Genomic relatedness and dissemination of *bla*_{NDM-5} among *Acinetobacter baumannii* isolated from hospital environments and clinical specimens in Thailand (#78051)

First revision

Guidance from your Editor

Please submit by 25 Dec 2022 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the materials page.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 7 Figure file(s)
- 10 Table file(s)

Custom checks

DNA data checks

- Have you checked the authors data deposition statement?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Genomic relatedness and dissemination of $bla_{\text{NDM-5}}$ among Acinetobacter baumannii isolated from hospital environments and clinical specimens in Thailand

Thawatchai Kitti ¹, Suphattra Manrueang ², Udomluk Leungtongkam ², Supat Khongfak ², Rapee Thummeepak ², Surat Wannalerdsakun ³, Thanyasiri Jindayok ⁴, Sutthirat Sitthisak ^{Corresp. 2, 5}

Corresponding Author: Sutthirat Sitthisak Email address: sutthirats@nu.ac.th

Background: Acinetobacter baumannii (A. baumannii) is an important cause of nosocomial infection, especially in intensive care units (ICUs). It has the propensity to tolerate various environments and multiple classes of antibiotics. Our study aimed to characterize the comparative genomes of A. baumannii from hospital environments and clinical isolates. Methods: Clinical and environmental A. baumannii isolates were collected from a university hospital. Antibiotic susceptibility testing was performed, antibiotic resistance genes (ARG) were characterized, and repetitive element palindromic-PCR (rep-PCR) typing was performed. Eight representative A. baumannii isolated from environmental and clinical samples from the same wards were selected for whole-genome sequencing (WGS) using the Illumina platform. Results: A total of 106 baumannii isolates were obtained from 312 hospital environmental samples. A high percentage of samples with A. baumannii colonization was detected from AMBU bags (77.9%), followed by bedrails (66.7 %) and suction tubes (66.7%). We found that 93.4% of the environmental isolates were multidrugresistant A. baumannii (MDRAB), and 44.7% were extremely drug-resistant A. baumannii (XDRAB). $bla_{OXA-23}bla_{NDM}$ and bla_{OXA-58} were present in 80.2%, 78.3%, and 0.9% of all isolates, respectively. Sixty-one A. baumannii isolates were collected from patient specimens in the same ward. Among all A. baumannii clinical isolates, MDRAB and XDRAB accounted for 82% and 55.7%, respectively. The most dominant ARG identified was bla_{OXA-23} (80.3%), followed by bla_{NDM}(55.7%). The genetic diversity of all isolates using rep-PCR could be divided into 33 genotypes. The genome size of eight A. baumannii ranged from 3.78-4.01 Mb. We found six of eight strains to be bla_{NDM-5} -harboring A. baumannii. Mobile genetic

Department of Oriental Medicine, ChiangRai College, Muang, Chiangrai, Thailand

² Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand

³ Department of Internal Medicine, Faculty of Medicine, Naresuan University, Muang, Phitsanulok, Thailand

⁴ Department of Pathology, Faculty of Medicine, Naresuan University, Muang, Phitsanulok, Thailand

⁵ Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand

elements (MGEs), such as integron1 (*intl*1), located upstream of *bla*_{NDM-5} were observed. The phylogenomic relationship of the core and pan genomes as well as the single nucleotide polymorphism (SNP) count matrix revealed the genetic similarity of *A. baumannii* environmental and clinical strains obtained from the same ward. **Conclusion:** This study confirmed that *A. baumannii* colonized in hospital environments were the main reservoir of nosocomial infection and provides critical information to guide the control of *A. baumannii* infection.

- 1 Genomic relatedness and dissemination of bla_{NDM-5} among Acinetobacter
- 2 baumannii isolated from hospital environments and clinical specimens in
- 3 Thailand

- 5 Thawatchai Kitti¹, Suphattra Manrueang², Udomluk Leungtongkam², Supat Khongfak²,
- 6 Rapee Thummeepak², Surat Wannalerdsakun³, Thanyasiri Jindayok⁴, and Sutthirat
- 7 Sitthisak^{2,5}

8

- ⁹ Department of Oriental Medicine, ChiangRai College, Chiangrai, 57000.
- 10 ² Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan
- 11 University, Phitsanulok, 65000.
- 12 ³ Department of Internal Medicine, Faculty of Medicine, Naresuan University,
- 13 Phitsanulok, 65000.
- ⁴ Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok,
- 15 65000.
- ⁵ Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan
- 17 University, Phitsanulok, Thailand, 65000.

18

- 19 Corresponding Author:
- 20 Assoc. Prof. Dr .Sutthirat Sitthisak
- 21 Department of Microbiology and Parasitology
- 22 Faculty of Medical Sciences, Naresuan University
- 23 Phitsanulok, Thailand
- 24 Tel:66-55-964626
- 25 Fax:66-55-964770
- 26 Email address: sutthirats@nu.ac.th

27

28

29

30

31

32

Abstract

- 34 Background: Acinetobacter baumannii (A. baumannii) is an important cause of
- 35 nosocomial infection, especially in intensive care units (ICUs). It has the propensity to
- 36 tolerate various environments and multiple classes of antibiotics. Our study aimed to
- 37 characterize the comparative genomes of A. baumannii from hospital environments and
- 38 clinical isolates.
- 39 **Methods:** Clinical and environmental A. baumannii isolates were collected from a
- 40 university hospital. Antibiotic susceptibility testing was performed, antibiotic resistance
- 41 genes (ARG) were characterized, and repetitive element palindromic-PCR (rep-PCR)
- 42 typing was performed. Eight representative A. baumannii isolated from environmental
- 43 and clinical samples from the same wards were selected for whole-genome sequencing
- 44 (WGS) using the Illumina platform.
- 45 **Results:** A total of 106 *A. baumannii* isolates were obtained from 312 hospital
- 46 environmental samples. A high percentage of samples with *A. baumannii* colonization
- 47 was ected from AMBU bags (77.9%), followed by bedrails (66.7%) and suction tubes
- 48 (66.7%). We found that 93.4% of the environmental isolates were multidrug-resistant A.
- 49 baumannii (MDRAB), and 44.7% were extremely drug-resistant A. baumannii (XDRAB).
- bla_{OXA-23} bla_{NDM} and bla_{OXA-58} were present in 80.2%, 78.3%, and 0.9% of all isolates,
- 51 respectively. Sixty-one *A. baumannii* isolates were collected from patient specimens in
- 52 the same ward. Among all A. baumannii clinical isolates, MDRAB and XDRAB
- accounted for 82% and 55.7%, respectively. The most dominant ARG identified was
- bla_{OXA-23} (80.3%), followed by bla_{NDM} (55.7%). The genetic diversity of all isolates using
- 55 rep-PCR could be divided into 33 genotypes. The genome size of eight A. baumannii
- 56 ranged from 3.78-4.01 Mb. We found six of eight strains to be bla_{NDM-5} -harboring A.
- 57 baumannii. Mobile genetic elements (MGEs), such as integron1 (int/1), located
- 58 upstream of bla_{NDM-5} were observed. The phylogenomic relationship of the core and pan
- 59 genomes as well as the single nucleotide polymorphism (SNP) count matrix revealed
- 60 the genetic similarity of A. baumannii environmental and clinical strains obtained from
- 61 the same ward.

89

90

91

92

62 **Conclusion:** This study confirmed that *A. baumannii* colonized in hospital environments 63 were the main reservoir of nosocomial infection and provides critical information to 64 guide the control of A. baumannii infection. 65 Introduction 66 67 Acinetobacter baumannii has emerged as an important pathogen related to hospitalacquired infections worldwide. This pathogen is the major cause of ventilator-associated 68 pneumonia (VAP), bacteremia, urinary tract infections, wound infections, and meningitis 69 70 (Nutman et al., 2016). The emergence of antibiotic-resistant A. baumannii, especially 71 MDRAB and XDRAB, has increased and seriously challenged the treatment of these 72 bacterial infections (*Kyriakidis et al.*, 2021). National Antimicrobial Resistance 73 Surveillance Thailand (NARST) reported that the prevalence of carbapenem-resistant Acinetobacter baumannii complex infection in the ICUs of 51 hospitals in Thailand was 74 75 higher than 80% (NARST, 2021). The major mechanism of carbapenem resistance 76 among A. baumannii is the production of antibiotic-hydrolyzing enzymes that belong to Ambler Class D β-lactamases (CHDLs) and class B metallo-lactamases (MBLs) 77 (*Ibrahim et al.*, 2021). Class D carbapenemases encode acquired *bla*_{OXA-23}, *bla*_{OXA-24}, 78 79 and bla_{OXA-58}. These genes have been reported in many countries all over Asia, 80 including China, Korea, Thailand, Vietnam, and Malaysia (*Hsu et al., 2017*). Major MBLs 81 in A. baumannii are encoded by the bland gene and has been reported in Thailand 82 since 2017 (Leungtongkam et al., 2018). To date, twenty-four New Delhi metallo-beta-83 lactamase (NDM) variants have been identified in more than 60 bacterial species, 84 including Acinetobacter spp., and several variants have the ability to enhance carbapenemase activity (Wu et al., 2019). 85 86 A. baumannii has the ability to survive on hospital surfaces and equipment for 87

A. baumannii has the ability to survive on hospital surfaces and equipment for long periods. Hospital surface contamination of A. baumannii is closely correlated with the transmission of the bacteria to patients, causing episodes of bacteremia and/or sepsis (Markogiannakis et al., 2008). Genome sequencing of carbapenem-resistant A. baumannii (CRAB) found on ICU surfaces revealed that the CRAB isolates from ICU environment were linked with those of clinical origin (Yasir et al., 2022). A. baumannii isolates were recovered from surrounding ICU bed surfaces, and these isolates

exhibited a multidrug resistance phenotype and belonged to some widely spread clonal complexes (CCs) of clinical *A. baumannii* isolates (*Rocha et al., 2018*).

Comparative genomics research can help assess the bacterial evolution, resistance mechanisms, and pathogenicity of bacterial pathogens at the genome-wide level; it is also useful in the ensuing study of virulence factors involved in pathogenicity (*Wright et al.*, 2016). Whole-genome sequencing studies comparing distinct clinical and environmental isolates have improved our understanding of the evolution of *A. baumannii*. In this study, we aimed to investigate the resistance rates and epidemiological characteristics of clinical and environmental *A. baumannii* isolates. Then, we determined the draft genome sequence of eight clinical and eight environmental *A. baumannii* strains from the same wards to perform comparative genomic analysis.

Materials & Methods

Samples

Clinical and environmental *A. baumannii* isolates were collected from Naresuan University Hospital between December 2020 and April 2021. Naresuan University is a level III hospital with 400 beds located in the lower northern region of Thailand. Hospital environment and clinical isolates were collected from five wards, which were two medical wards, Medicine-man (MED-1) and Medicine-woman (MED-2), and three intensive care units, the ICU Cardio-Vascular-Thoracic Surgery (ICU-1), ICU Surgery (ICU-2), and ICU Medicine (ICU-MED). The sources of the samples included staff contact samples, which included samples collected from stethoscopes (n=15), charts (n=15), computers/keyboards (n=15), nurse station counters (n=15), medical lab coats (n=15), restroom door handles (n=15), telephones (n= 15), and dressing trolleys (n= 15). Patient contact samples were collected from bedrails (n=15), bedsheets (n=15), suction tubes (n=15), patient tables (n=15), curtains (n=15), humidifiers (n=15), intravenous (IV) stands (n=15), ventilators (n=15), ventilator monitors (n=9), water from ventilators (n=9), suction tubes (n=9), and AMBU bags (n=9). Other environmental samples were collected from the air (n=15), sinks (n=15), and water from sinks (n=15).

123	The protocol was approved by the Naresuan University Institutional Biosafety
124	Committee, and the project number was NUIBC MI62-09-42.
125	Isolation and identification of A. baumannii from hospital environments
126	The air samples were collected using Leeds Acinetobacter Medium (LAM) (Hi-media,
127	India) in 9 cm diameter Petri dishes. Petri dishes were exposed for 24 hrs. The other
128	samples from environmental surfaces were collected using cotton swabs soaked in
129	0.85% normal saline and then placed in transfer media. The swab samples were
130	enriched in Luria-Bertani broth (LB) (Hi-media, India) by shaking at 160 rpm at 37°C for
131	24 hours and then cultured in Leed Acinetobacter Media (LAM) at 37°C for 24 hours.
132	Cultures with pink colonies were selected for further evaluation using Gram's stain and
133	biochemical tests (catalase, oxidase, TSI, citrate). Molecular identification of the
134	bacterial isolates was confirmed by polymerase chain reaction (PCR) using 16S rRNA,
135	rpoB, and bla _{OXA-51} primers (Table S1).
136	Determination of antibiotic susceptibility
137	Antibiotic susceptibility testing was performed according to the disk diffusion method
138	using 12 antibiotics: piperacillin/tazobactam (100 and 10 μg), ceftazidime (30 μg),
139	cefepime (30 μg), cefotaxime (30 μg), ceftriaxone (30 μg), imipenem (10 μg),
140	meropenem (10 μg), gentamicin (10 μg), amikacin (30 μg), tetracycline (30 μg),
141	ciprofloxacin (5 μ g), and trimethoprim/sulfamethoxazole (1.25 and 23.75 μ g). The plates
142	were incubated at 37 °C for 24 hours. The zones of inhibition determined whether the
143	microorganism was susceptible, <mark>intermediately resistant 🔂</mark> resistant to each antibiotic
144	according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (2022).
145	All isolates were defined as non-drug-resistant A. baumannii (NRAB), MDRAB, CR
146	and XDRAB as previously described by Magiorakos et a
147	PCR amplification of antibiotic resistance genes and rep-PCR typing
148	As mentioned earlier, PCR assays to detect bla _{OXA-23} , bla _{OXA-24} , bla _{OXA-58} , and bla _{NDM}
149	were performed using the primers shown in Table S1. The genomic DNA of each isolate
150	was extracted from the overnight cultures using a PureDirex Genomics DNA Isolation
151	Kit (BIO-HELIX, New Taipei City, Taiwan). Rep-PCR was performed by using genomic
152	DNA as a template for PCR amplification with the ERIC-2 primer (Table S1) with the

53	conditions described by Leungtongkam et al. PCR-banding patterns and rep-PCR types
54	were analyzed and interpreted as previously described (Leungtongkam et al., 2018).
55	
56	Whole-genome sequencing and bioinformatics analysis
57	Eight representat A. baumannii strains from four wards, four from hospital
58	environments (AE17, AE30, AE73, AE106) and four from clinical isolates (AC02, AC09,
59	AC23, and AC59) were analyzed. We selected two A. baumannii strains from each ward
60	that were isolated from the same time frame and showed similar antibiotic susceptibility
61	profiles and ARG patterns. All strains were cultured onto an LB agar plate and
62	incubated overnight at 37°C. Genomic DNA was extracted using a PureDire Genomics
63	DNA Isolation Kit (BIO-HELIX, New Taipei City, Taiwan). The extracted DNA was
64	quantified by a nanodrop (Hercuvan, Cambridge, UK). The purified genomic DNA was
65	used to construct libraries followed by sequencing with the Illumina HiSeq 2500-PE125
66	platform at Macrogen, Korea. The nucleotide sequences of the eight A. baumannii
67	strains have been deposited in NCBI's database under Sequence Read Archive (SRA)
68	with Bioproject PRJNA862456 (https://www.ncbi.nlm.nih.gov/sra/PRJNA862456). The
69	genome of A. baumannii ATCC17978 (CP000521) was used as a reference strain for
70	comparison with the eight A. baumannii strains.
71	Genome assembly and annotation
72	Raw sequencing reads were trimmed by using Trim Galore v0.6.7 with default settings
73	and by using Unicycler v0.4.8 with default parameters prior to assembly (Krueger et al.,
74	2012; Wick et al., 2017). The assembled contigs that were larger than 300 bp in length
75	were selected and subjected to further bioinformatic analysis. The remaining contigs
76	were annotated by using Prokka v1.14.6 with default options (Seemann, 2014).
77	Identification of MLST, antimicrobial resistance, and virulence genes
78	The remaining contigs were subjected to detection of drug-resistance and virulence
79	genes by using Abricate v1.0.1 with default settings (Seemann, 2016) against the
80	comprehensive antibiotic resistance database (CARD) and virulence factor database
81	(VFDB) (Alcock et al., 2020; Liu et al., 2022). Multilocus sequence typing (MLST) was
82	performed by using MLST v2.0, which is accessible from the Center for Genomic

Epidemiology (www.genomicepidemiology.org). The gene arrangement analysis of 183 *bla*_{NDM-5} was performed using Easyfig version 2.1 (*Sullivan et al., 2011*). 184 185 Phylogenomic relationships 186 The selected genomes of eight A. baumannii were subjected to Roary v3.13.0 with the 187 default parameters to identify pan- and core genes (*Page et al.*, 2015). The resultant 188 189 core genes among the eight genomes were concatenated prior to the construction of a 190 pangenome tree in the CSI phylogeny, which is accessible from the Center for Genomic Epidemiology (www.genomicepidemiology.org) (Kaas et al., 2014). A core-genome tree 191 was constructed based on the presence/absence of identified core-genes and 192 193 visualized in FigTree v1.4.4 (https://tree.bio.ed.ac.uk/software/figtree/). The SNP count 194 matrix of all selected genomes was calculated in snp-dists v0.6.3 with default settings (Seemann, 2019). 195 196 Statistical analyses Statistical analyses were performed using Stata (Stata 12.0 Corporation). The 197 198 comparisons of the proportions of antibiotic resistance between A. baumannii obtained 199 from the two different origins were analyzed by using the Z-test. The comparisons of 200 antibiotic resistance among A. baumannii collected from the five hospital wards were 201 analyzed by using the chi-square test. P values <0.05 were considered to be a 202 statistically significant difference. Results 203 204 A. baumannii strains isolated from the hospital environment and clinical isolates 205 A total of 106 A. baumannii isolates were obtained from 312 hospital environmental samples (33.97%). The isolates associated with patient contact from 206 207 AMBU bags, bedrails, suction tubes, water from ventilators, bedsheets, patient tables, 208 humidifiers, ventilators, curtains, and IV stands were found in 77.9%, 66.7%, 66.7%, = 209 55.6%, 53.3%, 33.3%, 33.3%, 33.3%, and 13.3% of the samples, respectively. 210 The isolates associated with staff contact and other environments from the air, keyboards, counters, medical lab coats, dressing trolleys, stethoscopes, charts, 211 restroom door handles, and telephones were found in 60.0%, 53.3%, 46.7%, 42.9%, 212 33.3%, 26.7%, 26.7%, 6.7%, 6.7%, and 6.7% of the samples, respectively (Table S2). 213

214	However, we did not find A. baumannii isolates on sinks, water from sinks, or ventilator
215	monitors (Table S2). Of the 312 environmental samples collected from each ward, we
216	found the highest A. baumannii contamination in the samples obtained from ICU
217	Surgery, with a rate of 52.9% (36/38), followed by those obtained from the Medicine-
218	woman (40.7%; 22/54), ICU Medicine (38.2%; 26/68), Medicine-man (27.8%; 5/54), and
219	ICU Cardiovascular-Thoracic Surgery (10.3%; 7/68) wards (Table S2).
220	During the investigation of the prevalence of A. baumannii isolates from the
221	hospital environments of various wards, we found the highest rate of A. baumannii in
222	the ICU Surgery ward (33.9%), followed by the ICU Medicine (24.5%), Medicine-woman
223	(20.8%), Medicine-man (14.2%), and ICU Cardio-Vascular-Thoracic surgery (6.6%)
224	wards (Table 1). A. baumannii isolates were found in the patient specimens collected
225	from the ICU Medicine (24.6%), Medicine-man (24.6%), ICU Surgery (19.7%),
226	Medicine-woman (16.4%), and ICU Cardio-Vascular-Thoracic surgery (14.8%) wards
227	(Table 1).
228	
229	Antibiotic susceptibility patterns of A. baumannii isolates
230	All A. baumannii isolates were subjected to antimicrobial susceptibility testing,
231	and the results are shown in Table 2. A. baumannii isolates from hospital environments
232	were highly resistant to meropenem (100%), cefotaxime (100%), ceftazidime (100%),
233	and ceftriaxone (100%), while the A. baumannii clinical isolates were highly resistant to
234	ceftazidime (90.2%) and ceftriaxone (90.2%). NRAB was detected in only 16.39% of A.
235	baumannii clinical isolates. A high prevalence of MDRAB and CRAP as detected in A.
236	baumannii isolated from hospital environment (ABHE) (93.4% and 100%) and clinical
237	isolates (82.0% and 92.0%) with p value < 0.05, as shown in Table 3. The prevalence of
238	XDRAB in A. baumannii isolates from hospital environments and clinical isolates was
239	44.7% and 55.7%, respectively. (Table 3). Among the five wards, a high prevalence of
240	XDRAB was detected in A. baumannii isolates from ICU Surgery (Table 4).
241	Antibiotic resistance genes and rep-PCR typing
242	16S rRNA and rpoB genes were detected in all A. baumannii isolates. The
243	intrinsic bla _{OXA-51} gene was detected in all ABHE and 96.7% (59/61) of clinical isolates.
244	The oxacillinase gene, <i>bla</i> _{OXA-23} was the most frequently detected gene at 80.20%

(85/106) in ABHE and 80.33% (49/61) in clinical isolates (Table 3). The bla_{OXA-58} gene 245 was detected in one ABHE (0.94%) and one clinical isolate (1.64%). The bland gene 246 247 was detected in 78.3% (83/106) of ABHE (p value < 0.05) compared to 55.74% (34/61) of clinical isolates. The *bla*_{OXA-24} gene was not detected in any of the isolates. Among 248 249 the five wards, a high prevalence of bla_{OXA-23} was detected in ICU Cardio-Vascular-250 Thoracic Surgery, and a high prevalence of *bla*_{NDM} was detected in ICU Surgery (p value < 0.05) (Table 4). 251 Rep-PCR typing was performed, and fingerprinting represented 33 different DNA 252 patterns consisting of amplicon sizes ranging from 500 to 4,000 bp. The genotypes 253 were named T1 to T33. The major genotype of ABHE was T30 at 21.7% (23/106). 254 followed by T23 at 17% (18/106) and T2 at 15% (15/106). The major genotype of the A. 255 256 baumannii clinical isolates was T4 at 34.4% (21/61), followed by T23 at 29.5 % (18/61). Heatmaps representing the antibiotic susceptibility patterns, antimicrobial resistance 257 258 genes, and rep-PCR typing from the five wards is shown in Figures S1-S5. We found 259 genetic similarity between ABHE and A. baumannii clinical isolates in each ward with 260 antibiotic susceptibility patterns and antimicrobial resistance genes since most A. 261 baumannii strains in the same ward showed similar profiles. No association was found 262 between rep-PCR typing of ABHE and A. baumannii clinical isolates (Figures S1-S5).

264265

266

267

268

269

270

271

272

273

274

275

genome sequencing.

263

Comparative genomic and phylogenomic analysis of *A. baumannii* from hospital environmental and clinical isolates

Eight strains of A. baumannii with similar profiles from four wards were selected for

Eight strains of *A. baumannii* from clinical and environmental isolates were analyzed and compared with the genome of *A. baumannii* ATCC17978. The four ABHE were AE17 (patient table), AE30 (bedrail), AE73 (dressing trolley), and AE106 (AMBU bag). The four clinical isolates were AC02 (blood hemoculture), AC09 (sputum), AC23 (sputum), and AC59 (right hepatic drain). AC02 and AE03 were obtained from the Medicine-man ward. AC59 and AE17 were obtained from the Medicine-woman ward. AC09 and AE106 were derived from the ICU Cardio-Vascular-Thoracic Surgery ward. AC23 and AE73 were derived from the ICU Surgery ward. The genome characterization

of the isolates is summarized in Table 5. The genome analysis revealed that AC02, 276 AE30, AC09, AE106, AC23 and AE73 belong to ST2 based on the Pasteur MLST 277 278 scheme. However, AC59 and AE17 belong to ST164. The predicted genome sizes of the eight A. baumannii strains ranged from 3.78 to 4.01 Mb compared to the genome of 279 ATCC17978, which was 3.97 Mb. 280 281 ARGs and virulence genes of eight A. baumannii strains showed genetic similarity among A. baumannii hospital environments and clinical isolates but were slightly 282 283 different from the genome of ATCC17978 (Figure 1AB). The ARGs detected in all eight A. baumannii strains as well as ATCC 17978 encoded macrolide resistance genes 284 (amvA) and a number of genes encoding efflux pumps involved in resistance in 285 glycylcycline/tetracycline (adeR, adeS, adeA, adeB), fluoroguinolone/tetracycline (adeF, 286 287 adeG, adeH, adeL), fluoroquinolone (abaQ, abeM), fosfomycin (abaF), and multidrug resistance (adel, adeJ, adeK, adeN, abeS). We identified 23 ARGs present in only 288 289 some A. baumannii strains, which encoded the efflux pump (adeC) and genes involved in resistance to tetracycline (tet(39), tetB), cephalosporins (bla_{ADC-10}, bla_{ADC-6}, bla_{ADC-73}, 290 291 bla_{ADC-79}, bla_{TEM-1}, bla_{TEM-12}), carbapenems (bla_{OXA-23}, bla_{OXA-66}, bla_{OXA-91}, bla_{OXA-259}), 292 macrolide (mphE, msrE), aminoglycoside (aadA5, armA, aph(3")-lb, aph(6)-ld), 293 sulfonamide (*sul*1, *sul*2), and integron-encoded dihydrofolate reductase (*dfrA17*). A class B β-lactamase gene, bla_{NDM-5} that hydrolyzes virtually all β-lactam 294 295 antibiotics, including carbapenems, was detected in six strains except ATCC17978, AE17 and AC59 (Figure 1AB). Genetic contexts of *bla*_{NDM-5} revealed mobile genetic 296 297 elements (MGEs), such as integron1 (intl1), IS91 family transposase, and transposase 298 (ISAba125), along with other AGRs, ant(3")-la, gacEΔ1, and sul1, located upstream and 299 downstream of *bla*_{NDM-5} (Figure 1C). 300 Analysis of the virulence genes of eight *A. baumannii* strains and ATCC17978 revealed that the genes were involved in biofilm formation (adeF, adeG, 301 adeH, bap, csuA/B, csuA, csuB, csuC, csuD, csuE, pgaA, pgaB, pgaC, pgaD), enzyme 302 phospholipase (plcC, plcD), immune evasion (lpsB, lpxA, lpxB, lpxD, lpxL, lpxM), iron 303 304 uptake (barA, barB, basA, basB, basC, basD, basF, basG, basI, basJ, bauA, bauB, bauC, bauD, bauE, bauF, entE), gene regulation (abal, abaR, bfmR, bfmS), serum 305 resistance (pbpG), and host cell adherence (ompA) (Figure 1B). The genes involved in 306

308

309

310

311

312

313

314

315

316

317

capsule polysaccharide synthesis (*weoB*) and the gene encoding glycosyltransferase in lipopolysaccharide (LPS) biosynthesis (*lpsB*) were detected in only one strain, ATCC 17978 and AC09 (Figure 1B).

The phylogenomic relationship of the core and pan genomes of eight *A. baumannii* and ATCC17978 strains shown in Figure 2AB revealed three major clades. The *A. baumannii* strains obtained from the ICU-1, ICU-2, and Med-1 wards were in the same clade, while the *A. baumannii* strains obtained from the Med-2 ward were in different clades. The genome of ATCC17978 showed different clades from all eight *A. baumannii* strains. The SNP count matrix of all selected genomes confirmed that the high number of SNPs of AC59 and AE17 derived from the Med-2 ward were comparable with other *A. baumannii* strains (Figure 2C).

318

319320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Discussion

A. baumannii is an opportunistic pathogen that causes hospital-acquired infections in patients who have high risk factors, such as patients in intensive care units (ICUs). This bacterium is extremely capable of surviving, spreading, and developing antibiotic resistance in hospital wards (*Vázquez-López et al., 2020*). In this study, we investigated A. baumannii from three ICUs and two medicine wards from a university hospital to identify nosocomial infection-associated bacteria. A total of 106 isolates of A. baumannii were isolated from 312 environmental samples, which were frequently in contact with staff and patients. The highest numbers of staff and patient contact samples with A. baumannii colonization were from AMBU bags (77.9%) and keyboards (53.3%). Shamsizadeh et al. (2017) reported that A. baumannii was detected in environmental samples with the highest recovery in intensive care units (ICUs). This is in agreement with our study in which we isolated the highest number of A. baumannii from two ICUs. A previous study demonstrated that A. baumannii was isolated from hospital sinks, bed rails, water systems, and medical equipment, particularly in ICUs and surgical units (*Ibrahim et al.*, 2021). We detected a high number of A. baumannii from AMBU bags (77.9%), followed by bedrails (66.7%) and suction tubes (66.7%). However, we did not obtain A. baumannii from hospital sinks or water from sinks. In addition, a previous study reported that the airborne route also plays an important role

PeerJ

in the transmission of A. baumannii infections in hospitals (Ayoub Moubareck et al., 338 339 2020). Our study confirmed that a high number of A. baumannii was isolated from air (60.0%). A. baumannii was associated with hospital-acquired outbreaks due to its ability 340 to spread in the air environment and colonize hospital utensils. 341 342 MDRAB and CRAB were described as major resistant strains that caused hospital outbreaks in Thailand (Leungtongkam et al., 2018; Chukamnerd et al., 2022). 343 High prevalence rates of both MDRAB and CRAB were found in this study. We found 344 345 that the resistance rate of A. baumannii isolated from hospital environments was higher than that isolated from clinical samples. In addition, all A. baumannii isolates isolated 346 from hospital environments were resistant to meropenem (100%), cefotaxime (100%). 347 ceftazidime (100%), and ceftriaxone (100%), and all isolates were CRAB. The results 348 349 were in contrast with a Chinese study showing that A. baumannii isolated from the hospital environment was more susceptible to most antimicrobial agents (Ying et al., 350 351 2015). 352 Our data showed that A. baumannii isolated from hospital environments and 353 clinically isolated from the same ward possessed similar antibiotic susceptibility profiles, 354 and ARG patterns represented the outbreak clone in each ward (Figure S1–S5). Among 355 all isolates, the results showed that *bla*_{OXA-23} was the most frequent carbapenemase 356 gene detected. This result suggests that *bla*_{OXA-23} was the major cause of carbapenem 357 resistance in A. baumannii isolates from hospital environments and clinical samples in our hospitals. This result was supported by Leungtongkam et al. (2018), who detected 358 359 bla_{OXA-23} in all A. baumannii isolates from four tertiary hospitals in Thailand. Jain et al. (2019) reported that *bla*_{NDM-1} was the most frequent gene detected in *A. baumannii* 360 361 isolated in both clinical and environmental samples from India (Jain et al., 2019). 362 Interestingly, we found a high prevalence of bland among both the hospital 363 environment and clinical sample isolates. Compared to a previous report from Thailand, 364 a low rate of bland was detected in A. baumannii isolates from hospitals in northern and southern Thailand (Leungtongkam et al., 2018; Chukamnerd et al., 2022). 365 366 Genomic analysis of eight representative MDRAB strains found that the major ST type (AC02, AE30, AC09, AE106, AC23, and AE73) was ST2. It has been reported that 367 MDRAB sequence type ST2 was the most prevalent in Thailand. The AC59 and AE17 368

strains were designated ST164, which was also reported in Thailand (Khuntayaporn et 369 370 al., 2021). NDM-producing organisms have become endemic in the Indian subcontinent. 371 and numerous epidemics have been recorded worldwide. Genomic analysis found that the AC02, AE30, AC09, AE106, AC23, and AE73 strains possess an NDM-5 metallo-β-372 373 lactamase gene. This is the first report regarding the detection of an NDM-5-producing 374 A. baumannii from hospital environments and clinical samples in Thailand. The emergence of the *bla*_{NDM-5} gene was mostly identified in *Escherichia coli*. To date, only 375 376 one report by Khalid et al. (2020) identified A. baumannii harboring bla_{NDM-5} from the neonatal intensive care unit (NICU) of an Indian Hospital, but it was not present in 377 environmental isolates (*Hamidian et al.*, 2019). Our PCR study identified the *bla*_{NDM} 378 379 gene but could not specifically identify the NDM variant. The outbreak clone harboring 380 bla_{NDM-5} was revealed using WGS. Mobile genetic elements such as insertion sequences, transposons, and integrons can mobilize blaN_{DM-5} (Wu et al., 2019). Our 381 382 WGS analysis revealed *intl1* located upstream of *bla*_{NDM-5} (Figure 1C). A previous report on E. coli detected blands to be located in a complex of class 1 integrons together with 383 384 aadA2, aac(3)-IIa, mph(A), sul1, tet(A), and dfrA12 (Alba et al., 2021). In this study, we 385 found ant(3")-la, $qacE\Delta 1$, and sul1. 386 WGS of eight strains revealed a high number of ARGs in accordance with 387 previous reports in Thailand (Kongthai et al., 2021; Wareth et al., 2021; Chukamnerd et 388 al, 2022). Among the eight strains, the antibiotic resistance gene patterns of A. baumannii differed among wards but were similar in the same ward. A high number of 389 390 acquired ARGs was detected. Horizontal gene transfer among A. baumannii and other 391 bacterial species colonizing the hospital environment may play an important role in the 392 movement of these acquired ARGs. Interestingly, we found that the virulence gene 393 patterns of A. baumannii strains from four wards were quite similar (Figure 1B). These findings indicated that all A. baumannii strains from the four wards were derived from 394 395 the same ancestor and employed the same pathogenic mechanisms to cause disease. 396 The phylogenomic relationship of the core and pan genomes as well as the SNP count 397 matrix revealed the genetic similarity of A. baumannii strains obtained from the same 398 ward. This is in agreement with a previous study by Yasir et al. (2022), in which genome

399	sequencing revealed that A. baumannii isolated from hospital environments was linked
400	with those of clinical origin (Yasir et al., 2022).
401	
402	Conclusions
403	In conclusion, in this study, we presented a whole-genome analysis of eight A.
404	baumannii strains from hospital environments and clinical samples. Our data revealed
405	the epidemiological characteristics of similar antibiotic susceptibility profiles, antibiotic
406	resistance genes, virulence genes, clonal complexes, core genomes, pan genomes,
407	and single nucleotide polymorphisms among clinical and environmental A. baumannii
408	isolates from the same ward.
409	
410	Acknowledgements
411	The authors would like to thank the staffs of Naresuan university hospitals for collecting
412	the bacterial isolates.
413	Abbreviations
414	ARG: antibiotic resistance gene
415	ABHE: A. baumannii isolated from hospital environment
416 417	CARD: comprehensive antibiotic resistance database CRAB: carbapenem-resistant <i>A. baumannii</i>
418	MDRAB: multidrug-resistant A. baumannii
419 420	MLST: multilocus sequence typing NDM: New Delhi metallo-beta-lactamase
421	NRAB: non drug- resistant <i>A. baumannii</i>
422	SNP: single nucleotide polymorphism
423	VFDB: virulence factor database
424	XDRAB: extremely drug-resistant <i>A. baumannii</i>
425 426	WGS: whole-genome sequencing
426 427	References
428	Alba P, Taddei R, Cordaro G, Fontana MC, Toschi E, Gaibani P, Marani I, Giacomi
429	A, Diaconu EL, Iurescia M, Carfora V, Franco A. 2021. Carbapenemase IncF-
430	borne bla _{NDM-5} gene in the E. coli ST167 high-risk clone from canine clinical
	-

131	infection, Italy. Veterinary Microbiology 256 :109045 DOI
132	10.1016/j.vetmic.2021.109045.
133	Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh
134	W, Nguyen AV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK,
135	Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M,
136	Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk
137	HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL,
138	Hsiao WWL, Domselaar GV, McArthur AG. 2020. CARD 2020: antibiotic
139	resistome surveillance with the comprehensive antibiotic resistance
140	database. Nucleic Acids Research 48(D1):D517- D525 DOI 10.1093/nar/gkz935.
141	Ayoub Moubareck C, Hammoudi Halat D. 2020. Insights into Acinetobacter
142	baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a
143	Threatening Nosocomial Pathogen. Antibiotics 9(3):119 DOI
144	10.3390/antibiotics9030119.
145	Chukamnerd A, Singkhamanan K, Chongsuvivatwong V, Palittapongarnpim P, Doi
146	Y, Pomwised R, Sakunrangd C, Jeenkeawpiamd K, Yingkajornd M,
147	Chusriaid S, Surachat K. 2022. Whole-genome analysis of carbapenem-
148	resistant Acinetobacter baumannii from clinical isolates in Southern Thailand.
149	Computational and Structural Biotechnology Journal 20:545–558 DOI
150	10.1016/j.csbj.2021.12.038.
1 51	Hamidian M, Nigro SJ. 2019. Emergence, molecular mechanisms and global spread of
152	carbapenem-resistant Acinetobacter baumannii. Microbial Genomics
153	5(10) :e000306 DOI 10.1099/mgen.0.000306.
154	Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. 2017.
155	Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in
156	South and Southeast Asia. Clinical Microbiology Reviews 30(1):1-22 DOI
157	10.1128/CMR.masthead.30-1.
158	Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. 2021. Multidrug-resistant
159	Acinetobacter baumannii as an emerging concern in hospitals. Molecular Biology
160	Reports 48(10):6987-6998 DOI 10.1007/s11033-021-06690-6.

161	Jain M, Sharma A, Sen MK, Rani V, Gaind R, Suri JC. 2019. Phenotypic and
162	molecular characterization of Acinetobacter baumannii isolates causing lower
163	respiratory infections among ICU patients. Microbial Pathogenesis 128:75-81 DOI
164	10.1016/j.micpath.2018.12.023.
165	Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. 2014. Solving the problem
166	of comparing whole bacterial genomes across different sequencing platforms.
167	PLoS ONE 9:e104984 DOI 10.1371/journal.pone.0104984.
168	Khuntayaporn P, Kanathum P, Houngsaitong J, Montakantikul P, Thirapanmethee
169	K, Chomnawang MT. 2021. Predominance of international clone 2 multidrug-
170	resistant Acinetobacter baumannii clinical isolates in Thailand: a nationwide
171	study. Annals of Clinical Microbiology and Antimicrobials 20:1-11 DOI
172	10.1186/s12941-021-00424-z.
173	Kongthai P, Thummeepak R, Leungtongkam U, Pooarlai R, Kitti T, Thanwisai A,
174	Chantratita N, Millard AD, Sitthisak S. 2021. Insight into molecular
175	epidemiology, antimicrobial resistance, and virulence genes of extensively drug-
176	resistant Acinetobacter baumannii in Thailand. Microbial Drug Resistance 27(3):
177	350-359 DOI 10.1089/mdr.2020.0064.
178	Krueger F. 2012. Trim Galore: a wrapper tool around Cutadapt and FastQC to
179	consistently apply quality and adapter trimming to FastQ files, with some extra
180	functionality for Mspl-digested RRBS-type (Reduced Representation Bisufite-
181	Seq) libraries. Available at http://www. bioinformatics. babraham. ac.
182	uk/projects/trim_galore/(accessed 10 May 2022).
183	Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. 2021. Acinetobacter baumannii
184	Antibiotic Resistance Mechanisms. Pathogens 10(3):373 DOI
185	10.3390/pathogens10030373.
186	Leungtongkam U, Thummeepak R, Wongprachan S, Thongsuk P, Kitti T, Ketwong
187	K, Runcharoen C, Chantratita N, and Sitthisak S. 2018. Dissemination of bla
88	OXA-23, bla OXA-24, bla OXA-58, and bla NDM-1 Genes of Acinetobacter
189	baumannii Isolates from Four Tertiary Hospitals in Thailand. Microbial Drug
190	Resistance 24(1) :55-62 DOI 10.1089/mdr.2016.0248.

191	Liu B, Zheng DD, Zhou SY, Chen LH, Yang J. 2022. VFDB 2022: a general
192	classification scheme for bacterial virulence factors. Nucleic Acids Research
193	50(D1) :D912-D917 DOI 10.1093/nar/gkab1107.
194	Magiorakos AP, Srinivasan RB, Carey Y, Carmeli ME, Falagas CG, Giske S. 2012.
195	Multidrug-resistant, extensively drug resistant and pandrug-resistant bacteria: an
196	international expert proposal for interim standard definitions for acquired
197	resistance. Clinical Microbiology and Infection 18(3):268-281 DOI
198	10.1111/j.1469-0691.2011.03570.x.
199	Markogiannakis A, Fildisis G, Tsiplakou S, Ikonomidis A, Koutsoukou A,
500	Pournaras S, Manolis EN, Baltopoulos G, Tsakris A. 2008. Cross-
501	transmission of multidrug-resistant Acinetobacter baumannii clonal strains
502	causing episodes of sepsis in a trauma intensive care unit. Infection Control &
503	Hospital Epidemiology 29(5) :410-7 DOI 10.1086/533545.
504	NARST.2021. National Antimicrobial Resistance Surveillance Center, THAILAND.
505	Available at http://www.narst.dmsc.moph.go.th/(accessed 10 May 2021).
506	Nutman A, Lerner A, Schwartz D, Carmeli Y. 2016. Evaluation of carriage and
507	environmental contamination by carbapenem-resistant Acinetobacter baumannii.
508	Clinical Microbiology and Infection 22(11):949.e5-949.e7 DOI
509	10.1016/j.cmi.2016.08.020.
510	Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M,
511	Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan
512	genome analysis. Bioinformatics 31(22):3691–3693 DOI
513	10.1093/bioinformatics/btv421
514	Piewngam P, Kiratisin P.2014. Comparative assessment of antimicrobial susceptibility
515	testing for tigecycline and colistin against Acinetobacter baumannii clinical
516	isolates, including multidrug-resistant isolates. International Journal of
517	Antimicrobial Agents 44(5):396-401 DOI 10.1016/j.ijantimicag.2014.06.014.
518	Rocha IV, Xavier DE, Almeida KRH, Oliveira SR, Leal NC.2018. Multidrug-resistant
519	Acinetobacter baumannii clones persist on hospital inanimate surfaces. The
520	Brazilian Journal of Infectious Diseases 22(5):438-441 DOI
521	10.1016/j.bjid.2018.08.004.

522	Seemann T.2014. Prokka: rapid prokaryotic genome annotation. <i>Bioinformatics</i>
523	30(14) :2068-9. DOI 10.1093/bioinformatics/btu153.
524	Seemann T. 2016. ABRicate: mass screening of contigs for antibiotic resistance genes.
525	v1.0.1. Available at https://github.com/tseemann/abricate(accessed 10 May
526	2022).
527	Seemann T.2019. snp-dists. GitHub repository. GitHub. Available at
528	https://github.com/tseemann/snp-dists (accessed 10 May 2022).
529	Shamsizadeh Z, Nikaeen M, Nasr Esfahani B, Mirhoseini SH, Hatamzadeh M,
530	Hassanzadeh A. 2017. Detection of antibiotic resistant Acinetobacter baumannii
531	in various hospital environments: potential sources for transmission of
532	Acinetobacter infections. Environmental Health and Preventive Medicine 22:44
533	DOI 10.1186/s12199-017-0653-4.
534	Sullivan MJ, Petty NK, Beatson SA.2011. Easyfig: a genome comparison visualizer.
535	Bioinformatics 27(7):1009-1010 DOI 10.1093/bioinformatics/btr039.
536	Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde
537	JA, Padró Alonzo LA, Rivera Reséndiz A, Muleiro Álvarez M, Vega López
538	EN, Franyuti-Kelly G, Álvarez-Hernández DA, Moncaleano Guzmán V,
539	Juárez Bañuelos JE, Marcos Felix J, González Barrios JA, Barrientos
540	Fortes T. 2020. Acinetobacter baumannii Resistance: A Real Challenge for
541	Clinicians. Antibiotics 9(4):205 DOI 10.3390/antibiotics9040205.
542	Wareth G, Linde J, Nguyen NH, Nguyen TNM, Sprague LD, Pletz MW, Neubauer
543	H.2021. WGS-Based Analysis of Carbapenem-Resistant Acinetobacter
544	baumannii in Vietnam and Molecular Characterization of Antimicrobial
545	Determinants and MLST in Southeast Asia. Antibiotics 10(5):563 DOI
546	10.3390/antibiotics10050563.
547	Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome
548	assemblies from short and long sequencing reads. PLoS computational biology
549	13(6) : p. e1005595 DOI 10.1371/journal.pcbi.1005595.
550	Wright MS, lovleva A, Jacobs MR, Bonomo RA, Adams MD. 2016. Genome
551	dynamics of multidrug-resistant Acinetobacter baumannii during infection and
552	treatment. Genome Medicine 8:26 DOI 10.1186/s13073-016-0279.

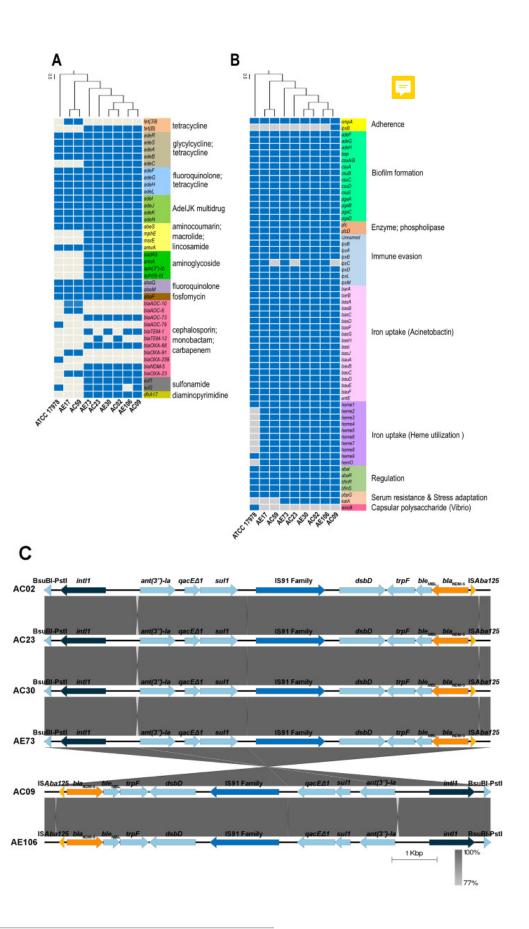

553	Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. 2019. NDM Metallo-β-
554	Lactamases and Their Bacterial Producers in Health Care Settings. Clinical
555	Microbiology Reviews 32(2):e00115-18 DOI 10.1128/CMR.00115-18.
556	Yasir M, Subahi AM, Shukri HA, Bibi F, Sohrab SS, Alawi M, Sindi AA, Jiman-
557	Fatani AA, Azhar EI. 2022. Bacterial Community and Genomic Analysis of
558	Carbapenem-Resistant Acinetobacter baumannii Isolates from the Environment
559	of a Health Care Facility in the Western Region of Saudi Arabia. Pharmaceuticals
560	15(5) :611 DOI 10.3390/ph15050611.
561	Ying C, Li Y, Wang Y, Zheng B, Yang C. 2015. Investigation of the molecular
562	epidemiology of Acinetobacter baumannii isolated from patients and
563	environmental contamination. The Journal of Antibiotics 68(9):562-7 DOI
564	10.1038/ja.2015.30.

Figure 1

Detections of antibiotic resistance, virulence genes, and genetic contexts of A. baumannii harboring bla_{NDM-5} among 8 representative A. baumannii strains and ATCC 17978.

(A) The pattern of acquired resistance genes, (B) virulence factor-associated genes in the A. baumannii genomes, and (C) genetic contexts and comparison of the gene arrangement of six A. baumannii isolates harboring bla_{NDM-5} . The arrows indicate genes located upstream and downstream of bla_{NDM-5} , including Integron1 (intl1), BsuBI-PstI family restriction endonuclease (Bsu-PstI), aminoglycoside 3''-nucleotidyltransferase (ant(3")-la), quaternary ammonium compound efflux ($qacE\Delta 1$), sulfonamide resistance (sul1), IS91 family transposase, cytochrome c-type biogenesis protein (DsbD), N-(5'-phosphoribosyI) anthranilate isomerase (trpF), bleomycin resistance protein (ble_{MBL}), New Delhi metallo-beta-lactamase 5 (bla_{NDM-5}), and transposase (ISAba125).

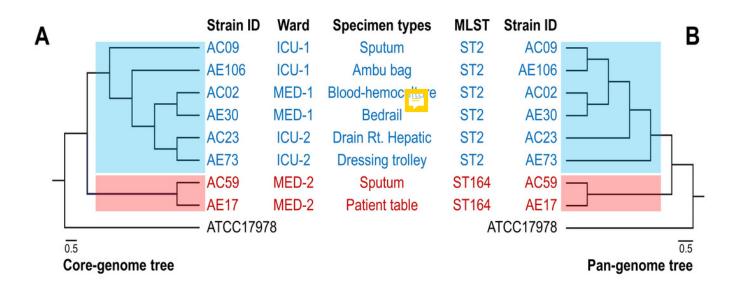


Figure 2

Phylogenomic relationship among selected representative isolates of *Acinetobacter* baumannii obtained from different wards.

(A) A phylogeny reconstructed from 2,928 concatenated core genes of all analyzed genomes presented with metadata. (B) Hierarchical tree based on the presence/absence of patterns of 4,778 pangenome genes of 8 representative isolates and ATCC 17978. (C) SNP matrix-based heatmap illustrating the number of single nucleotide polymorphisms in the whole genome between the eight strains studied.

•								
C AC02	0							
AE30	283	0						
AC23	402	317	0					
AE73	446	247	155	0				
AE106	651	604	393	450	0			
AC09	1220	1061	1088	1004	1043	0		
AC59	43731	43843	43739	43826	43789	43858	0	
AE17	43564	43664	43598	43669	43694	43787	547	0
	AC02	AE30	AC23	AE73	AE106	AC09	AC59	AE17

Table 1(on next page)

A. baumannii isolated from hospital environments and clinical samples from various hospital wards.

1 Table 1: A. baumannii isolated from hospital environments and clinical samples

2 from various hospital wards.

Ward		Positive environment		Positive Clinical	
		n	%	n	%
MED-1	Medicine-man ward	15	14.2%	15	24.6%
MED-2	Medicine-woman ward	22	20.8%	10	16.4%
ICU-MED	ICU Medicine	26	24.5%	15	24.6%
ICU-1	ICU Cardio-Vascular-Thoracic Surgery	7	6.6%	9	14.8%
ICU-2	ICU Surgery	36	33.9%	12	19.6%
Total		106	100.00%	61	100.00%

3

4

Table 2(on next page)

Frequency of resistance to antimicrobial agents among *A. baumannii* isolates from hospital environments and clinical samples.

- 1 Table 2: Frequency of resistance to antimicrobial agents among *A. baumannii*
- 2 isolates from hospital environments and clinical samples.

Antimicrobial Group	Antibiotics	Resistance		
		hospital Environment	Clinical	
β-Lactam combinations	Piperacillin/Tazobactam	80.2%	81.9%	
Cephems	Ceftazidime	100.0%	90.2%	
	Cefepime	99.1%	85.3%	
	Cefotaxime	100.0%	88.3%	
	Ceftriaxone	100.0%	90.2%	
Carbapenems	Imipenem	77.4%	55.7%	
	Meropenem	100.0%	83.6%	
Aminoglycosides	Gentamicin	77.4%	70.5%	
	Amikacin	62.3%	67.2%	
Tetracyclines	Tetracycline	74.5%	73.8%	
Fluoroquinolones	Ciprofloxacin	79.2%	83.6%	
Folate pathway inhibitors	Trimethoprim/Sulfamethoxazole	88.7%	81.9%	

4

5

Table 3(on next page)

The statistical analysis for comparing the proportions of antibiotic resistance between *A. baumannii* obtained from two different origins

* Comparison of percentages between two groups by Z-test ** ND; Not determined statistical analysis Note: A p value < 0.05 reflected statistically significant findings . CRAB: carbapenem-resistant *A. baumannii*; MDRAB: multidrug-resistant *A. baumannii*; XDRAB: extremely drug-resistant *A. baumannii*

2

4

Table 3. The statistical analysis for comparing the proportions of antibiotic resistance between *A. baumannii* obtained from two different origins

Characteristics	Clinical origin (n=61 isolates)	Environmental origin (n=106 isolates)	*p value (95% CI)
Prevalence of MDRAB	50/61 (82.0%)	99/106 (93.4%)	0.021 (22.2% to 0.7%)
Prevalence of CRAB	50/61 (92.0%)	106/106 (100%)	<0.001 (83.8% to 27.7%)
Prevalence of XDRAB	34/61 (55.7%)	47/106 (44.7%)	0.116 (27.0% to 4.2%)
Prevalence of <i>bla</i> _{OXA-23} positive isolates	49/61 (80.3%)	85/106 (80.2%)	0.983 (12.4% to -12.7%)
Prevalence of <i>bla</i> _{OXA-} ₅₈ positive isolates	1/61 (1.6%)	1/106 (0.9%)	** ND
Prevalence of <i>bla</i> _{NDM} positive isolates	34/61 (55.7%)	83/106 (78.3%)	0.002 (37.3% to 7.8%)

^{*} Comparison of percentages between two groups by Z-test

^{**} ND; Not determined statistical analysis

⁷ Note: A p value < 0.05 reflected statistically significant findings.

⁸ CRAB: carbapenem-resistant *A. baumannii*; MDRAB: multidrug-resistant *A. baumannii*; XDRAB:

⁹ extremely drug-resistant A. baumannii

Table 4(on next page)

Proportion comparisons of antibiotic resistance among *A. baumannii* collected from five hospital wards

* overall p value calculated to compare percentages among multiple groups by Chi-square test ** ND; Not determined statistical analysis Note: Bold values denote the highest proportions with statistical significance at the p value < 0.05 level. MED-1 (Medicine-man ward), MED-2 (Medicine-woman ward), ICU-MED (ICU Medicine), ICU-1 (ICU Cardio-Vascular-Thoracic Surgery), ICU-2 (ICU Surgery) CRAB: carbapenem-resistant *A. baumannii*; MDRAB: multidrug-resistant *A. baumannii*; XDRAB: extremely drug-resistant *A. baumannii*

1 Table 4. Proportion comparisons of antibiotic resistance among *A. baumannii* 2 collected from five hospital wards

Hospital MED-1 MED-2 ICU-ICU-1 ICU-2 *p value wards/Characteristics MED 29/30 26/32 37/41 42/48 0.386 15/16 Percentage of MDRAB (90.2%) (81.3%) (93.3%)(87.5%)(96.7%) 39/41 42/48 0.490 29/30 31/32 15/16 Percentage of CRAB (96.7%)(96.9%)(95.1%) (93.8%)(87.5%)11/32 13/41 36/48 13/30 8/16 < 0.001 Percentage of XDRAB (43.3%)(34.4%)(31.7%)(50%)(75%)Percentage of *bla*_{OXA-23} 27/30 14/32 36/41 15/16 42/48 < 0.001 positive isolates (90%)(43.8%)(87.8%) (93.8%) (87.5%)** ND Percentage of bla_{OXA-58} 1/30 0/32 0/41 0/16 1/48 positive isolates (3.3%)(0%)(0%)(0%)(2.1%)Percentage of *bla*_{NDM} 14/30 29/32 22/41 8/16 44/48 < 0.001 (46.7%) positive isolates (90.6%) (53.7%) (91.7%) (50%)

- 9 MED-1 (Medicine-man ward), MED-2 (Medicine-woman ward), ICU-MED (ICU
- 10 Medicine), ICU-1 (ICU Cardio-Vascular-Thoracic Surgery), ICU-2 (ICU Surgery)
- 11 CRAB: carbapenem-resistant A. baumannii; MDRAB: multidrug-resistant A. baumannii;
- 12 XDRAB: extremely drug-resistant A. baumannii

13

^{*} overall p value calculated to compare percentages among multiple groups by Chisquare test

^{6 **} ND; Not determined statistical analysis

⁷ Note: Bold values denote the highest proportions with statistical significance at the p

⁸ value < 0.05 level.</p>

Table 5(on next page)

Medical and general genome features of 8 representatives *A. baumannii* isolated from various hospital wards.

MED-1 (Medicine-man ward), MED-2 (Medicine-woman ward), ICU-1 (ICU Cardio-Vascular-Thoracic Surgery), ICU-2 (ICU Surgery), MDRAB: multidrug-resistant *A. baumannii*, XDRAB: extremely drug-resistant *A. baumannii*

1 Table 5: Medical and general genome features of 8 representatives A. baumannii

2 isolated from various hospital wards.

Strain ID/ Characteristi	AC02	AE30	AC59	AE17	AC09	AE106	AC23	AE73
cs								
Ward	MED-1	MED-1	MED-2	MED-2	ICU-1	ICU-1	ICU-2	ICU-2
Specimen	Blood-	Bedrail	Sputum	Patient	Sputum	AMBU	Right	Dressing
types	hemocult			table		bag	Hepatic	trolley
	ure						Drain	
Antibiotic	XDRAB	XDRAB	MDRAB	MDRAB	XDRAB	XDRAB	MDRAB	MDRAB
Resistance								
MLST	ST2	ST2	ST164	ST164	ST2	ST2	ST2	ST2
Genome size	4,016,797	3,966,329	3,958,580	3,786,785	3,934,990	3,949,273	3,925,340	3,955,274
(bp)								
% GC	38.90	38.99	38.87	38.88	38.98	39.00	38.98	38.99
No. of	86	71	96	63	68	76	72	81
contigs								
Largest	340426	292477	481102	306399	303352	292477	360663	292477
contig								

MED-1 (Medicine-man ward), MED-2 (Medicine-woman ward), ICU-1 (ICU Cardio-

6 7

8

9

10

11

12

13

⁴ Vascular-Thoracic Surgery), ICU-2 (ICU Surgery), MDRAB: multidrug-resistant A.

⁵ baumannii, XDRAB: extremely drug-resistant A. baumannii