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ABSTRACT
Brain functional network (BFN) analysis has become a popular technique for iden-
tifying neurological/mental diseases. Due to the fact that BFN is a graph, a graph
convolutional network (GCN) can be naturally used in the classification of BFN.
Different from traditional methods that directly use the adjacency matrices of BFNs
to train a classifier, GCN requires an additional input-node features. To our best
knowledge, however, there is no systematic study to analyze their influence on the
performance of GCN-based brain disorder classification. Therefore, in this study, we
conduct an empirical study on various node feature measures, including (1) original
fMRI signals, (2) one-hot encoding, (3) node statistics, (4) node correlation, and
(5) their combination. Experimental results on two benchmark databases show that
different node feature inputs to GCN significantly affect the brain disease classification
performance, and node correlation usually contributes higher accuracy compared to
original signals and manually extracted statistical features.

Subjects Cognitive Disorders, Computational Science, Data Mining and Machine Learning
Keywords Graph convolutional network, Node features, Empirical study,
Mild cognitive impairment, Autism spectrum disorder

INTRODUCTION
Resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive
technique for recording spontaneous neural activity in the brain when the subjects are
awake and relaxed in the absence of task-specific stimuli. Based on rs-fMRI, the interaction
between different regions of interest (ROIs) can be described by the brain functional
network (BFN) (Van Den Heuvel & Pol, 2010) that has become an increasingly important
tool to diagnose neurological or mental diseases, such as mild cognitive impairment (MCI)
and autism spectrum disorder (ASD) (Lord et al., 2020).

In consideration of the fact that BFN is a graph, a graph convolutional network (GCN)
can naturally be used to extract features from BFN for brain disease classification. For
example, Parisot et al. (2018) combined imaging and non-imaging data for population
brain analysis using GCN. Arya et al. (2020) used GCN to fuse structural and functional
MRI for ASD classification. Additionally, many improved versions based on GCN were
also developed from multi-layer (Yu et al., 2020; Song et al., 2022) and multi-view (Cao et
al., 2021; Wen et al., 2022) methods to detect brain diseases. Unlike traditional classifiers
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that are trained directly by the adjacency matrices of BFNs, the GCN-based classification
methods need the node feature matrix as an extra input. However, to the best of our
knowledge, there is no systematic study to analyze the influence of different node features
on the classification results.

In this article, we use/design four kinds of node feature matrices and evaluate their
influence on GCN-based brain disorder classification. The first node feature is original
signals (OS) directly extracted from the rs-fMRI. These signals are highly reproducible and
provide data sets that can be easily compared across studies. The second node feature is
one-hot encoding (OH) that can uniquely identify the location of each node. In addition,
we compute several node statistics (NS), including local efficiency, node centrality, and local
clustering coefficient, which are concatenated to generate the third type of node features.
The fourth node feature is the correlation vector (CV) that reflects the relationship between
the current ROI and other ROIs. For a more systematical evaluation, we also discuss the
impact of different node feature combinations on the classification results.

Two classification tasks are conducted in this empirical study: (1) MCI identification
(identifying subject with MCI from healthy controls) and (2) ASD identification
(identifying subject with ASD from healthy controls). Experimental results suggest that
different node feature inputs to GCN have significant effects on brain disease classification
performance, and CV usually contributes more than other three features.

The rest of this article is organized as follows. In ‘Methods’, we introduce the relevant
concepts and network architecture that will be used in this study. In ‘Materials’, we describe
the data materials including data acquisition and data preprocessing. In ‘Experiments’, we
report the experimental details and experimental setting. In ‘Results’ and ‘Discussion’, we
report experimental results and discussion, respectively. Finally, we conclude this article in
‘Conclusions’.

METHODS
In this section, we introduce the relevant notation/concepts and architecture of the network
used in this study.

Problem formulation
We represent each subject as a graph G= (V ,E), where V = v1,v2,··· ,vn denotes the
node set, n is the number of nodes/ROIs, and E = e1,e2,··· ,e|ε| stands for the edge set
that is determined by the relationship between different nodes. Accordingly, the node
feature matrix and graph adjacency matrix are denoted by X ∈ Rn×d and A ∈ 0,1n×n,
respectively, where xi ∈Rd is the feature of node vi, d is the number of feature dimensions
and Aij = 1 if (vi,vj) ∈ E , 0 otherwise. We split subjects/graphs into training and test
sets. Given an adjacency matrix A and a feature matrix X in the training sets, we learn a
GCN-based classification model and predict the labels of subjects in the test set.

Network architecture
Our analysis is based on a spectral GCN with two convolution layers (Kipf & Welling,
2016), which has been empirically verified as an effective architecture for brain disorder
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identification in several recent works (Ying et al., 2018; Abu-El-Haija et al., 2020; Chu et
al., 2022). Its mathematical model can be formulated as follows:

f (X ,A)=ReLU (Â ·ReLU (ÂXW 0) ·W 1), (1)

where Â=D−
1
2AD−

1
2 ,A= A+ I n, I n is an identity matrix, and D is a diagonal matrix

whose diagonal element Dii=
∑

jAij represents the degree of the i-th node,W 0 andW 1are
two layers of model parameters that need to be learned from data, and ReLU is a nonlinear
activation function.

Suppose that F = fi(X ,A)∈Rn×d
′

is the learned representations of nodes, where fi isthe
embedding of node vi, d

′

is the dimension of the feature after embedding. We can further
obtain a graph-level representation HG

= r(F)∈Rd
′

for G by aggregating the node-level
embedding. The readout function r(·) is a concatenation of the maximum pooling and
average pooling operation (Lee, Lee & Kang, 2019). It can be formulated as follows:

HG
=

1
n

n∑
i=1

fi ‖maxi=1fi, (2)

where ‖ denotes concatenation.

MATERIALS
In this section, we describe the data preparation, including data acquisition and data
preprocessing.

Data acquisition
In this article, two publicly available datasets are used to evaluate the effect of node feature
on GCN-based method. One is from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset and the other is from the Autism Brain Imaging Data Exchange (ABIDE)
dataset. The details of subjects involved in the two datasets are shown in Table 1, including
distribution of ASD/MCI, gender (M/F), age and imaging parameters echo time (TE) and
repetition time (TR). Specifically, the ADNI dataset consists of 137 subjects, including 69
HCs and 68 MCIs. The fMRI data were scanned by a 3.0-T Philips MRI scanner and the
scanning parameters included TR = 3,000 ms, TE = 30 ms, flip angle = 80◦, number of
slices= 48, slice thickness= 3.3 mm, total volume= 140. For ABIDE dataset, 184 subjects
are involved, including 79 ASDs and 105 HCs. All rs-fMRI data are obtained by 3.0-T
Siemens Allegra scanner with the following imaging parameters: TR/TE = 2,000/15 ms,
slices number = 33, voxel thickness = 4.0 mm, flip angle = 90◦, and the scanning time is
6 min, resulting in 180 time points.

Data preprocessing
All the rs-fMRI data are preprocessed through DPARSF (Yan et al., 2016) and statistical
parametric mapping (SPM12) based on the following standard pipeline: we discard the first
five volumes of each functional time series and slice timing to allow signal stabilization.
Then, the remaining nuisance signals, including ventricle and white matter signals, are
regressed, and the Friston 24-parameter model is used to regress out the high-order effect
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Table 1 Demographic information of ADNI and ABIDE datasets.

Datasets Class Gender
(M/F)

Age
(Years)

TR/TE
(ms)

MCI 39/29 76.50± 13.50 3000/30
ADNI

HC 17/52 71.50± 14.50 3000/30
ASD 68/11 18.58± 11.45 2000/15

ABIDE
HC 79/26 19.13± 11.85 2000/15

Notes.
M/F, Male/Female; TE/TR, Echo Time/Repetition Time.

of head motion. After that, the signals are spatially normalized to MNI space, and the
fMRI data are spatially smoothed with the full-width-half-maximum of four mm. Finally,
depending on the AAL atlas, the preprocessed rs-fMRI time series signals are partitioned
into 116 ROIs and then averaged respectively to get a representative signal for each ROI.

EXPERIMENTS
Experimental details
As mentioned earlier, network architecture GCN with two convolution layers, due to its
popularity and effectiveness, is used in our study. Furthermore, with the aim of conducting
control experiments, we set the embedding dimension to 32, the number of epochs to 100,
the learning rate to 0.001 and the weight decay to 1e−3. Four kinds of node features are
involved to verify the classification performance as follows.
(1) Original Signals (OS): OS capture the spontaneous fluctuations of brain activity

associated with different ROIs, which is a manifestation of functional connectivity
of the brain.

(2) One-hot Encoding (OH):We associate each node with a one-hot indicator that uniquely
identifies the spatial position of each ROI.

(3) Node Statistics (NS):Wedesign eight node statistics and concatenate them into a feature
vector (Zhang et al., 2022). In particular, these statistics include three definitions of
local clustering coefficients (Li, Shang & Yang, 2017), four centralities (Hamilton, 2020)
(i.e., degree centrality, betweenness centrality, closeness centrality, and eigenvector
centrality), as well as local efficiency.

(4) Correlation vector (CV):CV reflect the relationship between the current ROIs and other
ROIs. The most popular measure is Pearson’s correlation (PC) as follows:

cij =
(si− si)T (sj− sj)√

(si− si)T (si− si)
√
(sj− sj)T (sj− sj)

, (3)

where si ∈Rm(i= 1,2,··· ,n) is the extracted rs-fMRI time series from the ith ROI, m is the
number of time points, n is the number of ROIs, si ∈ Rm is the mean of si, and cij is the
correlation coefficient between the i-th and j-th ROIs.
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Table 2 Performance comparison of different node features on both ADNI datasets, with bold values indicating the best results.

Dataset Features Acc± std Sen± std Spe± std Pre± std F1± std AUC± std

OS 0.621± 0.009 0.570± 0.047 0.763± 0.022 0.721± 0.018 0.569± 0.005 0.637± 0.016
OH 0.553± 0.014 0.578± 0.011 0.515± 0.035 0.636± 0.016 0.606± 0.007 0.503± 0.002
NS 0.605± 0.017 0.668± 0.099 0.538± 0.096 0.607± 0.022 0.631± 0.039 0.572± 0.085
CV 0.767± 0.075 0.819± 0.086 0.736± 0.122 0.735± 0.133 0.766± 0.080 0.759± 0.073
OS+ OH 0.642± 0.031 0.833± 0.046 0.500± 0.030 0.555± 0.036 0.666± 0.024 0.687± 0.010
OH+ NS 0.636± 0.035 0.570± 0.004 0.793± 0.055 0.721± 0.026 0.569± 0.019 0.637± 0.027
OH+ CV 0.785± 0.028 0.857± 0.092 0.714± 0.064 0.750± 0.044 0.800± 0.027 0.885± 0.020
NS+ CV 0.721± 0.021 0.788± 0.049 0.420± 0.060 0.734± 0.015 0.803± 0.019 0.824± 0.015
OH+ OS+ NS 0.642± 0.047 0.667± 0.110 0.545± 0.054 0.475± 0.078 0.545± 0.097 0.809± 0.095
OH+ OS+ CV 0.585± 0.028 0.671± 0.065 0.500± 0.071 0.574± 0.026 0.617± 0.033 0.542± 0.013
OS+ NS+ CV 0.657± 0.042 0.585± 0.171 0.728± 0.085 0.745± 0.015 0.573± 0.083 0.846± 0.020

ADNI

OH+ OS+ NS+ CV 0.642± 0.028 0.600± 0.057 0.666± 0.010 0.500± 0.027 0.545± 0.040 0.682± 0.095

Experimental setting
In this study, we randomly select 80% of the subjects for training and the remaining 20% for
testing. For all datasets, we report the mean of 100-run results to evaluate the performance
of the involved methods. The performance metrics include

Accuracy = ( TP +TN)/(TP +FP +TN +FN),
Sensitivity = TP/( TP +FN),
Specificity = TN /(TN +FP),
Precision = TP/( TP +FP),
F1− score = 2×TP /(2×TP +FP +FN).
where TP, TN, FP, and FN indicate the true positive, true negative, false positive and false

negative, respectively. Additionally, the area under curve (AUC) is adopted for measuring
the classification performance.

RESULTS
In Tables 2 and 3, we report the classification performance corresponding to four kinds
of node features and their combinations based on PC adjacency matrix. From the above
results, we have the following observations.

First of all, for the single node feature, CV can generally result in a higher classification
accuracy than the others, and the results are consistent on the two datasets and three
differently estimated BFNs (adjacencymatrices). This drives us to think that the relationship
between ROIs may contain more comparable discriminative information forMCI and ASD
identification.

Moreover, the OH gives the worst result among the four single features in most cases,
especially on the ADNI dataset, which illustrates that only the spatial position of the ROIs
is not enough to capture effective information for disease classification. Interestingly,
however, the combination of OH and CV usually gets the best results. A possible reason
is that spatial position encoded by OH can provide complementary information to CV
for more discriminative feature representation/learning. For example, in Tables 2 and 3,
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Table 3 Performance comparison of different node features on ABIDE datasets, with bold values indicating the best results.

Dataset Features Acc± std Sen±std Spe± std Pre± std F1± std AUC± std

OS 0.584± 0.079 0.619± 0.110 0.551± 0.104 0.563± 0.101 0.589± 0.080 0.605± 0.072
OH 0.538± 0.022 0.731± 0.023 0.474± 0.026 0.574± 0.023 0.607± 0.114 0.510± 0.095
NS 0.552± 0.014 0.661± 0.087 0.538± 0.035 0.573± 0.005 0.676± 0.040 0.536± 0.023
CV 0.626± 0.055 0.662± 0.092 0.573± 0.107 0.642± 0.012 0.653± 0.060 0.677± 0.071
OS+ OH 0.705± 0.034 0.550± 0.100 0.718± 0.081 0.701± 0.075 0.606± 0.063 0.683± 0.010
OH+ NS 0.600± 0.057 0.712± 0.148 0.450± 0.130 0.632± 0.037 0.662± 0.085 0.589± 0.010
OH+ CV 0.626± 0.015 0.500± 0.000 0.707± 0.021 0.528± 0.014 0.560± 0.009 0.565± 0.013
NS+ CV 0.747± 0.031 0.757± 0.065 0.741± 0.069 0.636± 0.048 0.688± 0.028 0.850± 0.009
OH+ OS+ NS 0.552± 0.026 0.532± 0.037 0.690± 0.044 0.561± 0.039 0.505± 0.035 0.568± 0.016
OH+ OS+ CV 0.578± 0.019 0.525± 0.084 0.609± 0.101 0.500± 0.018 0.500± 0.036 0.514± 0.015
OS+ NS+ CV 0.600± 0.025 0.750± 0.081 0.490± 0.044 0.518± 0.022 0.612± 0.015 0.727± 0.075

ABIDE

OH+ OS+ NS+ CV 0.684± 0.040 0.528± 0.110 0.733± 0.074 0.590± 0.065 0.593± 0.097 0.782± 0.015

we note that such a combination achieve the best classification accuracy (78.5% on ANDI
dataset and 74.7% on ABIDE dataset, respectively).

Finally, different feature matrices do have a significant impact on the classification
performance. It can also be seen that the designed single features usually cannot achieve
the best accuracy. In contrast, when we incrementally concatenate these node features, the
accuracy is generally improved. However, concatenating all features cannot achieve the
best accuracy, indicating that simply increasing the feature dimension does not guarantee
a good classification effect. In practice, the medical data are generally limited, and more
features means more parameters, especially for GCN-based deep methods, which may
lead to the overfitting problem. In fact, even if the data amount is sufficient, more
features do not necessarily work well, since some redundant features can easily degrade the
performance (Guyon & Elisseeff, 2003).

DISCUSSION
In general, different BFN estimation methods have a significant influence on the
classification performance (Sun et al., 2021; Jiang et al., 2022). Therefore, we discuss the
effect of node features based on BFNs estimated by different methods, including PC, sparse
representation (SR) (Qiao et al., 2018), and low-rank representation (LR) (Qiao, Chen &
Tan, 2010). The visualizations of three BFNs are shown in Fig. 1.

We compare the classification results on different datasets under three adjacency
matrices. We show the impact of different node features based on SR and LR adjacency
matrices in Figs. 2 and 3, respectively. The results show that on ADNI dataset LR-based
adjacency matrix generally leads to a good performance, while on ABIDE dataset SR-based
adjacency matrix works better. This suggests that appropriate sparsity is beneficial for
brain disease diagnosis compared to the fully connected matrix estimated by PC. This is
consistent with many existing studies (Dadi et al., 2019; Pervaiz et al., 2020).

In this article, we mainly consider the commonly used features or design features
based on classical node statistics. In fact, however, a graph generally contains complicated
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Figure 1 The heat map of adjacency matrices estimated by PC, SR and LR.
Full-size DOI: 10.7717/peerj.14835/fig-1

(a) ADNI

(b) ABIDE

Figure 2 The classification performance corresponding to four node features and their combinations
on (A) ADNI and (B) ABIDE datasets, respectively, where the BFNs are estimated by SR.

Full-size DOI: 10.7717/peerj.14835/fig-2
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(a) ADNI

(b) ABIDE

Figure 3 The classification performance corresponding to four node features and their combination
on (A) ADNI and (B) ABIDE datasets, respectively, where the BFNs are estimated by LR.

Full-size DOI: 10.7717/peerj.14835/fig-3

structures such as different motifs. Therefore, in theory, we can design various node
statistics as the candidate of the node features in GCN. In addition, the brain network
is generally expressed by a signed graph, and thus different possible triad configurations
may be captured as the node features according to the structural balance theory (Newman,
2018). In the future, we will try more node features from different views or levels to improve
the performance of brain disease classification.

CONCLUSIONS
In this article, we use/design four kinds of node feature matrices based on rs-fMRI data to
empirically evaluate their influence on the GCN-based brain disorder classification tasks.
In addition, we conduct control experiments of the feature matrix under three adjacency
matrices that correspond to different BFN estimation methods. Experimental results
demonstrate that different node features have significant effects on the classification
performance. In general, CV, reflecting the relationship between ROIs, or features
containing CV tends to result in higher classification performance. Additionally, we
also note that combined features usually achieve higher accuracy than single features.
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APPENDIX
In Table A1, we give the calculation formula and physical meaning of eight node statistics
involved in the article. In particular, these statistics include three definitions of local
clustering coefficients, four centralities (i.e., degree centrality, betweenness centrality,
closeness centrality and eigenvector centrality), as well as local efficiency. For consistence
with the above description, we also represent each subject as a graph G= (V ,E), and
A= (aij)∈Rn×n(i,j = 1,...,n) is the adjacency matrix of graph G.

Table A1 The calculation formula and physical meaning of eight node statistics.Note that c is a con-
stant, Gi refers to the subgraph formed by the neighbors of node i, and ljq represents the shortest path
length between nodes j and q.

Node statistics Physical meaning Calculation formula

NSi,O=
∑

j,q(ajiaiqajq)
1
3

di(di−1)

NSi,Z =
∑

j,q(ajiaiqajq)

(
∑

qaiq)2−
∑

qa
2
iqLocal clustering

coefficient
The connectivity in node’s neighbor-
hoods

NSi,C =
∑

j,q(ajiaiqajq)∑
j 6=q|ajiaiq|

Degree centrality The number of edges associated with a
node

NSi,D=
∑

jaij

Betweenness
centrality

The number of shortest paths between
any two pairs of other nodes for a
node

NSi,B=
∑

j 6=i6=q
ljq(i)
ljq

Closeness centrality The closeness of a node to other nodes NSi,S= n−1∑
i6=j lij

Eigenvector centrality The importance of its neighbor nodes NSi,E = c
∑

jaijxj
Local efficiency The local information transmission

ability of network
NSi,L= 1

NGi (NGi−1)

∑
j 6=q∈Gi

1
ljq
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