

inaccuracies in the estimated coordinates are tracked in the simulation resulting in error propagation.101

Additionally, individual joint angles are tracked rather than absolute positions. Therefore, tracking errors102

of each joint angle accumulate down the kinematic chain, which can cause larger positional differences103

at the end of this chain. In contrast to tracking coordinates in the simulation, tracking marker positions104

directly could avoid error propagation and error accumulation along the kinematic chain (see Fig. 1C).105

Recently, marker tracking was successfully investigated for upper limb models with up to 7 degrees of106

freedom (DoFs) and up to 20 muscle tendon units (MTUs) partly in combination with electromyogra-107

phy (EMG) tracking (Bailly et al., 2021; Bélaise et al., 2018a,b; Hoffmann et al., 2020). Furthermore,108

marker tracking was investigated for a single leg model with 6 DoFs and 17 MTUs (Moissenet et al.,109

2019). Febrer-Nafrı́a et al. (2020) and Venne et al. (2022) compared coordinate and marker tracking110

using full-body skeletal models for walking and somersaults, respectively. Their research indicated that111

marker tracking simulations followed measured marker positions more closely than coordinate tracking.112

Therefore, marker tracking was more accurate in terms of marker errors.113

Overall, previous research on marker tracking was limited to small models with few optimization114

variables and was limited to an evaluation with simulated or little data. The models previously used for115

marker tracking were either musculoskeletal models with only a few DoFs (Bailly et al., 2021; Bélaise116

et al., 2018a,b; Moissenet et al., 2019) or skeletal models (Febrer-Nafrı́a et al., 2020; Hoffmann et al.,117

2020; Venne et al., 2022). Therefore, it is unclear whether optimal control simulation with marker tracking118

is numerically feasible for full-body musculoskeletal models, resulting in a considerably larger number119

of optimization variables and constraints. However, entire 3D body kinematics and kinetics should be120

considered especially for an accurate analysis of COD running motions since upper-body kinematics121

can influence, for example, knee moments (Donnelly et al., 2012). Moreover, COD running motions122

have not yet been reconstructed with optimal control simulation, which would particularly be relevant for123

sports science. Furthermore, evaluation was performed either with simulated data (Bailly et al., 2021;124

Bélaise et al., 2018a) or data of only one participant (Bélaise et al., 2018b; Febrer-Nafrı́a et al., 2020;125

Hoffmann et al., 2020; Moissenet et al., 2019) except for Venne et al. (2022), who reconstructed in total126

26 somersault trials of 5 participants. Consequently, there is no clear evidence of whether marker tracking127

is superior to coordinate tracking for running and especially for COD running motions.128

We investigated the feasibility of directly driving 3D optimal control simulations by marker and GRF129

data using a full-body musculoskeletal model, especially for reconstructing COD running motions. We130

developed a method for creating optimal control simulations for arbitrary motions like COD motions with131

direct collocation and an implicit formulation of the system dynamics. Since gold standard measurements132

of kinematics are hardly available and joint kinetics cannot be measured directly, we compared marker133

tracking simulations to coordinate tracking simulations and inverse methods for estimated marker positions,134

GRFs, pelvis translation, angles, and joint moments (see Fig. 1). To create strong evidence with our study,135

we performed the analysis for 10 participants and 3 trials each of straight running, curved running, and a136

v-cut.137
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METHODS138

In this section, we first describe the experimental data and the musculoskeletal model used for motion139

reconstruction. Then, we give details about the inverse methods, the optimal control simulations, and the140

evaluation.141

Experimental Data142

We recorded motion capture data of 10 healthy young participants (4 female, 6 male; age: 27.5 ±143

3.5 years; height: 1.76 ± 0.10 m; mass: 71.3 ± 12.1 kg). The ethics committee of the Friedrich-Alexander-144

Universität Erlangen-Nürnberg (Re.-No. 106 13 B) approved the study, and participants gave informed145

written consent before participation. We obtained marker positions of 42 reflective markers at 175 Hz146

with 11 infrared cameras (Qualisys, Gothenburg, Sweden) and GRFs of the right and left foot at 1750 Hz147

with two force plates (Bertec Corporation, Columbus, USA). Simultaneously, we recorded data from 11148

inertial measurement units but did not use the data in this paper.149

Each participant first performed a static trial in a neutral pose (N-pose) with one foot on each force150

plate and the arms beside the body. Afterwards, the participants completed multiple trials respectively for151

straight running, curved running with a radius of 7 m, and a 90° v-cut (see Fig. 2). For curved running152

and the v-cut, we indicated the path with crepe tape on the floor.153

Figure 2. Motion paths of the three motion types straight running (A), curved running (B), and v-cut (C).

The paths are highlighted in red. The blue boxes indicate the force plates. The scale of the illustration is

given by the gray boxes which are one by one meter.

For every participant and motion type, we choose the three trials for which the force plates were154

hit entirely and marker occlusions were smallest. We filled gaps in the marker data using the Qualisys155

Track Manager but did not apply any filter. We defined, but did not extract, the motion of interest before156

reconstruction to reduce edge effects from filtering for inverse dynamics or from the initial constraint157

used in the simulation. The motions of interest started at the initial contact of the right foot at the first158

force plate and ended with the next initial contact of the right foot. For the v-cut, this corresponded to the159

execution and departure contact. We determined each initial contact at the time where the vertical velocity160

of the mean of the heel and toe marker position was at a minimum (O’Connor et al., 2007).161

Musculoskeletal Model162

We used our 3D full-body musculoskeletal model called runMaD, which is short for ”running model for163

motions in all directions” (Nitschke et al., 2020). In contrast to other musculoskeletal models, runMaD164

has an adapted pelvis rotation sequence that makes the pelvis obliquity and tilt interpretable according to165

their clinical definition independent of the movement direction, i.e., independent of the rotation around166

the vertical axis (Baker, 2001). The model has 33 DoFs (6 DoFs between ground and pelvis, 3 DoFs at167

the lumbar joint, 7 DoFs per leg, 5 DoFs per arm), 92 MTUs in the lower body (6 MTUs at the lumbar168

joint, 43 MTUs per leg), and 5 torque actuators per arm. The muscle paths are described in OpenSim169

using point sets. For the optimal control simulation, muscle-tendon lengths are defined with polynomial170

functions depending on the joint angles, and a penetration-based ground contact model with 8 contact171

points at each foot is used (see supplementary information of Nitschke et al. (2020)). We scaled the172

model for every participant using the static trial in N-pose in OpenSim 4.3 (Seth et al., 2018) but did not173

personalize any muscle properties.174
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Inverse Methods175

Using the scaled models, we performed inverse kinematics and dynamics as reference with OpenSim176

4.3 (Seth et al., 2018). Additionally, we used the resulting generalized coordinates as input for the177

coordinate tracking simulations (see Fig. 1). We weighted all markers equally in inverse kinematics. For178

inverse dynamics, we filtered the generalized coordinates and GRFs with a 3rd order dual-pass low-pass179

Butterworth filter with a cut-off frequency of 15 Hz (Derrick et al., 2020). We reconstructed the entire180

trials and not only the extracted motions of interest since the Butterworth filter has an infinite impulse181

response causing undesired effects, especially at the edges of the trajectories.182

Optimal Control Simulations183

We created coordinate and marker tracking simulations by solving optimal control problems with the184

scaled musculoskeletal models. We formulated the optimal control problem as a constrained non-linear185

optimization problem using direct collocation and a backward Euler discretization. A state trajectory x186

and a control trajectory u of the model are found by minimizing a multi-objective function J(x,u) with187

respect to the model dynamics f.188

Objective Function The objective J was a weighted sum of tracking Jtra, muscular effort Jmus, torque189

effort Jtor, and regularization Jreg:190

J(x,u) = Jtra + Jmus + Jtor + Jreg , (1)191

Jtra = ∑
j∈Stra

Wtra, j

NNtra, j

N

∑
k=1

Ntra, j

∑
i=1

(yi, j[k]− ŷi, j[k])
2 , (2)192

Jmus =
Wmus

NNmus

N

∑
k=1

Nmus

∑
i=1

wmus,i

Nmus

∑
j=1

wmus, j

(ne,i[k])
3 , (3)193

Jtor =
Wtor

NNtor

N

∑
k=1

Ntor

∑
i=1

(mi[k])
2 , (4)194

Jreg =
Wreg(N −1)

T 2 (Nstates +Ncontrols)

N−1

∑
k=1

�

Nstates

∑
i=1

(xi[k+1]− xi[k])
2 +

Ncontrols

∑
i=1

(ui[k+1]−ui[k])
2

�

. (5)195

196

The tracking term Jtra consisted of separate terms with individual weights Wtra, j for each data type j of197

the set Stra. Depending on the tracking method, we used the following data types (see Fig. 1):198

• Coordinate tracking: 3D global translation of the pelvis, global orientation of the pelvis, and199

joint angles obtained from inverse kinematics and measured GRFs of right and left foot (i.e.,200

Stra = {translation,angle,GRF}, Ntra,translation = 3, Ntra,angle = 30, and Ntra,GRF = 6)201

• Marker tracking: measured 3D marker positions of all 42 markers and GRFs of right and left foot202

(i.e., Stra = {marker,GRF}, Ntra,marker = 126, and Ntra,GRF = 6)203

We minimized the squared difference between reference signal y and estimated signal ŷ in the tracking204

term for N collocation nodes and Ntra, j signals. Using Jmus with the respective weight Wmus, we resolved205

the muscle redundancy problem by minimizing the sum of the volume-weighted cubed neural excitations206

ne of each of the Nmus muscles. We used the muscle volume wmus,i of a muscle i to account in the effort207

term for the strongly varying sizes and maximum isometric forces of the MTUs and, therefore, spread208

muscle recruitment more evenly (Happee and Van der Helm, 1995).209

Furthermore, we minimized the sum of the squared torque controls m actuating the Ntor arms in Jtor210

with the weight Wtor. The regularization term Jreg with the weight Wreg represents the minimization of the211

temporal derivative of the state and control trajectories, where Nstates and Ncontrols represent the number212

of states and controls, respectively. Such regularizations are used to improve the convergence of the213

optimization algorithm. The duration T of the motion was prescribed by the duration of the tracking data.214

Model Dynamics We formulated the model dynamics implicitly and used backward Euler discretization.215

Hence, the following constraint was applied for each node:216

f

�

x[k+1],
x[k+1]−x[k]

h
,u[k+1]

�

= 0 ∀k = 1, ...,N −1 , (6)217

218
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where h = T/(N −1). More details about the system dynamics and the implementation are given219

by Nitschke et al. (2020).220

However, Eq. 6 does not contain the control u[1], as the following dynamics apply at the first node221

k = 1:222

f

�

x[2],
x[2]−x[1]

h
,u[2]

�

= 0 . (7)223

224

Furthermore, the state x[1] at the first node appears only in one equation (equation k = 1), while all225

other states x[k] appear in two subsequent equations (equation k−1 and equation k). Hence, additional226

information is required to ensure that the optimal control problem can be solved, which is commonly227

done in two ways. The first option is to add an initial state. The second option is to apply an additional228

constraint that describes the task. For example, gait is typically constrained to be periodic (e.g., van den229

Bogert et al. (2011)). The usage of task constraints can especially be beneficial when a new motion should230

be predicted based on data of a related motion (Nitschke et al., 2020) or when a specific gait speed should231

be prescribed for standardization (Dorschky et al., 2019). In this work, however, we aimed to reconstruct232

arbitrary motions, which would not be possible if an initial state or task constraint had to be prescribed.233

Therefore, we did not use a task constraint but additionally ensured model dynamics using forward Euler234

discretization at k = 1:235

f

�

x[1],
x[2]−x[1]

h
,u[1]

�

= 0 , (8)236

237

except for the identities q̇− dq
dt

= 0 of the global pelvis translation and orientation to not restrict global238

motion. The combination of Eq. 6 and Eq. 8 implies constant velocities of the states and controls between239

nodes 1 and 2. In contrast to prescribing specific values as initial states, this constraint does not require240

prior knowledge of the motion. However, the assumption of a constant velocity slightly influences the241

result at the first nodes. To avoid impact on the motion of interest, we included additional samples at the242

beginning of the signal.243

Initialization We first simulated static standing for each participant and each tracking method to calibrate244

the ground contact model and to generate an initial guess for the running simulations. In the objective,245

we tracked the kinematic and GRF data of one time point of the N-pose. Since only one time point was246

simulated, we omitted the regularization term Jreg and ensured static equilibrium by f(x[1],0,u[1]) = 0,247

which ensures that the velocities and accelerations are zero. We adapted the ground contact model for248

different shoe sole thicknesses of the participants by optimizing a vertical offset for the position of249

the ground contact points during the simulation. The position of the ground contact points had to be250

adapted for coordinate and marker tracking since we tracked absolute positions of the pelvis or markers,251

respectively. We solved 10 simulations for each optimization problem using different random initial252

guesses and selected the solution with the lowest objective to reduce the chance of obtaining a local253

minimum.254

Running Simulations We then generated simulations for three trials each of straight running, curved255

running, and the v-cut for each of the 10 participants and tracking method. In total, this resulted in 90256

simulations each for marker and coordinate tracking. In the objective, we tracked reference kinematics and257

GRFs using the sampling frequency of 175 Hz and therefore downsampled the GRF data. The reference258

data was not filtered prior to the simulation since the simulation itself acts as a physical filter that takes the259

model dynamics into account. We found in pilot simulations that 10 additional samples before the motion260

of interest, i.e., before the initial contact, are sufficient to not cause observable artifacts in the motion261

of interest when using Eq. 8. The original sampling frequency combined with the additional samples262

resulted in optimization problems with 127 to 180 collocation nodes N, which corresponds to durations T263

of approximately 0.72 s to 1.02 s.264

Solution Process We selected the weights W of the objective terms (see Eq. 2-5) empirically using data265

of the first participant such that the tracking data was followed while the neural excitation remained smooth266

(see Table 1). We used an equal weight for all tracking variables of the same type, meaning that we used267

one weight for pelvis translations, one for angles, one for markers, and one for GRFs. The constrained268

non-linear optimization problems were solved using IPOPT 3.12.3 (Wächter and Biegler, 2006) with a269
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convergence tolerance for the scaled nonlinear program (NLP) error of 10−4 and a maximum number of270

iterations of 2 ·104. We used a high-performance cluster to parallelize the 180 running simulations. Each271

simulation was performed on a single cluster node with one Xeon E3-1240 CPU with 4 cores.272

Table 1. Weights W of the multi-objective function (see Eq. 2- 5). We determined the weights

empirically using the data of the first participant only.

Standing Running

Coordinate Marker Coordinate Marker

Wtra,translation in mm−2 10−3 - 10−3 -

Wtra,angle in deg−2 10−1 - 10−1 -

Wtra,marker in mm−2 - 10−2 - 10−2

Wtra,GRF in (BW%)−2
10−2 10−2 10−3 10−3

Wmus 1 1 1 1

Wtor 10−1 10−1 10−1 10−1

Wreg - - 10−3 10−3

Evaluation273

We analyzed the convergence of coordinate and marker tracking problems by comparing the number of274

iterations and the wall and CPU time required to solve the running simulations. Whereas the wall time275

represents the time passed to solve the problem, the CPU time captures the total time the single cores276

are active, i.e. the total time required for calculations. The CPU time can therefore be greater than the277

wall time if multiple cores of a CPU are used for processing. Furthermore, we computed the CPU time278

per iteration to analyze the computational demand of a single iteration. To evaluate the computational279

demand of the objective, constraints, and their derivatives compared to the time spent in the optimization280

algorithm of IPOPT, we obtained the ratio of CPU time spent in the function evaluations of the NLP from281

the log file of IPOPT.282

To investigate the estimated kinematics and kinetics, we extracted the motions of interest from the283

reconstructed motions. We visually compared the reconstructed motions of interest of inverse kinematics,284

coordinate tracking, and marker tracking using the visualization of the kinematics in OpenSim and285

trajectory graphs of marker positions, GRFs, pelvis translation, angles, and joint moments. Additionally,286

we obtained the root mean squared deviation (RMSD) for each motion of interest to analyze the agreement287

of the trajectories. We used the measured data as reference for marker positions and GRFs. For the288

generalized coordinates and joint moments, we considered the result of the inverse methods as reference289

since no ground truth was available. GRFs were scaled to body-weight percent (BW%) and joint moments290

were scaled to body-weight body-height percent (BWBH%). We aggregated all results by computing the291

mean and standard deviation over all variables of one type (e.g., marker positions) and all trials of one292

motion (e.g., straight running). Consequently, each mean value resulted from 30 simulations.293

Finally, we evaluated residual forces and moments that are caused by dynamic inconsistencies. For294

inverse methods, we computed the root mean squared (RMS) residual forces and moments at the pelvis.295

In the coordinate and marker tracking simulations, we constrained the dynamic residuals to be zero by296

using the multibody dynamics as constraints in the optimization (see equation S1 in the supplementary297

information of Nitschke et al. (2020)). Nevertheless, the optimization result could slightly violate the298

multibody dynamics within the constraint violation tolerance of 0.001. Therefore, we analyzed the RMS299

residual pelvis forces, pelvis moments, and joint moments resulting from the constraint violations of the300

multibody dynamics. We scaled the residual forces to percent of maximal net ground reaction forces301

(GRFmax %) and the residual moments to percent of maximal net ground reaction forces and body-height302

percent (GRFmax BH%) based on Hicks et al. (2015).303

RESULTS304

All 180 running simulations converged. The averages of the scaled NLP errors were between 7.3 ·10−5
305

and 8.0 ·10−5 for straight running, curved running, and v-cut and for marker and coordinate tracking (see306

Table 2). The NLP errors did not differ largely depending on the motion type or tracking method. Solving307
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the marker tracking simulations required considerably more iterations and time than the coordinate308

tracking simulations. The fastest simulations for marker and coordinate tracking converged after a wall309

time of 2 h 42 min and 51 min, respectively, while the slowest simulations required 9 h 31 min and310

3 h 56 min, respectively. The CPU time spent in every iteration was comparable between both tracking311

methods. However, the ratio of CPU time which was spent in the function evaluation of the NLP was312

higher for the marker tracking (10.1 % to 10.5 %) compared to the coordinate tracking (7.8 % to 8.1 %).313

Table 2. Mean ± standard deviation of the convergence criteria. The average was computed over all

trials of the respective motions straight running (SR), curved running (CR), and v-cut (VC).

Motion
Marker

Tracking

Coordinate

Tracking

Scaled NLP error SR 7.7 ± 1.5 ·10−5 7.5 ± 1.7 ·10−5

CR 7.3 ± 2.0 ·10−5 8.0 ± 1.6 ·10−5

VC 7.3 ± 2.3 ·10−5 7.7 ± 1.5 ·10−5

Number of iterations SR 7437 ± 2217 2204 ± 664

CR 8068 ± 2030 2054 ± 505

VC 5788 ± 1699 2370 ± 821

Wall time in hh:mm:ss SR 05:51:30 ± 01:48:54 01:45:42 ± 00:41:28

CR 06:21:01 ± 01:27:17 01:34:10 ± 00:25:10

VC 04:57:36 ± 01:25:08 02:00:25 ± 00:39:40

CPU time in hh:mm:ss SR 12:33:17 ± 03:47:35 03:54:00 ± 01:31:40

CR 13:40:55 ± 03:02:47 03:30:17 ± 00:56:32

VC 10:40:31 ± 02:57:06 04:25:22 ± 01:27:08

CPU time per iteration in ss:fff SR 06:115 ± 01:004 06:279 ± 00:763

CR 06:196 ± 00:746 06:145 ± 00:802

VC 06:725 ± 01:027 06:794 ± 01:014

CPU time in NLP in % SR 10.5 ± 1.6 7.8 ± 0.8

CR 10.4 ± 1.2 8.1 ± 1.0

VC 10.1 ± 1.4 7.9 ± 1.1

The visual inspection of the reconstruction showed that the methods generally led to natural running314

motions. We overlaid the animated skeletons for inverse methods, coordinate tracking, and marker315

tracking for a more detailed kinematic analysis. Figure 3A shows an exemplary v-cut (participant 02,316

trial 130 in Nitschke et al. (2022)), also provided as a video in the supplementary information. The three317

reconstruction methods showed good agreement. Nevertheless, it could be observed that the result of the318

coordinate tracking deviated from that of inverse methods and marker tracking while the skeletons from319

inverse methods and marker tracking superimposed better. This can for example be seen for the right foot320

in the screenshots of the samples 31 and 121 in Fig. 3A.321

For the different reconstruction methods, trajectories of marker positions, GRFs, joint angles, and joint322

moments showed similar patterns, but there were also substantial differences (see Fig. 3B). Mean RMSDs323

were in the same order of magnitude, except for marker positions (see Table 3). The mean RMSDs324

between estimated and measured marker positions were smallest for inverse methods (e.g., 7.6 ± 5.1 mm325

for v-cut) and a bit higher for the marker tracking simulation (e.g., 9.5 ± 6.2 mm for v-cut). However,326

coordinate tracking resulted in nearly twice as high RMSDs (e.g., 16.8 ± 10.5 mm for v-cut), which327

is also observable in the trajectories (see Fig. 3B). Foot markers, such as the ToeL, which is placed at328

the head of the fifth metatarsal, were tracked more closely by the inverse methods than by the tracking329

simulations. This can for example be seen for the right foot in the screenshot of sample 31 in Fig. 3A or330

in the trajectories of ToeL in Fig. 3B. For the GRFs, marker tracking showed slightly smaller RMSDs331

compared to coordinate tracking (e.g., 3.9 ± 2.6 BW% vs. 5.8 ± 2.6 BW% for v-cut). While there332

was no clear trend for the translation, coordinate tracking was generally closer to the reference angles,333

which were obtained with inverse kinematics, than marker tracking (e.g., RMSDs of 1.4 ± 1.8 deg vs.334

3.5 ± 4.0 deg for v-cut). Especially the joint angles of the metatarsophalangeal (mtp) joint deviated more335

from the reference for marker tracking but also for coordinate tracking (see Fig. 3B). Inverse methods336

resulted in higher plantarflexion of the mtp joint compared to the tracking simulations, and coordinate337
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Figure 3. Kinematics including horizontal offset for visualization (A) and a selection of trajectories of

the right leg (B) for a v-cut. The result of inverse kinematics, coordinate tracking, and marker tracking is

represented in red, orange, and green, respectively. Measured marker positions are displayed in blue. The

motion had in total 149 samples at 175 Hz. GRFs were scaled to body-weight percent (BW%) and joint

moments were scaled to body-weight body-height percent (BWBH%).
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tracking resulted in very high dorsiflexion during push-off. Furthermore, joint angles reconstructed with338

both tracking simulations were smoother than those obtained from inverse methods (see Fig. 3B). In339

principle, joint moments followed the same course for all reconstruction methods but showed different340

oscillations. The mean RMSDs of the joint moments were similar for the two tracking simulations but341

marginally smaller for marker tracking (e.g., 0.7 ± 0.7 BWBH% vs. 1.0 ± 1.1 BWBH% for v-cut). For342

both methods, arm joints showed smaller RMSDs for the moments than leg joints. The v-cut generally343

led to higher mean RMSDs compared to straight and curved running (see Table 3).344

Table 3. Mean ± standard deviation of the root mean squared deviation (RMSD) between estimated and

reference variable. The average was computed over all variables of the specific type (e.g., over all marker

positions) and all trials of the respective motions straight running (SR), curved running (CR), and

v-cut (VC). Input variables used in the particular reconstruction methods are highlighted in gray.

Motion
Inverse

Methods

Marker

Tracking

Coordinate

Tracking
Reference

Marker in mm SR 6.7 ± 4.7 7.6 ± 4.8 13.4 ± 8.8

Measured

Data

CR 6.8 ± 4.7 8.2 ± 5.5 13.5 ± 8.6

VC 7.6 ± 5.1 9.5 ± 6.2 16.8 ± 10.5

GRF in BW% SR 3.4 ± 1.8 4.4 ± 2.4

CR 4.2 ± 3.4 4.5 ± 2.3

VC 3.9 ± 2.6 5.8 ± 2.6

Translation in mm SR 2.6 ± 1.1 2.7 ± 1.3

Inverse

Methods

CR 3.0 ± 1.7 2.9 ± 1.6

VC 4.5 ± 1.9 3.2 ± 1.2

Angle in deg SR 2.3 ± 2.9 0.9 ± 0.7

CR 2.5 ± 3.0 0.9 ± 0.7

VC 3.5 ± 4.0 1.4 ± 1.8

Moment in BWBH% SR 0.6 ± 0.6 0.8 ± 0.8

CR 0.7 ± 0.6 0.8 ± 0.9

VC 0.7 ± 0.7 1.0 ± 1.1

Residual forces and moment of inverse methods and tracking simulations differed considerably. For in-345

verse methods, the mean RMS residual pelvis forces and moments over all trials were 5.9 ± 2.3 GRFmax %346

and 0.9 ± 0.4 GRFmax BH%, respectively. In contrast, marker and coordinate tracking simulations had347

maximum RMS residual pelvis forces of 6.0 ·10−8 GRFmax %, pelvis moments of 1.7 ·10−8 GRFmax BH%,348

and joint moments of 1.5 ·10−6 GRFmax BH%.349

The scaled models, the experimental data, the result of the inverse methods, and the simulation results350

are provided online (Nitschke et al., 2022).351

DISCUSSION352

In this paper, we showed that it is feasible to reconstruct measured motions by directly tracking marker353

and GRF data without task constraint in an optimal control simulation of a 3D full-body musculoskeletal354

model. We successfully tracked COD running motions without prior knowledge of the task nor the initial355

state. The presented formulation of the dynamics is therefore suited to reconstruct arbitrary motions.356

Marker tracking was superior to coordinate tracking and comparable to inverse methods in terms of357

marker errors while resulting in mutually and dynamically consistent kinematics and kinetics.358

Marker tracking simulations took approximately three to four times longer to solve than coordinate359

tracking simulations (see Table 2) and therefore were computationally much more expensive. At the same360

time, marker tracking did not require considerably more CPU time per iteration, implying that the higher361

number of iterations mainly caused the large increase in computation time. The marker tracking has a362

higher complexity due to a higher non-linearity in the objective and gradients since marker positions must363

be obtained from the model states. In contrast, the generalized coordinates are part of the states and,364

therefore, optimization variables. Consequently, alternative optimization algorithms or formulations of365

the problem would have to be investigated to decrease the number of iterations and thus the computation366
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time of marker tracking. In conjunction with this, the ratio of CPU time spent in the function evaluation367

of the NLP was higher for marker tracking since marker positions must be computed in every iteration.368

Despite the recent advances, solving optimal control problems is computationally demanding, while369

inverse methods can be computed in seconds or minutes. However, the time required to solve an optimal370

control simulation highly depends on the formulation of the problem and its implementation. In this work,371

we used a large number of collocation nodes of up to 180 by reconstructing the motion at the original372

sampling frequency of 175 Hz, resulting in a large number of optimization variables and thus unknowns373

of up to about 80,000. In comparison, Venne et al. (2022) generated simulations with up to 106 nodes374

and 12,444 variables using multiple shooting. Furthermore, the choice of initial guess affects the time375

required for the optimization. We initiated the optimal control problem using a standing simulation to376

have an unbiased initial guess. Instead, the solution from inverse methods could be used, which decreases377

the time required since this initial guess is closer to the final solution. We chose not to do this because this378

would bias the simulations towards the result of the inverse methods and not allow for an independent379

comparison between the three methods. Therefore, optimization could be further accelerated by reducing380

the number of collocation nodes and using an informed initial guess depending on the application’s381

specific requirements.382

Measured marker positions were tracked closest by inverse kinematics (see Table 3) since it estimates383

the kinematics for each time point separately without accounting for model dynamics. Neglecting384

dynamics makes inverse kinematics prone to track measurement noise and soft tissue artifacts, leading385

to smaller marker errors but also to high-frequency components in the movement (see Fig. 3B). Those386

high-frequency components make it necessary to filter estimated coordinates before using them as input for387

inverse dynamics. However, the choice of the cut-off frequency can considerably influence the resulting388

joint moments (Derrick et al., 2020). In contrast to inverse methods, optimal control simulation acts as a389

physical filter by accounting for model dynamics and minimizing effort in the objective. This eliminates390

the need to filter the data in advance but requires to balance tracking and effort in the objective to find a391

trade-off between close tracking and realistic neural excitation patterns.392

Inverse kinematics tracked markers at the feet more closely than the simulations, even though marker393

positions were strongly affected by shoe deformation. The close tracking of the deformed and thus394

inaccurate marker positions resulted in unrealistically high plantarflexion of the mtp joint for inverse395

kinematics (see Fig. 3B). Similar to soft tissue artifacts, the deformations of the shoes are not modeled396

by the musculoskeletal model since virtual markers are rigidly attached to the model. However, in the397

optimal control simulations, high plantarflexion was prevented by modeling passive moments for all joints398

which became active in the mtp joint when plantarflexion exceeded 8 deg (see supplementary information399

of Nitschke et al. (2020)). Consequently, the feet marker are then not tracked strictly, which results in400

higher marker errors for the simulation. In inverse kinematics and marker tracking simulation, the mtp401

joint angle could become more realistic by weighting the markers on the deformed shoe less than the402

other markers. In any case, weights should be adjusted only if it is appropriate considering the data,403

application, and biomechanical variables of interest since it might worsen the estimation of other variables404

and requires hand-tuning.405

For marker and coordinate tracking simulation, input variables were tracked more closely than the406

variables not used in the objective of the optimization (see Table 3). Coordinate tracking follows the407

recorded marker data worst since errors propagate by tracking inaccuracies in the coordinates estimated408

with inverse kinematics. In detail, inaccuracies resulting from measurement, inverse kinematics, and409

coordinate tracking add up in contrast to marker tracking, where only the inaccuracies resulting from the410

measurement and tracking add up. Furthermore, errors made in the tracking of individual joint angles411

accumulate along the kinematic chain and result in a larger difference in the position of distal segments412

and thus of the marker positions. Therefore, distal segments like the hands and feet deviate considerably413

for coordinate tracking from the other two reconstruction methods (see Fig. 3A). These findings are in414

agreement with previous work for skeletal models (Febrer-Nafrı́a et al., 2020; Venne et al., 2022) and415

proof that marker tracking is more accurate than coordinate tracking in terms of marker error. However,416

inverse kinematics which we used for comparison is not a gold standard since it is not reflecting the417

bone motion, but is subject to errors. Hence, estimated kinematics should be evaluated with bone pins or418

medical imaging. Regardless of the reconstruction method chosen, we strongly recommend analyzing419

the marker error carefully since this is the only available error measure when performing optical motion420

capturing.421

11/14PeerJ reviewing PDF | (2022:07:75687:1:2:NEW 7 Nov 2022)

Manuscript to be reviewed



Marker tracking reconstructed the measured GRFs slightly better than coordinate tracking (see Table 3).422

Even though we used the same weight of the GRF tracking term in both types of simulations (see Table 1),423

it might be that the GRF term had a higher influence on the overall objective in marker tracking than in424

coordinate tracking as the kinematic tracking data differed. Therefore, adjusting the weighting in the425

objective could counteract the different accuracies with respect to the GRFs, but would change the relation426

between GRF tracking and effort term.427

The difference in GRF tracking between the marker and coordinate tracking might have also caused428

the slight difference in the reconstruction of joint moments. Again, it is necessary to note that the reference429

joint moments obtained with inverse dynamics do not represent a gold standard. However, joint moments430

can only be measured using instrumented implants. Alternatively to the comparison with inverse methods,431

the simulation could be evaluated by reconstructing simulated motions. Simulated data has the advantage432

that the ground truth would be known. Nevertheless, an evaluation with simulated data could hardly433

reflect all characteristics of real-world data like noise, errors, and soft tissue artifacts perfectly.434

Although the constraint we introduced to remove the need for a task constraint (see Eq. 8) allows the435

reconstruction of various motions, one minor downside is that it requires additional samples before the436

motion of interest. However, we also recommend analyzing longer time periods when applying inverse437

methods to reduce filtering artifacts. When reconstructing longer motions with simulation, it could be438

investigated to use moving horizon estimation (Bailly et al., 2021) where a new simulation is initiated439

using the end of the last simulation.440

The analysis of residual forces and moments for inverse methods and tracking simulation highlights441

the difference between the two methods with respect to dynamic inconsistencies. In this study, inverse442

methods led to slightly higher residuals than recommended by Hicks et al. (2015). They recommend RMS443

residual forces lower than 5 GRFmax % and residual moments lower than 1 % of GRFmax times center of444

mass (CoM). Residuals in inverse methods could be reduced by manually adjusting the inertial parameters445

of the scaled model (Hicks et al., 2015). However, a manual adjustment to every participant is hardly446

feasible for large studies or in automated analysis pipelines. In contrast to inverse methods, the optimal447

control simulations had negligibly small residuals. As a result, estimated biomechanical variables are448

dynamically consistent. Therefore, there are no inconsistencies between the cause, i.e., neural excitation449

of the muscles, and the effect, i.e., the resulting motion. However, it has to be kept in mind that the450

simulation, in return, assumes that the dynamic model is perfect.451

Potential inaccuracies and simplifications in musculoskeletal models can limit all reconstruction452

methods, i.e., inverse methods and optimal control simulation. In this study, we scaled the musculoskele-453

tal model using marker positions of a static trial but did not personalize any muscle properties. For454

both simulation methods, it might be possible to further reduce tracking errors and improve muscle455

variable estimation when a better estimate of muscle parameters is available, for example, from strength456

tests (Hegarty et al., 2019) or medical imaging (Valente et al., 2017).457

In the future, tracking marker positions directly instead of estimated generalized coordinates could458

offer further possibilities. It would, for example, allow personalizing model parameters based on measure-459

ment data within the optimal control problem by adding certain parameters (e.g., segment lengths) to the460

optimization variables instead of predefining them. Furthermore, simulations can be created even when461

marker data is incomplete, for example, due to occlusions (Venne et al., 2022). The time periods where462

marker data is missing can be excluded from the tracking objective since model dynamics and effort463

minimization will still produce a realistic movement for these periods. But most importantly, marker464

tracking simulations could also be driven by virtual marker positions extracted from video data, depth465

images, or radar technology instead of using marker-based optical motion capturing.466

CONCLUSIONS467

In conclusion, we proved that it is feasible to directly drive optimal control simulations by marker and GRF468

data for 3D full-body musculoskeletal models to reconstruct COD running motions without estimating469

generalized coordinates in an intermediate step. We presented a detailed comparison of marker tracking470

simulations, coordinate tracking simulations, and inverse methods. In contrast to inverse kinematics and471

dynamics, optimal control simulation returns kinematics and kinetics, which are mutually and dynamically472

consistent. Dynamic consistency is especially important for the analysis of fast motions for example in473

sport science. Our results confirmed that marker tracking reconstructs measured marker positions more474

accurately than coordinate tracking. We, therefore, recommend using marker tracking simulations over475
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coordinate tracking for reconstructive simulations, especially for applications investigating small changes476

in kinematics or kinetics. Nevertheless, coordinate tracking might still be advantageous when reference477

data is included in predictive simulations.478
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