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ABSTRACT
This research mainly focused on the leaf color change and photosystem function differ-
entiation between Loropetalum chinense and its variety L. chinense var. rubrum under
heat stress, which were tightly concerned about their ornamental traits and growth. L.
chinense ‘Xiangnong Xiangyun’ (X) and L. chinense var. rubrum ‘Xiangnong Fendai’ (F)
and L. chinense var. rubrum ‘Hei Zhenzhu’ (H) were chosen to be experimented on to
investigate whether leaf color morphology and pigment composition could influence
the adaptability of plants to high temperature in order to select foliage plants which
posses stable leaf color and better adaptability for hot regions. The plants were cultured
in hot environment (40 ◦C/33 ◦C, day/night) and normal environment (25 ◦C/18 ◦C,
day/night). Phenotype and anatomic observation of three cultivars were made and
leaf color indices and pigment contents were measured. During the experiment, H
and F gradually turned green, total anthocyanins contents significantly decreased in
them, however, chlorophyll b contents increased in all three cultivars. In addition,
the initial fluorescence (Fo) decreased in X, while increased in H and F. For the
maximum fluorescence (Fm) and maximum photochemical efficiency of PSII (Fv/Fm),
they only increased in H and decreased in both F and X. The non-photochemical
chlorophyll fluorescence quenching (NPQ) also increased in H and decreased in F.
For X, it increased at first then gradually decreased. The coefficient of photochemical
quenching all increased at first then gradually decreased. Correlation analysis between
showed that there was relatively strong connection between anthocyanins, flavonoids
and chlorophyll fluorescence parameters, especially NPQ, proved anthocyanins and
flavonoids might not only involved in enriching leaf color, but also interfered with
the protection of photosystem. Generally speaking, we found higher anthocyanin and
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flavonoids content level not only dramatically enriched the leaf color of L. chinense
var. rubrum cultivars, but also offered more potential antioxidant to keep their normal
growth when encountered heat stress.

Subjects Agricultural Science, Biotechnology, Plant Science
Keywords Heat stress, Leaf color, Photosystem function, Loropetalum chinense var. rubrum

INTRODUCTION
Global warming has caused more and more negative effects on growth and reproduction
process of plants (Haque, Hossain & Sushmoy, 2019). As continuous heat stress influenced
not only normal growth of plants, but also ornamental traits of them. For example, heat
stress could restrain development of capitulum during inflorescence meristem formation
and floret growth in several Chrysanthemum species (Nakano et al., 2013). It also reduced
the number of flowers and shortened florescence in Rosa chinensis (Hu et al., 2008). As for
foliage plants, leaf traits are important factors when they were used in landscape, whether
leaves were healthy was highly connected with normal growth and morphological traits of
them (Zhu, Zhang & Qi, 2010).

Environmental factors, such as Light, moisture and temperature would all influence
leaf traits. Among them, temperature, especially high temperature showed extremely
significant effects on leaf morphology and physiology. Leaves usually wilted and became
yellow when suffered from heat stress (Ou, Cao & Zheng, 2008). When chronically exposed
to extremely high temperature, the outlook of plants would be continuously deteriorated,
causing leaf discoloration, loss of turgor and decrease of chlorophyll content (Zhou &
Liang, 2021). These negative changes of leaves were mainly due to intrinsic components
change and structure failure (Shareef, Abdi & Fahad, 2020; Zandalinas et al., 2016). In this
process, leaf pigment contents were deeply involved. They did not only determine color
of leaves, but also took part in the resistance to heat stress, especially in the photosystem.
Chlorophyll, carotenoids, and anthocyanins are main reason for leaf color presentation
(Archetti, 2000). As reported, the pigment contents change happened in many plants
when they encountered heat stress. Chlorophyll content of Japanese Maple was positively
correlated with temperature, while the anthocyanin content was negatively correlated
(Chen et al., 2010). However, there was also research showed that plants usually showed
a trend of decrease in chlorophyll under heat stress, thus turned leaves into yellow and
influenced the absorption and utilization of light energy of leaves (Dutta, Mohanty &
Tripathy, 2009). Chlorophyll fluorescence technique was usually used to detect whether
abiotic and biotic stress did harm to the photosystem, as it broader indicator of how plants
respond to environmental change (Murchie & Lawson, 2013). In Chenopodium album, it
was proved that chlorophyll contents was highly connected with PSIIfunction, especially
the non-photochemical chlorophyll fluorescence quenching (Tsujimoto & Hikosaka, 2021).
Anthocyanin could protect the photosystem by masking the chlorophyll containing
organelles or absorbing at the same wavelength as chlorophyll b to offer auxiliary function
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during senescence (Hoch, Zeldin & McCown, 2001; Pietrini, Iannelli & Massacci, 2002).
There has been some research about leaf pigment contents and their response to high
temperature, yet photosystem function, which was tightly concerned with the growth
of plants under elevated temperature was less discussed (Mishra et al., 2020). We want
to analyze whether leaf pigment contents were interfered in the process of photosystem
resistance to high temperature, and then offer reference for selecting ornamental plants
with higher adaptability for hot regions.

Loropetalum chinense and its variety Loropetalum chinense var. rubrum were very
important ornamental and medicinal plants in China (Li et al., 2008). They were widely
used in landscape for their unique ornamental traits and being easy to manage (Li et al.,
2008). As foliage plants, heat stress would do harm to their appearance, especially their
leaf color, which has caused severe problem for their popularization (Huang et al., 2017;
Yuan, Jia & Duan, 2010). Thus, the decisive factors to keep normal growth and leaf color
traits under heat treatment need to be detected for the usage of L. chinense and L. chinense
rubrum in hot regions.

Pigment contents and composition not only gave L. chinense and L. chinense rubrum
abundant leaf color, but also let their photosystem function presented significant variation
in shade-tolerance, capacity of CO2 utilization and light energy, etc. (Dong et al., 2016).
Whether the photosystem function would show different change under heat stress among
L. chinense and L. chinense rubrum cultivars with different color of leaves remains unclear,
similar studies have been reported in other species. In Begonia semperflorens, the cultivar
with colored leaves showed higher NPQ value and less changed Fv/Fm value and Y (II)
value when under heat stress, turned out that it was more heat-tolerant than the cultivar
with green leaves (Chang, 2013). Researches on Cotinus coggygria and Cotinus coggygria var.
purpurens also showed that photosystem of the red-leaf variety showed more resistance to
heat stress (Qi, 2008). Thus, we were about to research ornamental traits and adaptability
of L. chinense and L. chinense var. rubrum under high temperature to see whether the
variation of their leaf color would grant them different heat resistance ability. Through
investigating the difference of response to heat stress between L. chinense and its variety
L. chinense var. rubrum, we revealed that contents of anthocyanin and flavonoids would
influence the resistance of L. chinense var. rubrum cultivars to heat stress, which might
offer them more adaptability in hot regions.

MATERIAL AND METHODS
Plant material and growing condition
Two-year old cuttings of Loropetalum chinense ‘Xiangnong Xiangyun’ (X), Loropetalum
chinense var. rubrum ‘Hei Zhenzhu’ (H) and Loropetalum chinense var. rubrum ‘Xiangnong
Fendai’ (F) were planted in 7.57 L pots. Then these plants were placed in an artificial climate
box. The temperature was set as 25 ◦ C for the day (14 h)and 18 ◦ C for the night (10 h)
and proper moisture and fertilization were offered to keep the plants healthily growth,
the organic matter content of the soil was 1.07%, total nitrogen content was 0.12%, and
available potassium content was 54.64 mg/kg. The light was LED light and the PPFD value
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Table 1 Environmental factors set in the artificial climate box. The table presents environment factors for experimental group and control group,
the temperature units were ◦C, the photoperiod was 14 h of light and 10 h of dark. The PPFT units was lx, the relative humidity was 90%.

Treatment Day
temperature
(◦C)

Night
temperature
(◦C)

Illumination
time
(hours)

Dark
time
(hours)

Light
intensity
(lx)

Humidity
(%)

Heat group 40 33 14 10 30,000 90
Control group 25 18 14 10 30,000 90

was set as 30,000 lx, the relative humidity was set as 90%. More details were listed in
Table 1. The mature functional leaves of them were used for photosynthetic analysis and
phenotypic measurement. Under proper environment, the mature leaves of H were deep
purple and black (RHS BALCK GROUP 202A), while those of F were reddish brown (RHS
GREYED-ORANGE GROUP 166A), and those in X were green (RHS GREEN GROUP
141A).

Heat treatment
Six pots of each cultivar were exposed to an environment of 40 ◦ C for the light (14 h) and
33 ◦ C for the night (10 h). The relative humidity was set as 90%. The control group was
set as same as the experimental group despite its temperature was set as 25 ◦ C for the day
(14 h) and 18 ◦ C for the night (10 h).

Color evaluation
The Royal Horticultural Society Color Chart (RHSCC) was used to evaluate the leaf color
change of each cultivar. Five healthy newly matured leaves were picked to compare with
the standard color. Furthermore, YS 3020 spectrophotometer (3nh, China) was used to
measure the color indices L∗, a ∗ and b∗.

Pigment contents
Photosynthetic pigment including chlorophyll a, chlorophyll b and carotenoids,
anthocyanins and flavonoids of three cultivars were measured. Photosynthetic pigment
was measured by the means below: 0.2 g of fresh leaf samples were cleaned with deionized
water and dried with lens paper, then were cut into even pieces, the pieces were soaked
into 10 ml of 95% alcohol for 24 h of dark extraction, the absorbance at 470 nm, 649 nm
and 665 nm were measured using a ultraviolet spectrophotometer (Li, 2020). Anthocyanin
contents were measured using pH differential method (Chen et al., 2021), fresh samples
were frozen in liquid nitrogen and grilled into powder to digest in 0.5% of methanol
hydrochloride for twenty four hours, then the extract was centrifuged, the supernatant was
added into buffer A (0.4M potassium chloride solution, the pH was modified to 1.0 using
hydrochloric acid) and buffer B (1.2M citric acid solution, the pH value was modified to
4.5 using disodium hydrogen phosphate), respectively. The absorbance at 510 nm and 700
nm were measured for the calculation of anthocyanin contents. Flavonoids contents were
detected with the reference to the method of Heimler. 0.1 g of fresh sample was ground
in to powder using liquid nitrogen and mixed with 95% of methanol, after 24 h of dark
extraction, the supernatant was diluted, 0.5 ml of the solution was then mixed with 0.2 mL
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of 5% NaNO2, 0.3 mL of 10% AlCl3 and one mL of 1 mol L−1 NaOH in turn, deionized
water was used to make a constant volume of 3.5 mL, fully mixed all the solution and let
them stand for 10 min, and finally measure the light absorption value at the wavelength of
510 nm, the catechin standard solution with a concentration range of 50 mg/L–250 mg/L
was used to establish the standard curve and measured the relative content of flavonoids
in the sample (Heimler et al., 2005). Each kind of pigment contents were detected before
heat treatment and on the first day, the third day, the fifth day and the seventh day using
methods mentioned above.

Photosynthetic function and soluble sugar contents
The net photosynthetic rate and stomatal conductance were detected by LI-6400 Portable
Photosynthesis System (LI-COR Biosciences, Lincoln, NE, USA) Leaves detected were
exposed to strong light for ten minutes to ensure adequately activated. The soluble sugar
contents were measured by anthrone colorimetry (Yue et al., 2022). 0.1 g of fresh sample
were grounded into powder using liquid nitrogen, then mixed with 1 ml of ultrapure water.
The mixture was heat-treated in the boiling water bath for 20 min and then cooled to the
room temperature. After this, the mixture was centrifuged and the supernatant of it was
gathered. 1 ml of supernatant was diluted to 10 ml, after all this, 400 µl of the solution
was added with 400 µl of ultrapure water, 200 µl of anthrone solution (1 g of analytical
pure anthrone diluted in 50 ml of ethyl acetate) and 2 ml of concentrated sulfuric acid,
respectively. The components were completely mixed and then heat-treated in the boiling
water bath for 10 min and then cooled to the room temperature. The absorptance at 620
nm was measured using a ultraviolet spectrophotometer.

Chlorophyll fluorescence parameters
Five newly matured leaves for each cultivar were selected to test. The leaf-clips were fixed
on the front of the blade, then closed, and waited for 20 min, and the clips were produced
by Hansatech, Britain. After 20 min of dark adaptation, a FluorPen FP 110 handheld
fluorescent meter was connected to the clip, the chlorophyll initial fluorescence (FO),
maximum fluorescence (Fm) and effective quantum yield of photosystem II (8 PSII) were
acquired through ojip protocol. The non-photochemical quenching coefficient (NPQ)
and photochemical fluorescence quenching coefficient (qP) were acquired through NPQ 3
protocol.

Correlation analysis between pigment contents and chlorophyll
fluorescence parameters
Three replicants for pigment contents and chlorophyll fluorescence parameters were
selected to carry correlation analysis. The parameters were placed in the graph and the
Pearson correlation coefficient between each parameter were calculated by SPSS.

Statistical analysis and presentation
Three replicants for each parameter were selected. Analysis of variance (ANOVA) and
multiple mean comparisons were made on the parameters using SPSS Statistics, and
correlation analysis between leaf color and chlorophyll fluorescence parameters was made.
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Data were expressed as mean ± SD. Different letters indicate significant differences at
p≤ 0.05 based on Duncan’s new multiple range test. The graph were made by Origin and
RStudio, the pictures were modified and put together by Adobe Photoshop and Adobe
Illustrator.

RESULTS
Phenotypic observation on leaf color
Qualitative description of three cultivars was listed in Table 2. As shown in Fig. 1A, the
most apparent leaf color change showed in F, while in other cultivars, leaf color change
seemed not being so visible. We then made an anatomical observation on the transection
of the leaves, the consequence was showed in Fig. 1B. Before heat treatment, the palisade
tissue of three H was dark purple, and several purple elements were also distributed in
the epidermis and spongy tissue. Although there was not obvious color change on the
leaf surface of H, it was observed that the palisade tissue and epidermis of H were both
turning green from dark purple. The transection of F was mainly pink and green, while
pink parts spread on the epidermis and palisade tissue. Under heat treatment, the pink
parts in F leaves rapidly turned to green, on the third day of heat treatment, these parts
almost vanished completely. The surface and the transection of X did not show significant
change in eyes, indicated that its leaf color might be less influenced by heat stress.

The color parameters were listed and analyzed in Fig. 2 to quantitatively emphasis the
leaf color change under heat stress. The parameter L ∗ did not change remarkably in all
three cultivars, while in parameter a∗, H and F both showed a trend of decrease, and the
variation was more significant in F compared with H. There was a diametrically opposed
trend in a∗ of X, it gradually increased during the heat treatment. As for b ∗, this parameter
did not change significantly in H, while it showed a trend of decrease in X. In F, it decreased
first then increased to a higher level than the beginning. Interestingly, the obvious changes
all happened between the third and the fifth day, which might be an important time slot in
the leaf color change under heat stress. The results presented that leaf color of L. chinense
var. rubrum turned green from red under heat treatment and this change was visible.
Between two L. chinense var. rubrum cultivars, leaf color of F changed more significantly,
indicated that this cultivar might be more sensitive to heat stress. Besides, the color indices
of X also changed under heat stress and this change was hard to perceive, which could also
influence the ornamental traits of it.

Pigment contents change of leaves
Chlorophyll, carotenoids, anthocyanin and flavonoids are decisive in the leaf color
formation of L. chinense and L. chinense var. rubrum (Chen et al., 2021). The composition
and proportion of these pigment contents was quite different among three cultivars
(Table 3). Under heat treatment, the proportion of pigment contents showed significant
change, thus triggered color change in the outlook of leaves, the contents change of pigment
were presented in Fig. 3. There was no significant change in chlorophyll a among three
cultivars, while chlorophyll b showed a palpable trend of increase in them (Figs. 3A and
3B), on the seventh day of heat treatment, contents of chlorophyll b increased 66% in
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Table 2 Leaf color traits under control Group. (25 ◦C) The color was described by value of spectropho-
tometry and the number of the Royal Horticultural Society Color Chart.

Cultivar Stage L* a* b* RHSCC

H T0 26.24± 1.20c 2.35± 0.60b −1.70± 0.40c BLACK 202A
F T0 29.69± 1.44ab 7.96± 2.28a 5.56± 1.36ab GREY-BROWN N199B
X T0 31.97± 4.17a −10.79± 3.74c 12.94± 7.72a GREEN 139B

Notes.
The parameter L* indicates the lightness of leaves, the number is bigger, the color is closer to white. The parameter a* indicates
green and red, the number is bigger, the color is closer to red, otherwise it is closer to green. The parameter b* indicates yellow
and blue, the number is bigger, the color is closer to yellow, otherwise it is closer to blue. Different letters indicate significant
differences at p≤ 0.05 based on Duncan’s new multiple range test.

Table 3 Leaf pigment contents at initial stage. This table presents the pigment contents level at initial stage, the pigment contents units were mg/g
FW, the pigment contents were distracted from fresh samples of newly matured leaves. Data were expressed as mean± SD. Different letters indicate
significant differences at p≤ 0.05 based on Duncan’s new multiple range test.

Cultivar Chlorophyll a
(mg/g FW)

Chlorophyll b
(mg/g FW)

Chlorophyll
a/b

Carotenoids
(mg/g FW)

Anthocyanin
(mg/g FW)

Flavonoids
(mg/g FW)

H 0.91± 0.2a 0.54± 0.09b 1.69± 0.06a 0.27± 0.01a 1.18± 0.035a 0.32± 0.01b

F 0.76± 0.01b 0.46± 0.00a 1.65± 0.02a 0.15± 0.01c 0.35± 0.05b 0.31± 0.01b

X 0.95± 0.00a 0.77± 0.05c 1.23± 0.01b 0.20± 0.01b 0.05± 0.07c 0.57± 0.01a

H, 176% in F and 41% in X compared with the initial status. On contrary to chlorophyll
b, anthocyanin showed a significant trend of decrease in H and F, on the seventh day of
heat treatment, it decreased 32% and 88%, respectively. Flavonoids contents also changed
dramatically under heat stress, In H and X, it sharply decreased after heat treatment on
the first day, and continuously decreased. In F, however, its flavonoids contents abruptly
increased at the first day and gradually increased. Carotenoids did not demonstrate obvious
change trend in F and X, while in H, it was decreased at first and then increased again.
Generally speaking, contents change of pigments triggered color change of leaves. Among
them, anthocyanin and chlorophyll b played decisive role in the leaf color change of L.
chinense var. rubrum.

Effect of heat stress on net photosynthetic rate, stomatal conductance
and soluble sugar contents
As necessary catalyzer in photosynthesis, chlorophyll plays a central role in light absorption
of photosynthesis and thus its content would influence the photosystem function. Besides,
products of photosynthetic system were the basis for the stabilization of anthocyanins,
hence leaf pigment contents were connected with photosynthetic system function, which is
sensitive to high temperature. From Fig. 4A we can see that the net photosynthetic rate of
H increased at first, then gradually decreased, while in F and X, it did not show significant
change. Interestingly, the net photosynthetic rate in two L. chinense var. rubrum was higher
than X when under 25 ◦ C. As for the stomatal conductance, its change trend was the same
as the net photosynthetic in H. In X, however, it was also increased at first then decreased,
for F, this parameter decreased on the first day of heat treatment and kept in a low level.
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Figure 1 Phenotypic observation of leaf color change under heat stress. (A) Surface of leaves of three
cultivars under heat stress. (B) Anatomic structure of leaves of three cultivars under heat treatment.
(A) Leaf color of each stage was described by the RHSCC number to qualitatively evaluate the change
trend when plants were under heat treatment. (B) In each picture, from top to bottom, the upper epider-
mis, palisade tissue, spongy tissue and lower epidermis of leaves were presented successively. Scale bars=
500 µm.

Full-size DOI: 10.7717/peerj.14834/fig-1

Soluble sugar contents were relatively stable under heat treatment in F and X, yet it showed
abrupt decrease between the third day and the fifth day in H.

Chlorophyll fluorescence parameters
Among growth and reproduction of plants, photosystem played important role
(Blankenship, 2010). As shown in Fig. 5, the highest value of Fo and Fm showed in F
before heat treatment, while the effective quantum yield of photosystem II (Fv/Fm) of it
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was the lowest among three cultivars. For non-photochemical chlorophyll fluorescence
quenching and coefficient of photochemical quenching, the highest values also appeared
in F, turned out it had a better ability in photoprotection process and utilization of light
energy.

Under heat treatment, Fo significantly increased in H and F on the first day, nevertheless,
while X decreased at the same stage, during the heat treat period, only H showed continuous
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increase. For Fm, F and X presented sharp decrease at the first day under heat treatment,
while for H, it increased obviously with the stimulation of high temperature. The effective
quantum yield of photosystem II ( Fv/Fm) decreased at the first day after heat treatment
in F and X, then gradually increased in the next days, on the seventh day, it has become
higher than initial stage in F, while in X, it could not rise fast as F despite it was keeping
rising. In H, however, it increased at the first day of heat treatment and then got back to
the normal level and gradually increased again.
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Figure 5D presented the chlorophyll fluorescence dynamics curve of three cultivars, it
was observed that the place of ojip curve of H showed a significant was higher after heat
treated, turned out that plastid quinone reducing ability of it was significantly strengthened,
in X, however, the place of its ojip curve was dramatically lower than initial stage, which
indicated that it was not suitable for high temperature environment. The ojip curve of F
also moved down, yet compared with X, the change range of F was not so significant, thus
it was more resistant to heat stress.

The non-photochemical chlorophyll fluorescence quenching increased in H, which
indicated that its photoprotection ability has been strengthened under heat treatment. In
F, this parameter presented a sharp decrease at the first day and gradually decreased on the
next days, turned out that this cultivar might be very sensitive to high temperature. There
was no significant change in non-photochemical chlorophyll fluorescence quenching of X
at early stage of heat treatment (T0-T3), but on the fifth day, it decreased dramatically. As
for coefficient of photochemical quenching (QP), it was remarkably increased after heat
treatment for one day, it was increased for 67% in H, 22% in F, and 83% in X, respectively.
Then, it was slowly abated on the next days in all three cultivars.

According to the results, it seemed like F was more sensitive to heat stress as its change in
fluorescence parameters wasmore significant and easier to be detected.Hwas suitable to hot
environment, the chlorophyll fluorescence parameters all increased when it was cultured
in relatively high temperature. The influence of high temperature on the PS II function was
negative to X, making the ability of energy utilization and transformation weaker. Even
the chlorophyll fluorescence parameters also decreased in F, however, the negative effects
of high temperature were not presented as significant as they were presented in X, which
indicated that F was also more tolerant to heat stress compared with X. Interestingly, two
L. chinense var. rubrum cultivars both showed relatively higher resistance, which might
indicate that their leaf color traits offered them stronger ability in heat-resistance.

Correlation analysis between leaf pigment and photosystem in differ-
ent colors of leaves
Figure 6 presented the consequence of correlation analysis between pigment contents
and chlorophyll fluorescence parameters. In H, it was observed that the total chlorophyll
contents were significantly correlated with the maximum fluorescence, while in F and
X, this relation did not seem to be so close. There was extremely significant correlation
between non-photochemical chlorophyll fluorescence quenching (NPQ) and flavonoids
content in H, which might indicate that it was involved in the photoprotection mechanism,
besides, although anthocyanin did not show such high correlation with NPQ as flavonoids,
it was also highly correlated with it in H and F. As anthocyanins contents were higher
in H and F, and the NPQ values were also higher in them, this probably indicated that
pigment contents which not involved in photosynthesis could offer additional protection
for photosystem.

DISCUSSION
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Figure 6 Correlation analysis between pigment contents and chlorophyll fluorescence parameters
among three cultivars. This figure presented the pearson coefficients between chlorophyll parameters and
pigment contents. The correlation analysis showed that the pearson coefficient between anthocyanin con-
tents and NPQ value and flavonoids contents and NPQ value were higher in L. chinense var. rubrum culti-
vars,which indicated their higher photosystem stability under heat stress was partly due to the higher con-
tents of non-photosynthetic pigment.

Full-size DOI: 10.7717/peerj.14834/fig-6

Effects of high temperature on the leaf traits of plants
Heat stress could influence the ornamental traits of plants by hindering their growth,
making the leaves become smaller, lightening the leaf color or leading to premature senility
(Liu et al., 2013). In most plants, chlorophyll is usually dominant in leaf color formation. It
mainly absorbs blue and purple light meanwhile reflect green light thus presents green on
the surface of leaves. Carotenoids offers yellow and orange for leaf color, compared with
chlorophyll, it was relatively resistant to cold environment. Therefore, leaves of some species
would become yellow in fall as chlorophyll was decomposed while carotenoids content
was relatively stable (Su et al., 2015; Tang et al., 2020). As for coleus plants, anthocyanin
plays important role in color formation, which offers various color for plants according to
differentiation in pH value (Zhang et al., 2014). When anthocyanin contents were close to
chlorophyll contents, they would complement and superimpose each other to make leaves
present deep purple. In our research, the observation and detection on the phenotype and
pigment contents of three cultivars of L. chinense and L. chinense var. rubrum were made
to explain the leaf color change caused by high temperature. The consequence presented
that high temperature made H and F leaves become greener than ever, and X did not
show apparent change in leaf color. In the process of leaf color change, total anthocyanins
contents and chlorophyll b contents played important role.

Anthocyanin decreased in H and F, as it was very sensitive to high temperature. several
key genes of flavonoids and anthocyanin synthesis pathway expressed differently when
suffered from heat stress. The regulation of temperature on genes in the anthocyanin
biosynthesis pathway is mainly manifested in the upstream regulation of PAL, CHS and
CHI genes and the downstream regulation of DFR and ANS genes (Huh et al., 2008).
Besides, heat stress also decreased anthocyanins by turning them into colorless chalcone
and methanol pseudobase (Sun et al., 2009). Between two L. chinense var. rubrum cultivars,
F seemed to be more sensitive to heat as its leaf color changed faster and more under heat
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treatment, it might because the intramolecular co-pigmentation of anthocyanin contents
was stronger in H than it (Figueiredo et al., 1996).

In general, we found that the leaf color change under heat treatment was due to the
change of pigment contents, especially chlorophyll b and anthocyanins. Anthocyanins,
which could offer leaves more red, gradually decomposed when in the hot environment,
yet for H, it owned higher anthocyanins contents, thus gave it more ability to combine
the anthocyanins molecules through hydrogen bond, dredge key and van der Waals to
offer higher stability when suffered from heat stress (Teixeira et al., 2013). Chlorophyll b
added more deep green for leaves, and comprehensively turned red leaves of H and X into
green, however it also showed a trend of increase in X, this special mechanism might offer
sufficient electron transport for the heat stability of PS II (Havaux & Tardy, 1997).

Effects of high temperature on the photosystem function of plants
Photosystem was very sensitive to temperature (Allakhverdiev et al., 2008). Under heat
stress, the photochemical efficiency of photosynthetic apparatus usually decreased, this
was attributed to the structural change of chloroplast proteins D1 and D2, the decrease
of enzyme activity, and the decrease of PS II activity caused by the damage of thylakoid
membrane and oxygen producing complex. In addition, the degradation of pigments
related to photosynthesis might also be one of the reasons for the decline of photosynthesis
(Haldimann & Feller, 2004; Zhang et al., 2005).

In our study, H showed relatively higher adaptability under heat stress among three
cultivars, as its net photosynthetic rate showed significant increased after treated, this
was because higher temperature adequately activated the stoma of it, hence relieved
the dominant stomatal Limitation (Pšidová et al., 2018). The maximal quantum yield of
PSIIwas also the highest in H among three cultivars no matter whether it was under heat
treatment or normal environment, which indicated it possessed the highest potential photo
ability, this might also have made contributions to the higher anthocyanin synthesis in
it since photo product-soluble sugar contents were also sufficiently supplied (Narayan
& Venkataraman, 2002). Compared with other species, the photosystem function of our
plant materials all showed adaptability under heat stress, the recovery of PS II function did
not require much time, once they encountered current environmental change, they would
swiftly moderate themselves to adapt unfavorable environment.

Protection of leaf pigment content to photosystem function under high
temperature
Leaf color was closely related to photosystem function. Existence of photosynthetic
pigment was necessary condition of photosynthesis in higher plants (Gupta & Sinha, 2009).
Besides, as another main chromogenic substance, anthocyanins need to be combined with
photosynthate to form stable structure (Zhang et al., 2019). Correlation analysis between
pigment contents and chlorophyll fluorescence weremade to evaluate whether the changing
leaf color could influence the photosystem function. According to the consequence of
JIP-test, the biggest values of Fo, Fi, Fj and Fm all showed up in F under heat treatment,
interestingly, its leaves were also the reddest among three cultivars on the basis of the
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spectrophotometer. Unlike two other cultivars, H showed relatively low chlorophyll
fluorescence parameters among three cultivars, yet under heat treatment, Fo, Fi, Fm and
the maximal quantum yield of PSII all increased in it.

Anthocyanin contents seemed to offer more photoprotection ability for plants (Gould,
McKelvie & Markham, 2002; Steyn et al., 2002; Tian et al., 2014). In our research, cultivars
with higher anthocyanin contents showed higher non-photochemical chlorophyll
fluorescence quenching (NPQ), it was partly because that anthocyanin enhanced the
photoprotection ability by filtering or reflecting excess light energy (Hughes, Neufeld &
Burkey, 2005; Kootstra, 1994; Li et al., 1993; Merzlyak et al., 2008). On the one hand, this
mechanism could reduce quantum yield of photochemical reaction, on the other hand, it
increased the proportion of energy dissipated by proton gradient and lutein cycle on both
sides of thylakoid membrane (Zhou & Liang, 2021). Besides, the chlorophyll fluorescence
parameters of cultivars with higher anthocyanin contents showed more stability under
heat treatment, indicated that L. chinense var. rubrum which owns proper content of
anthocyanins could not only improve their ornamental traits, but also increased their
resistance to heat stress.

CONCLUSION
Leaf color change, pigment contents change and photosystem function under heat
treatment were evaluated in three cultivars. Photosystem stability of Loropetalum chinense
var. rubrum cultivars showed more resistance to heat stress compared to L. chinense,
turned out they might be more adaptative under hot environment, besides, cultivars with
higher anthocyanin contents could keep their bright leaf color under high temperature, it
indicated that they were suitable to be popularized in hot regions. The results showed that
anthocyanin contents not only richened the ornamental traits of Loropetalum chinense var.
rubrum, but also played important role in the resistance of plants to heat stress, and this
might be an evolved mechanism in the adaptation to stress.
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