Genomic relatedness and dissemination of bla,g, s

among Acinetobacter baumannii isolated from
hospital environments and clinical specimens in
Thailand (#78051)

First revision

Guidance from your Editor

Please submit by 25 Dec 2022 for the benefit of the authors .

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Custom checks
Make sure you include the custom checks shown below, in your review.

Author notes
Have you read the author notes on the guidance page?

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

PHESO

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files 1 Tracked changes manuscript(s)
Download and review all files 1 Rebuttal letter(s)
from the materials page. 7 Figure file(s)

10 Table file(s)

@ Custom checks DNA data checks
Have you checked the authors data deposition statement?

Can you access the deposited data?
Has the data been deposited correctly?
Is the deposition information noted in the manuscript?


https://peerj.com/submissions/78051/reviews/1254226/guidance/
https://peerj.com/submissions/78051/reviews/1254226/materials/
https://peerj.com/submissions/78051/reviews/1254226/materials/#question_23

For assistance email peer.review@peerj.com

Structure and 2
Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING EXPERIMENTAL DESIGN
Clear, unambiguous, professional English Original primary research within Scope of
language used throughout. the journal.
Intro & background to show context. Research question well defined, relevant
Literature well referenced & relevant. & meaningful. It is stated how the

Structure conforms to Peer] standards, research fills an identified knowledge gap.

discipline norm, or improved for clarity. Rigorous investigation performed to a
high technical & ethical standard.

Figures are relevant, high quality, well
labelled & described. Methods described with sufficient detail &

Raw data supplied (see Peer] policy). information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Conclusions are well stated, linked to
Meaningful replication encouraged where original research question & limited to
rationale & benefit to literature is clearly supporting results.

stated.

All underlying data have been provided;
they are robust, statistically sound, &
controlled.


mailto:peer.review@peerj.com
https://peerj.com/submissions/78051/reviews/1254226/
https://peerj.com/submissions/78051/reviews/1254226/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

Standout
reviewing tips

P

The best reviewers use these techniques
Tip

Support criticisms with
evidence from the text or from
other sources

Give specific suggestions on
how to improve the manuscript

Comment on language and
grammar issues

Organize by importance of the
issues, and number your points

Please provide constructive
criticism, and avoid personal
opinions

Comment on strengths (as well
as weaknesses) of the
manuscript

Example

Smith et al (] of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Your introduction needs more detail. | suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 - the current phrasing makes
comprehension difficult. | suggest you have a colleague
who is proficient in English and familiar with the subject
matter review your manuscript, or contact a professional
editing service.

1. Your most important issue

2. The next most important item
3.

4. The least important points

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as | have noted above) which should be
improved upon before Acceptance.



Peer]

Genomic relatedness and dissemination of bla,;,.; among
Acinetobacter baumannii isolated from hospital environments
and clinical specimens in Thailand

Thawatchai Kitti ', Suphattra Manrueang °, Udomluk Leungtongkam °, Supat Khongfak >, Rapee Thummeepak °,
Surat Wannalerdsakun °, Thanyasiri Jindayok *, Sutthirat Sitthisak ™" *°

Department of Oriental Medicine, ChiangRai College, Muang, Chiangrai, Thailand
Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand

Department of Internal Medicine, Faculty of Medicine, Naresuan University, Muang, Phitsanulok, Thailand

v A~ W N

Department of Pathology, Faculty of Medicine, Naresuan University, Muang, Phitsanulok, Thailand
Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand

Corresponding Author: Sutthirat Sitthisak
Email address: sutthirats@nu.ac.th

Background:Acinetobacter baumannii (A. baumannii) is an important cause of nosocomial
infection, especially in intensive care units (ICUs). It has the propensity to tolerate various
environments and multiple classes of antibiotics. Our study aimed to characterize the
comparative genomes of A. baumannii from hospital environments and clinical isolates.
Methods: Clinical and environmental A. baumannii isolates were collected from a
university hospital. Antibiotic susceptibility testing was performed, antibiotic resistance
genes (ARG) were characterized, and repetitive element palindromic-PCR (rep-PCR) typing
was performed. Eight representative A. baumannii isolated from environmental and clinical
samples from the same wards were selected for whole-genome sequencing (WGS) using
the Illumina platform. Results: A totallof106 " baumannii isolates were obtained from 312
hospital environmental samples. A high percentage of samples with A. baumannii
colonization was detected from AMBU bags (77.9%), followed by bedrails (66.7 %) and
suction tubes (66.7%). We found that 93.4% of the environmental isolates were multidrug-
resistant A. baumannii (MDRAB), and 44.7% were extremely drug-resistant A. baumannii
(XDRAB). blagya,s blayow, and blagy,ss were present in 80.2%, 78.3%, and 0.9% of all isolates,

respectively. Sixty-one A. baumannii isolates were collected from patient specimens in the
same ward. Among all A. baumannii clinical isolates, MDRAB and XDRAB accounted for
82% and 55.7%, respectively. The most dominant ARG identified was blagy,»; (80.3%),

followed by bla,,u(55.7%). The genetic diversity of all isolates using rep-PCR could be

divided into 33 genotypes. The genome size of eight A. baumannii ranged from 3.78-4.01
Mb. We found six of eight strains to be bla,,.s -harboring A. baumannii. Mobile genetic
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elements (MGEs), such as integronl (int/1), located upstream of bla,,us were observed.

The phylogenomic relationship of the core and pan genomes as well as the single
nucleotide polymorphism (SNP) count matrix revealed the genetic similarity of A.
baumannii environmental and clinical strains obtained from the same ward. Conclusion:
This study confirmed that A. baumannii colonized in hospital environments were the main
reservoir of nosocomial infection and provides critical information to guide the control of A.
baumannii infection.
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Abstract
Background: Acinetobacter baumannii (A. baumannii) is an important cause of

nosocomial infection, especially in intensive care units (ICUs). It has the propensity to
tolerate various environments and multiple classes of antibiotics. Our study aimed to
characterize the comparative genomes of A. baumannii from hospital environments and
clinical isolates.

Methods: Clinical and environmental A. baumannii isolates were collected from a
university hospital. Antibiotic susceptibility testing was performed, antibiotic resistance
genes (ARG) were characterized, and repetitive element palindromic-PCR (rep-PCR)
typing was performed. Eight representative A. baumannii isolated from environmental
and clinical samples from the same wards were selected for whole-genome sequencing
(WGS) using the lllumina platform.

Results: A total of 106 A. baumannii isolates were obtained from 312 hospital
environmental samples. A high percentage of samples with A. baumannii colonization
was “c ected from AMBU bags (77.9%), followed by bedrails (66.7%) and suction tubes
(66.7%). We found that 93.4% of the environmental isolates were multidrug-resistant A.
baumannii (MDRAB), and 44.7% were extremely drug-resistant A. baumannii (XDRAB).
blaoxa-23 blanpw, and blapxa-ss were present in 80.2%, 78.3%, and 0.9% of all isolates,
respectively. Sixty-one A. baumannii isolates were collected from patient specimens in
the same ward. Among all A. baumannii clinical isolates, MDRAB and XDRAB
accounted for 82% and 55.7%, respectively. The most dominant ARG identified was
blaoxa-23 (80.3%), followed by blanpm (55.7%). The genetic diversity of all isolates using
rep-PCR could be divided into 33 genotypes. The genome size of eight A. baumannii
ranged from 3.78-4.01 Mb. We found six of eight strains to be blaypm.s -harboring A.
baumannii. Mobile genetic elements (MGEs), such as integron1 (int/1), located
upstream of blaypm.s were observed. The phylogenomic relationship of the core and pan
genomes as well as the single nucleotide polymorphism (SNP) count matrix revealed
the genetic similarity of A. baumannii environmental and clinical strains obtained from

the same ward.
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Conclusion: This study confirmed that A. baumannii colonized in hospital environments
were the main reservoir of nosocomial infection and provides critical information to

guide the control of A. baumannii infection.

Introduction
Acinetobacter baumannii has emerged as an important pathogen related to hospital-

acquired infections worldwide. This pathogen is the major cause of ventilator-associated
pneumonia (VAP), bacteremia, urinary tract infections, wound infections, and meningitis
(Nutman et al., 2016). The emergence of antibiotic-resistant A. baumannii, especially
MDRAB and XDRAB, has increased and seriously challenged the treatment of these
bacterial infections (Kyriakidis et al., 2021). National Antimicrobial Resistance
Surveillance Thailand (NARST) reported that the prevalence of carbapenem-resistant
Acinetobacter baumannii complex infection in the ICUs of 51 hospitals in Thailand was
higher than 80% (NARST, 2021). The major mechanism of carbapenem resistance
among A. baumannii is the production of antibiotic-hydrolyzing enzymes that belong to
Ambler Class D B-lactamases (CHDLs) and class B metallo-lactamases (MBLs)
(Ibrahim et al., 2021). Class D carbapenemases encode acquired blapxa 23, blaoxa-2a,
and blapxa.ss. These genes have been reported in many countries all over Asia,
including China, Korea, Thailand, Vietnam, and Malaysia (Hsu et al., 2017). Major MBLs
in A. baumannii are encoded by the blaypy gene and has been reported in Thailand
since 2017 (Leungtongkam et al., 2018). To date, twenty-four New Delhi metallo-beta-
lactamase (NDM) variants have been identified in more than 60 bacterial species,
including Acinetobacter spp., and several variants have the ability to enhance
carbapenemase activity (Wu et al., 2019).

A. baumannii has the ability to survive on hospital surfaces and equipment for
long periods. Hospital surface contamination of A. baumannii is closely correlated with
the transmission of the bacteria to patients, causing episodes of bacteremia and/or
sepsis (Markogiannakis et al., 2008). Genome sequencing of carbapenem-resistant A.
baumannii (CRAB) found on ICU surfaces revealed that the CRAB isolates from ICU
environment were linked with those of clinical origin (Yasir et al., 2022). A. baumannii

isolates were recovered from surrounding ICU bed surfaces, and these isolates
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exhibited a multidrug resistance phenotype and belonged to some widely spread clonal
complexes (CCs) of clinical A. baumannii isolates (Rocha et al., 2018).

Comparative genomics research can help assess the bacterial evolution,
resistance mechanisms, and pathogenicity of bacterial pathogens at the genome-wide
level; it is also useful in the ensuing study of virulence factors involved in pathogenicity
(Wright et al., 2016). Whole-genome sequencing studies comparing distinct clinical and
environmental isolates have improved our understanding of the evolution of A.
baumannii. In this study, we aimed to investigate the resistance rates and
epidemiological characteristics of clinical and environmental A. baumannii isolates.
Then, we determined the draft genome sequence of eight clinical and eight
environmental A. baumannii strains from the same wards to perform comparative

genomic analysis.

Materials & Methods
Samples

Clinical and environmental A. baumannii isolates were collected from Naresuan
University Hospital between December 2020 and April 2021. Naresuan University is a
level Il hospital with 400 beds located in the lower northern region of Thailand. Hospital
environment and clinical isolates were collected from five wards, which were two
medical wards, Medicine-man (MED-1) and Medicine-woman (MED-2), and three
intensive care units, the ICU Cardio-Vascular-Thoracic Surgery (ICU-1), ICU Surgery
(ICU-2), and ICU Medicine (ICU-MED). The sources of the samples included staff
contact samples, which included samples collected from stethoscopes (n=15), charts
(n=15), computers/keyboards (n=15), nurse station counters (n=15), medical lab coats
(n=15), restroom door handles (n=15), telephones (n= 15), and dressing trolleys (n=
15). Patient contact samples were collected from bedrails (n=15), bedsheets (n=15),
suction tubes (n=15), patient tables (n=15), curtains (n=15), humidifiers (n=15),
intravenous (1V) stands (n=15), ventilators (n=15), ventilator monitors (n=9), water from
ventilators (n=9), suction tubes (n=9), and AMBU bags (n=9). Other environmental

samples were collected from the air (n=15), sinks (n=15), and water from sinks (n=15).
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The protocol was approved by the Naresuan University Institutional Biosafety
Committee, and the project number was NUIBC MI62-09-42.

Isolation and identification of A. baumannii from hospital environments

The air samples were collected using Leeds Acinetobacter Medium (LAM) (Hi-media,
India) in 9 cm diameter Petri dishes. Petri dishes were exposed for 24 hrs. The other
samples from environmental surfaces were collected using cotton swabs soaked in
0.85% normal saline and then placed in transfer media. The swab samples were
enriched in Luria-Bertani broth (LB) (Hi-media, India) by shaking at 160 rpm at 37°C for
24 hours and then cultured in Leed Acinetobacter Media (LAM) at 37°C for 24 hours.
Cultures with pink colonies were selected for further evaluation using Gram’s stain and
biochemical tests (catalase, oxidase, TSI, citrate). Molecular identification of the
bacterial isolates was confirmed by polymerase chain reaction (PCR) using 16S rRNA,
rpoB, and blapxa.s1 primers (Table S1).

Determination of antibiotic susceptibility

Antibiotic susceptibility testing was performed according to the disk diffusion method
using 12 antibiotics: piperacillin/tazobactam (100 and 10 ug), ceftazidime (30 ug),
cefepime (30 ug), cefotaxime (30 pg), ceftriaxone (30 pg), imipenem (10 ug),
meropenem (10 pg), gentamicin (10 pg), amikacin (30 ug), tetracycline (30 ug),
ciprofloxacin (5 pg), and trimethoprim/sulfamethoxazole (1.25 and 23.75 pg). The plates
were incubated at 37 °C for 24 hours. The zones of inhibition determined whether the
microorganism was susceptible, intermediately resistant, ©' resistant to each antibiotic
according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (2022).
All isolates were defined as non-drug-resistant A. baumannii (NRAB), MDRAB, CR~.,
and XDRAB as previously described by (Magiorakos et

PCR amplification of antibiotic resistance genes and rep-PCR typing

As mentioned earlier, PCR assays to detect blapxa.23, blaoxa-24, blaoxa-ss, and blanpm
were performed using the primers shown in Table S1. The genomic DNA of each isolate
was extracted from the overnight cultures using a PureDirex Genomics DNA Isolation
Kit (BIO-HELIX, New Taipei City, Taiwan). Rep-PCR was performed by using genomic
DNA as a template for PCR amplification with the ERIC-2 primer (Table S1) with the
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conditions described by Leungtongkam et al. PCR-banding patterns and rep-PCR types

were analyzed and interpreted as previously described (Leungtongkam et al., 2018).

Whole-genome sequencing and bioinformatics analysis

Eight representat = A. baumannii strains from four wards, four from hospital
environments (AE17, AE30, AE73, AE106) and four from clinical isolates (AC02, ACQ9,
AC23, and AC59) were analyzed. We selected two A. baumannii strains from each ward
that were isolated from the same time frame and showed similar antibiotic susceptibility
profiles and ARG patterns. All strains were cultured onto an LB agar plate and
incubated overnight at 37°C. Genomic DNA was extracted using a PureDire Genomics
DNA Isolation Kit (BIO-HELIX, New Taipei City, Taiwan). The extracted DNA was
quantified by a nanodrop (Hercuvan, Cambridge, UK). The purified genomic DNA was
used to construct libraries followed by sequencing with the lllumina HiSeq 2500-PE125
platform at Macrogen, Korea. The nucleotide sequences of the eight A. baumannii
strains have been deposited in NCBI's database under Sequence Read Archive (SRA)
with Bioproject PRINA862456 (https://www.ncbi.nlm.nih.gov/sra/PRJNA862456). The

genome of A. baumannii ATCC17978 (CP000521) was used as a reference strain for

comparison with the eight A. baumannii strains.

Genome assembly and annotation

Raw sequencing reads were trimmed by using Trim Galore v0.6.7 with default settings
and by using Unicycler v0.4.8 with default parameters prior to assembly (Krueger et al.,
2012; Wick et al., 2017). The assembled contigs that were larger than 300 bp in length
were selected and subjected to further bioinformatic analysis. The remaining contigs
were annotated by using Prokka v1.14.6 with default options (Seemann, 2014).
Identification of MLST, antimicrobial resistance, and virulence genes

The remaining contigs were subjected to detection of drug-resistance and virulence
genes by using Abricate v1.0.1 with default settings (Seemann, 2016) against the
comprehensive antibiotic resistance database (CARD) and virulence factor database
(VFDB) (Alcock et al., 2020; Liu et al., 2022). Multilocus sequence typing (MLST) was

performed by using MLST v2.0, which is accessible from the Center for Genomic
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183 Epidemiology (www.genomicepidemiology.org). The gene arrangement analysis of

184  blaypw.s was performed using Easyfig version 2.1 (Sullivan et al., 2011).

185

186 Phylogenomic relationships

187 The selected genomes of eight A. baumannii were subjected to Roary v3.13.0 with the
188 default parameters to identify pan- and core genes (Page et al., 2015). The resultant
189 core genes among the eight genomes were concatenated prior to the construction of a
190 pangenome tree in the CSI phylogeny, which is accessible from the Center for Genomic
191 Epidemiology (www.genomicepidemiology.org) (Kaas et al., 2014). A core-genome tree
192 was constructed based on the presence/absence of identified core-genes and

193 visualized in FigTree v1.4.4 (https://tree.bio.ed.ac.uk/software/figtree/). The SNP count
194 matrix of all selected genomes was calculated in snp-dists v0.6.3 with default settings
195 (Seemann, 2019).

196 Statistical analyses

197  Statistical @nalyses '« re performed using Stata (Stata 12.0 Corporation). The

198 comparisons of the proportions of antibiotic resistance between A. baumannii obtained
199 from the two different origins were analyzed by using the Z-test. The comparisons of

200 antibiotic resistance among A. baumannii collected from the five hospital wards were
201 analyzed by using the chi-square test. P values <0.05 were considered to be a

202 statistically significant difference.

203 Results
204 A. baumannii strains isolated from the hospital environment and clinical isolates

205 A total of 106 A. baumannii isolates were obtained from 312 hospital

206 environmental samples (33.97%). The isolates associated with patient contact from
207 AMBU bags, bedrails, suction tubes, water from ventilators, bedsheets, patient tables,
208 humidifiers, ventilators, curtains, and IV stands were found in(77.9%, 66.7%, 66.7%,
209 55.6%, 53.3%, 33.3%, 33.3%, 33.3%, 33.3%, and 13.3% of the samples, respectively.
210 The isolates associated with staff contact and other environments from the air,

211 keyboards, counters, medical lab coats, dressing trolleys, stethoscopes, charts,

212 restroom door handles, and telephones were found in60.0%, 53.3%, 46.7%, 42.9%,
213 (33.3%, 26.7%, 26.7%, 6.7%, 6.7%, and 6.7% of the samples, respectively (Table S2).
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However, we did not find A. baumannii isolates on sinks, water from sinks, or ventilator
monitors (Table S2). Of the 312 environmental samples collected from each ward, we
found the highest A. baumannii contamination in the samples obtained from ICU
Surgery, with a rate of 52.9% (36/38), followed by those obtained from the Medicine-
woman (40.7%; 22/54), ICU Medicine (38.2%; 26/68), Medicine-man (27.8%; 5/54), and
ICU Cardiovascular-Thoracic Surgery (10.3%; 7/68) wards (Table S2).

During the investigation of the prevalence of A. baumannii isolates from the
hospital environments of various wards, we found the highest rate of A. baumannii in
the ICU Surgery ward (33.9%), followed by the ICU Medicine (24.5%), Medicine-woman
(20.8%), Medicine-man (14.2%), and ICU Cardio-Vascular-Thoracic surgery (6.6%)
wards (Table 1). A. baumannii isolates were found in the patient specimens collected
from the ICU Medicine (24.6%), Medicine-man (24.6%), ICU Surgery (19.7%),
Medicine-woman (16.4%), and ICU Cardio-Vascular-Thoracic surgery (14.8%) wards
(Table 1).

Antibiotic susceptibility patterns of A. baumannii isolates

All A. baumannii isolates were subjected to antimicrobial susceptibility testing,
and the results are shown in Table 2. A. baumannii isolates from hospital environments
were highly resistant to meropenem (100%), cefotaxime (100%), ceftazidime (100%),
and ceftriaxone (100%), while the A. baumannii clinical isolates were highly resistant to
ceftazidime (90.2%) and ceftriaxone (90.2%). NRAB was detected in only 16.39% of A.
baumannii clinical isolates. A high prevalence of MDRAB and CRAEFE ' as detected in A.
baumannii isolated from hospital environment (ABHE) (93.4% and 100%) and clinical
isolates (82.0% and 92.0%) with p value <0.05, as shown in Table 3. The prevalence of
XDRAB in A. baumannii isolates from hospital environments and clinical isolates was
44.7% and 55.7%, respectively. (Table 3). Among the five wards, a high prevalence of
XDRAB was detected in A. baumannii isolates from ICU Surgery (Table 4).
Antibiotic resistance genes and rep-PCR typing

16S rRNA and rpoB genes were detected in all A. baumannii isolates. The
intrinsic blapxa.s1 gene was detected in all ABHE and 96.7% (59/61) of clinical isolates.

The oxacillinase gene, blapgxa- 23was the most frequently detected gene at 80.20%
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(85/106) in ABHE and 80.33% (49/61) in clinical isolates (Table 3). The blapgxa.sg gene
was detected in one ABHE (0.94%) and one clinical isolate (1.64%). The blaypy gene
was detected in 78.3% (83/106) of ABHE (p value < 0.05) compared to 55.74% (34/61)
of clinical isolates. The blapxa24 gene was not detected in any of the isolates. Among
the five wards, a high prevalence of blapxa23 was detected in ICU Cardio-Vascular-
Thoracic Surgery, and a high prevalence of blaypy was detected in ICU Surgery (p
value <0.05) (Table 4).

Rep-PCR typing was performed, and fingerprinting represented 33 different DNA
patterns consisting of amplicon sizes ranging from 500 to 4,000 bp. The genotypes
were named T1 to T33. The major genotype of ABHE was T30 at 21.7% (23/106),
followed by T23 at 17% (18/106) and T2 at 15% (15/106). The major genotype of the A.
baumannii clinical isolates was T4 at 34.4% (21/61), followed by T23 at 29.5 % (18/61).
Heatmaps representing the antibiotic susceptibility patterns, antimicrobial resistance
genes, and rep-PCR typing from the five wards is shown in Figures S1-S5. We found
genetic similarity between ABHE and A. baumannii clinical isolates in each ward with
antibiotic susceptibility patterns and antimicrobial resistance genes since most A.
baumannii strains in the same ward showed similar profiles. No association was found
between rep-PCR typing of ABHE and A. baumannii clinical isolates (Figures S1-S5).
Eight strains of A. baumannii with similar profiles from four wards were selected for

genome sequencing.

Comparative genomic and phylogenomic analysis of A. baumannii from hospital
environmental and clinical isolates

Eight strains of A. baumannii from clinical and environmental isolates were
analyzed and compared with the genome of A. baumannii ATCC17978. The four ABHE
were AE17 (patient table), AE30 (bedrail), AE73 (dressing trolley), and AE106 (AMBU
bag). The four clinical isolates were AC02 (blood hemoculture), AC09 (sputum), AC23
(sputum), and AC59 (right hepatic drain). AC02 and AEQ3 were obtained from the
Medicine-man ward. AC59 and AE17 were obtained from the Medicine-woman ward.
ACO09 and AE106 were derived from the ICU Cardio-Vascular-Thoracic Surgery ward.

AC23 and AE73 were derived from the ICU Surgery ward. The genome characterization
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of the isolates is summarized in Table 5. The genome analysis revealed that AC02,
AE30, AC09, AE106, AC23 and AE73 belong to ST2 based on the Pasteur MLST
scheme. However, AC59 and AE17 belong to ST164. The predicted genome sizes of
the eight A. baumannii strains ranged from 3.78 to 4.01 Mb compared to the genome of
ATCC17978, which was 3.97 Mb.

ARGs and virulence genes of eight A. baumannii strains showed genetic similarity
among A. baumannii hospital environments and clinical isolates but were slightly
different from the genome of ATCC17978 (Figure 1AB). The ARGs detected in all eight
A. baumannii strains as well as ATCC 17978 encoded macrolide resistance genes
(amvA) and a number of genes encoding efflux pumps involved in resistance in
glycylcycline/tetracycline (adeR, adeS, adeA, adeB), fluoroquinolone/tetracycline (adeF,
adeG, adeH, adel), fluoroquinolone (abaQ, abeM), fosfomycin (abaF), and multidrug
resistance (adel, adedJ, adeK, adeN, abeS). We identified 23 ARGs present in only
some A. baumannii strains, which encoded the efflux pump (adeC) and genes involved
in resistance to tetracycline (tet(39), tetB), cephalosporins (blaapc-10, blaapc-s, blaapc-73,
blappc.79, blatem-1, blatem-12), carbapenems (blaoxa-23, blaoxa-ss, blaoxa-91, blaoxa-2s9),
macrolide (mphE, msrE), aminoglycoside (aadAb, armA, aph(3")-Ib, aph(6)-1d),
sulfonamide (sul1, sul2), and integron-encoded dihydrofolate reductase (dfrA17).

A class B B-lactamase gene, blanpw.s, that hydrolyzes virtually all B-lactam
antibiotics, including carbapenems, was detected in six strains except ATCC17978,
AE17 and AC59 (Figure 1AB). Genetic contexts of blaypu.s revealed mobile genetic
elements (MGEs), such as integron1 (int/1), IS91 family transposase, and transposase
(ISAba125), along with other AGRs, ant(3”)-la, gacEA1, and sul1, located upstream and
downstream of blanpm.s (Figure 1C).

Analysis of the virulence genes of eight A. baumannii strains and
ATCC17978 revealed that the genes were involved in biofilm formation (adeF, adeG,
adeH, bap, csuA/B, csuA, csuB, csuC, csuD, csuE, pgaA, pgaB, pgaC, pgaD), enzyme
phospholipase (p/cC, plcD), immune evasion (IpsB, IpxA, IpxB, IpxD, IpxL, I[pxM), iron
uptake (barA, barB, basA, basB, basC, basD, basF, basG, basl, basJ, bauA, bauB,
bauC, bauD, bauE, bauF, entE), gene regulation (abal, abaR, bfmR, bfmS), serum

resistance (pbpG), and host cell adherence (ompA) (Figure 1B). The genes involved in
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capsule polysaccharide synthesis (weoB) and the gene encoding glycosyltransferase in
lipopolysaccharide (LPS) biosynthesis (/psB) were detected in only one strain, ATCC
17978 and ACQ9 (Figure 1B).

The phylogenomic relationship of the core and pan genomes of eight A.
baumannii and ATCC17978 strains shown in Figure 2AB revealed three major clades.
The A. baumannii strains obtained from the ICU-1, ICU-2, and Med-1 wards were in the
same clade, while the A. baumannii strains obtained from the Med-2 ward were in
different clades. The genome of ATCC17978 showed different clades from all eight A.
baumannii strains. The SNP count matrix of all selected genomes confirmed that the
high number of SNPs of AC59 and AE17 derived from the Med-2 ward were

comparable with other A. baumannii strains (Figure 2C).

Discussion
A. baumannii is an opportunistic pathogen that causes hospital-acquired

infections in patients who have high risk factors, such as patients in intensive care units
(ICUs). This bacterium is extremely capable of surviving, spreading, and developing
antibiotic resistance in hospital wards (Vazquez-Lopez et al., 2020). In this study, we
investigated A. baumannii from three ICUs and two medicine wards from a university
hospital to identify nosocomial infection-associated bacteria. A total of 106 isolates of A.
baumannii were isolated from 312 environmental samples, which were frequently in
contact with staff and patients. The highest numbers of staff and patient contact
samples with A. baumannii colonization were from AMBU bags (77.9%) and keyboards
(53.3%). Shamsizadeh et al. (2017) reported that A. baumannii was detected in
environmental samples with the highest recovery in intensive care units (ICUs). This is
in agreement with our study in which we isolated the highest number of A. baumannii
from two ICUs. A previous study demonstrated that A. baumannii was isolated from
hospital sinks, bed rails, water systems, and medical equipment, particularly in ICUs
and surgical units (/brahim et al., 2021). We detected a high number of A. baumannii
from AMBU bags (77.9%), followed by bedrails (66.7%) and suction tubes (66.7%).
However, we did not obtain A. baumannii from hospital sinks or water from sinks. In

addition, a previous study reported that the airborne route also plays an important role
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in the transmission of A. baumannii infections in hospitals (Ayoub Moubareck et al.,
2020). Our study confirmed that a high number of A. baumannii was isolated from air
(60.0%). A. baumannii was associated with hospital-acquired outbreaks due to its ability
to spread in the air environment and colonize hospital utensils.

MDRAB and CRAB were described as major resistant strains that caused
hospital outbreaks in Thailand (Leungtongkam et al., 2018; Chukamnerd et al., 2022).
High prevalence rates of both MDRAB and CRAB were found in this study. We found
that the resistance rate of A. baumannii isolated from hospital environments was higher
than that isolated from clinical samples. In addition, all A. baumannii isolates isolated
from hospital environments were resistant to meropenem (100%), cefotaxime (100%),
ceftazidime (100%), and ceftriaxone (100%), and all isolates were CRAB. The results
were in contrast with a Chinese study showing that A. baumannii isolated from the
hospital environment was more susceptible to most antimicrobial agents (Ying et al.,
2015).

Our data showed that A. baumannii isolated from hospital environments and
clinically isolated from the same ward possessed similar antibiotic susceptibility profiles,
and ARG patterns represented the outbreak clone in each ward (Figure S1-S5). Among
all isolates, the results showed that blapgxa.23 was the most frequent carbapenemase
gene detected. This result suggests that blapxa.23 was the major cause of carbapenem
resistance in A. baumannii isolates from hospital environments and clinical samples in
our hospitals. This result was supported by Leungtongkam et al. (2018), who detected
blaoxa-23in all A. baumannii isolates from four tertiary hospitals in Thailand. Jain et al.
(2019) reported that blanpu.1 was the most frequent gene detected in A. baumannii
isolated in both clinical and environmental samples from India (Jain et al., 2019).
Interestingly, we found a high prevalence of blaypy among both the hospital
environment and clinical sample isolates. Compared to a previous report from Thailand,
a low rate of blaypy was detected in A. baumannii isolates from hospitals in northern
and southern Thailand (Leungtongkam et al., 2018; Chukamnerd et al., 2022).

Genomic analysis of eight representative MDRAB strains found that the major ST
type (AC02, AE30, AC09, AE106, AC23, and AE73) was ST2. It has been reported that
MDRAB sequence type ST2 was the most prevalent in Thailand. The AC59 and AE17
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strains were designated ST164, which was also reported in Thailand (Khuntayaporn et
al., 2021). NDM-producing organisms have become endemic in the Indian subcontinent,
and numerous epidemics have been recorded worldwide. Genomic analysis found that
the AC02, AE30, AC09, AE106, AC23, and AE73 strains possess an NDM-5 metallo-B-
lactamase gene. This is the first report regarding the detection of an NDM-5-producing
A. baumannii from hospital environments and clinical samples in Thailand. The
emergence of the blaypu.s gene was mostly identified in Escherichia coli. To date, only
one report by Khalid et al. (2020) identified A. baumannii harboring blanpm.s from the
neonatal intensive care unit (NICU) of an Indian Hospital, but it was not present in
environmental isolates (Hamidian et al., 2019). Our PCR study identified the blanpm
gene but could not specifically identify the NDM variant. The outbreak clone harboring
blanpw.s was revealed using WGS. Mobile genetic elements such as insertion
sequences, transposons, and integrons can mobilize blaNpy.s (Wu et al., 2019). Our
WGS analysis revealed int/1 located upstream of blaypm.s (Figure 1C). A previous report
on E. coli detected blaypw.s to be located in a complex of class 1 integrons together with
aadA2, aac(3)-1la, mph(A), sul, tet(A), and dfrA12 (Alba et al., 2021). In this study, we
found ant(3”)-la, qacEA1, and sul1.

WGS of eight strains revealed a high number of ARGs in accordance with
previous reports in Thailand (Kongthai et al., 2021; Wareth et al, 2021; Chukamnerd et
al, 2022). Among the eight strains, the antibiotic resistance gene patterns of A.
baumannii differed among wards but were similar in the same ward. A high number of
acquired ARGs was detected. Horizontal gene transfer among A. baumannii and other
bacterial species colonizing the hospital environment may play an important role in the
movement of these acquired ARGs. Interestingly, we found that the virulence gene
patterns of A. baumannii strains from four wards were quite similar (Figure 1B). These
findings indicated that all A. baumannii strains from the four wards were derived from
the same ancestor and employed the same pathogenic mechanisms to cause disease.
The phylogenomic relationship of the core and pan genomes as well as the SNP count
matrix revealed the genetic similarity of A. baumannii strains obtained from the same

ward. This is in agreement with a previous study by Yasir et al. (2022), in which genome
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sequencing revealed that A. baumannii isolated from hospital environments was linked

with those of clinical origin (Yasir et al., 2022).

Conclusions
In conclusion, in this study, we presented a whole-genome analysis of eight A.

baumannii strains from hospital environments and clinical samples. Our data revealed
the epidemiological characteristics of similar antibiotic susceptibility profiles, antibiotic
resistance genes, virulence genes, clonal complexes, core genomes, pan genomes,

and single nucleotide polymorphisms among clinical and environmental A. baumannii

isolates from the same ward.
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Figure 1

Detections of antibiotic resistance, virulence genes, and genetic contexts of A.
baumannii harboring bla,,ysamong 8 representative A. baumannii strains and ATCC

17978.

(A) The pattern of acquired resistance genes, (B) virulence factor-associated genes in the A.
baumannii genomes, and (C) genetic contexts and comparison of the gene arrangement of
six A. baumannii isolates harboring bla,,,s The arrows indicate genes located upstream and
downstream of blayyy.s, including Integronl (int/1), BsuBI-Pstl family restriction endonuclease
(Bsu-Pstl), aminoglycoside 3"-nucleotidyltransferase (ant(3”)-la), quaternary ammonium
compound efflux (qacEA1), sulfonamide resistance (sul/l), 1IS91 family transposase,
cytochrome c-type biogenesis protein (DsbD), N-(5'-phosphoribosyl) anthranilate isomerase

(trpF), bleomycin resistance protein (bleys ), New Delhi metallo-beta-lactamase 5 (blayous),

and transposase (ISAbal25).
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Figure 2

Phylogenomic relationship among selected representative isolates of Acinetobacter
baumannii obtained from different wards.

(A) A phylogeny reconstructed from 2,928 concatenated core genes of all analyzed genomes
presented with metadata. (B) Hierarchical tree based on the presence/absence of patterns of
4,778 pangenome genes of 8 representative isolates and ATCC 17978. (C) SNP matrix-based
heatmap illustrating the number of single nucleotide polymorphisms in the whole genome

between the eight strains studied.
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A StrainID Ward Specimentypes MLST Strain ID B
AC09 ICU-1 Sputum ST2 AC09
AE106 ICU-1 Ambu bag ST2 AE106
AC02 MED-1 Blood-hemoctittye  ST2 AC02
AE30 MED-1 Bedrail ST2 AE30

AC23 ICU-2  Drain Rt. Hepatic ~ ST2 AC23
AET73 ICU-2  Dressing trolley ST2 AET3

= ': AC59 MED-2 Sputum ST164 AC59

AE17 MED-2 Patient table ST164 AE17
ATCC17978 ATCC17978
05 05
Core-genome tree Pan-genome tree

C AC02 0
AE30 283 O
AC23 402 317 O
AE73 446 247 155 0
AE106 651 604 393 450 O
AC09 1220 1061 1088 1004 1043 0
AC59 0

AE17 547 0
AC02 AE30 AC23 AE73 AE106 AC09 AC59 AE17
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Table 1l(on next page)

A. baumannii isolated from hospital environments and clinical samples from various
hospital wards.
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1 Table 1: A. baumannii isolated from hospital environments and clinical samples

2 from various hospital wards.

Warg ostve | positive Clinical
n % n %
MED-1 Medicine-man ward 15 14.2% 15 24.6%
MED-2 Medicine-woman ward 22 20.8% 10 16.4%
ICU-MED | ICU Medicine 26 24.5% 15 24.6%
ICU-1 ISCLLrJg(;?;dio—VascuIar—Thoracic v 6.6% 9 14.8%
ICU-2 ICU Surgery 36 33.9% 12 19.6%
Total 106 100.00% | 61 | 100.00%
3
4
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Table 2(on next page)

Frequency of resistance to antimicrobial agents among A. baumannii isolates from
hospital environments and clinical samples.
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Table 2: Frequency of resistance to antimicrobial agents among A. baumannii

isolates from hospital environments and clinical samples.

Antimicrobial Group

Antibiotics

Resistance

hospital

Environment

Clinical

inhibitors

B-Lac_tam. Piperacillin/Tazobactam 80.2% 81.9%
combinations

Ceftazidime 100.0% 90.2%

Cefepime 99.1% 85.3%
Cephems

Cefotaxime 100.0% 88.3%

Ceftriaxone 100.0% 90.2%

Imipenem 77.4% 55.7%
Carbapenems

Meropenem 100.0% 83.6%

Gentamicin 77.4% 70.5%
Aminoglycosides

Amikacin 62.3% 67.2%
Tetracyclines Tetracycline 74.5% 73.8%
Fluoroquinolones Ciprofloxacin 79.2% 83.6%
Folate pathway Trimethoprim/Sulfamethoxazole 88.7% 81.9%
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Table 3(on next page)

The statistical analysis for comparing the proportions of antibiotic resistance between A.
baumannii obtained from two different origins

* Comparison of percentages between two groups by Z-test ** ND; Not determined statistical
analysis Note: A p value < 0.05 reflected statistically significant findings . CRAB:
carbapenem-resistant A. baumannii; MDRAB: multidrug-resistant A. baumannii; XDRAB:

extremely drug-resistant A. baumannii
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Table 3. The statistical analysis for comparing the proportions of antibiotic
resistance between A. baumannii obtained from two different origins

Characteristics

Clinical origin

Environmental

*p value (95% CI)

(n=61 isolates) origin

(n=106

isolates)
Prevalence of 50/61 (82.0%) 99/106 (93.4%) | 0.021 (22.2% to 0.7%)
MDRAB
Prevalence of CRAB | 50/61 (92.0%) 106/106 (100%) | <0.001 (83.8% to 27.7%)
Prevalence of 34/61 (55.7%) 47/106 (44.7%) | 0.116 (27.0% to 4.2%)
XDRAB

23 positive isolates

Prevalence of blagxa.

49/61 (80.3%)

85/106 (80.2%)

0.983 (12.4% to -12.7%)

5g positive isolates

Prevalence of blapgxa.-

1/61 (1.6%)

1/106 (0.9%)

** ND

Prevalence of blanpum
positive isolates

34/61 (55.7%)

83/106 (78.3%)

0.002 (37.3% to 7.8%)

* Comparison of percentages between two groups by Z-test

** ND; Not determined statistical analysis
Note: A p value <0.05 reflected statistically significant findings.

CRAB: carbapenem-resistant A. baumannii; MDRAB: multidrug-resistant A. baumannii; XDRAB:
extremely drug-resistant A. baumannii
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Table 4(on next page)

Proportion comparisons of antibiotic resistance among A. baumannii collected from five
hospital wards

* overall p value calculated to compare percentages among multiple groups by Chi-square
test ** ND; Not determined statistical analysis Note: Bold values denote the highest
proportions with statistical significance at the p value < 0.05 level. MED-1 (Medicine-man
ward), MED-2 (Medicine-woman ward), ICU-MED (ICU Medicine), ICU-1 ( ICU Cardio-Vascular-
Thoracic Surgery ), ICU-2 (ICU Surgery) CRAB: carbapenem-resistant A. baumannii; MDRAB:

multidrug-resistant A. baumannii; XDRAB: extremely drug-resistant A. baumannii
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1 Table 4. Proportion comparisons of antibiotic resistance among A. baumannii
2 collected from five hospital wards

3
Hospital MED-1 | MED-2 | ICU- ICUA1 ICU-2 *p value
wards/Characteristics MED
29/30 26/32 37/41 15/16 42/48 0.386
Percentage of MDRAB | g5 70,1 | (81.3%) | (90.2%) | (93.3%) | (87.5%)
Percentage of CRAB 29/30 31/32 39/41 15/16 42/48 0.490
(96.7%) | (96.9%) | (95.1%) | (93.8%) | (87.5%)
13/30 11/32 13/41 8/16 36/48 <0.001
Percentage of XDRAB | 43 39,) | (34.4%) | (31.7%) | (50%) | (75%)
Percentage of blapxa2z | 27/30 14/32 36/41 15/16 42/48 <0.001
positive isolates (90%) | (43.8%) | (87.8%) | (93.8%) | (87.5%)
Percentage of blagxasg | 1/30 0/32 0/41 0/16 1/48 **ND
positive isolates (3.3%) | (0%) (0%) (0%) (2.1%)
Percentage of blanpwm 14/30 29/32 22/41 8/16 44/48 <0.001
positive isolates (46.7%) | (90.6%) | (53.7%) | (50%) | (91.7%)
4 *overall p value calculated to compare percentages among multiple groups by Chi-
5 square test
6 ** ND; Not determined statistical analysis
7 Note: Bold values denote the highest proportions with statistical significance at the p
8 value < 0.05 level.

9 MED-1 (Medicine-man ward), MED-2 (Medicine-woman ward), ICU-MED (ICU

10 Medicine), ICU-1 (ICU Cardio-Vascular-Thoracic Surgery), ICU-2 (ICU Surgery)

11 CRAB: carbapenem-resistant A. baumannii; MDRAB: multidrug-resistant A. baumannii,
12 XDRAB: extremely drug-resistant A. baumannii

13
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Table 5(on next page)

Medical and general genome features of 8 representatives A. baumannii isolated from
various hospital wards.

MED-1 (Medicine-man ward), MED-2 (Medicine-woman ward), ICU-1 (ICU Cardio-Vascular-
Thoracic Surgery), ICU-2 (ICU Surgery), MDRAB: multidrug-resistant A. baumannii, XDRAB:

extremely drug-resistant A. baumannii
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1 Table 5: Medical and general genome features of 8 representatives A. baumannii
2 isolated from various hospital wards.

Strain ID/ ACO02 AE30 AC59 AE17 AC09 AE106 AC23 AE73

Characteristi

CSs

Ward MED-1 | MED-1 | MED-2 | MED-2 ICU-1 ICU-1 ICU-2 ICU-2

Specimen Blood- Bedrail Sputum Patient Sputum AMBU Right Dressing

types hemocult table bag Hepatic trolley
ure Drain

Antibiotic XDRAB | XDRAB | MDRAB | MDRAB XDRAB | XDRAB MDRAB MDRAB

Resistance

MLST ST2 ST2 ST164 | ST164 ST2 ST2 ST2 ST2

Genome size | 4,016,797 | 3,966,329 | 3,958,580 | 3,786,785 3,934,990 | 3,949,273 | 3,925,340 3,955,274

(bp)

% GC 38.90 38.99 38.87 38.88 38.98 39.00 38.98 38.99

No. of 86 71 96 63 68 76 72 81

contigs

Largest 340426 | 292477 | 481102 | 306399 | 303352 | 292477 | 360663 | 292477

contig

3 MED-1 (Medicine-man ward), MED-2 (Medicine-woman ward), ICU-1 (ICU Cardio-
4 Vascular-Thoracic Surgery), ICU-2 (ICU Surgery), MDRAB: multidrug-resistant A.
5 baumannii, XDRAB: extremely drug-resistant A. baumannii

O 00 N O

10
11
12
13
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