Genomic relatedness and dissemination of bla,g, s

amongst Acinetobacter baumannii isolated from
hospital environments and clinical specimens
(#78051)

First submission

Guidance from your Editor

Please submit by 6 Nov 2022 for the benefit of the authors (and your token reward) .

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Custom checks
Make sure you include the custom checks shown below, in your review.

Author notes
Have you read the author notes on the guidance page?

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

PHESO

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files 7 Figure file(s)
Download and review all files 8 Table file(s)

from the materials page.

@ Custom checks DNA data checks

Have you checked the authors data deposition statement?

Can you access the deposited data?
Has the data been deposited correctly?
Is the deposition information noted in the manuscript?


https://peerj.com/submissions/78051/reviews/1225045/guidance/
https://peerj.com/submissions/78051/reviews/1225045/materials/
https://peerj.com/submissions/78051/reviews/1225045/materials/#question_23

For assistance email peer.review@peerj.com

Structure and 2
Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING EXPERIMENTAL DESIGN
Clear, unambiguous, professional English Original primary research within Scope of
language used throughout. the journal.
Intro & background to show context. Research question well defined, relevant
Literature well referenced & relevant. & meaningful. It is stated how the

Structure conforms to Peer] standards, research fills an identified knowledge gap.

discipline norm, or improved for clarity. Rigorous investigation performed to a
high technical & ethical standard.

Figures are relevant, high quality, well
labelled & described. Methods described with sufficient detail &

Raw data supplied (see Peer] policy). information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Conclusions are well stated, linked to
Meaningful replication encouraged where original research question & limited to
rationale & benefit to literature is clearly supporting results.

stated.

All underlying data have been provided;
they are robust, statistically sound, &
controlled.


mailto:peer.review@peerj.com
https://peerj.com/submissions/78051/reviews/1225045/
https://peerj.com/submissions/78051/reviews/1225045/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

Standout
reviewing tips

P

The best reviewers use these techniques
Tip

Support criticisms with
evidence from the text or from
other sources

Give specific suggestions on
how to improve the manuscript

Comment on language and
grammar issues

Organize by importance of the
issues, and number your points

Please provide constructive
criticism, and avoid personal
opinions

Comment on strengths (as well
as weaknesses) of the
manuscript

Example

Smith et al (] of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Your introduction needs more detail. | suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 - the current phrasing makes
comprehension difficult. | suggest you have a colleague
who is proficient in English and familiar with the subject
matter review your manuscript, or contact a professional
editing service.

1. Your most important issue

2. The next most important item
3.

4. The least important points

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as | have noted above) which should be
improved upon before Acceptance.



PeerJ

Genomic relatedness and dissemination of bla,;,.; amongst
Acinetobacter baumannii isolated from hospital environments
and clinical specimens

Thawatchai Kitti ', Suphattra Manrueang °, Udomluk Leungtongkam °, Supat Khongfak >, Rapee Thummeepak °,
Surat Wannalerdsakun °, Thanyasiri Jindayok *, Sutthirat Sitthisak ™" *°

! Department of Oriental Medicine, ChiangRai College, Muang, Chiangrai, Thailand

2 Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand

3 Department of Internal Medicine, Faculty of Medicine, Naresuan University, Muang, Phitsanulok, Thailand

4 Department of Pathology, Faculty of Medicine, Naresuan University, Muang, Phitsanulok, Thailand

> Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand

Corresponding Author: Sutthirat Sitthisak
Email address: sutthirats@nu.ac.th

Background: Acinetobacter baumannii is an important cause of nosocomial infection, especially in
intensive care units (ICUs). It has propensity to tolerate environments and multiple classes of antibiotics.
Our study aimed to characterize comparative genomic of A. baumannii from hospital environments and
clinical isolates.

Methods: Clinical and environmental A. baumannii isolates were collected from university hospital.
Antibiotic susceptibility testing was determined and antibiotic resistance genes and repetitive element
palindromic-PCR (rep-PCR) typing were characterized. Eight representative A. baumannii environmental
and clinical isolates from the same wards were selected for whole-genome sequencing (WGS) using
[llumina platform.

Results: A total of 106 A. baumannii isolates were obtained from 312 hospital environmental samples. A
high prevalence samples with A. baumannii colonization was detected from Ambu bag (77.9%) follow by
air samples (60.0%). We found 93.4% environmental isolates were multidrug-resistant A. baumannii
(MDRAB). The most acquired antibiotic resistance genes (ARGs) identified included blayy, »; (80.2%), blayy
(78.30%), and blagy,ss (0.94%). Sixty-one A. baumannii isolates were collected from patient specimens in
the same ward. Among all A. baumannii clinical isolates, MDRAB was found in 81.97% and extremely
drug-resistant A.baumannii (XDRAB) in 55.74%. The most ARGs identified was blayy,.,; (80.33%) followed
by bla\,u(55.74%). Genetic diversity of all isolates using rep-PCR could be divided into 33 genotypes.
Genome size of eight A. baumannii ranged from 3.78 - 4.01 Mb. We found six of eight isolates to be
blayous -harboring A. baumannii. Mobile genetic elements (MGEs) such as integronl (int/1) located
upstream of bla,,s was observed. Phylogenomic relationship of core and pan genome as well as the SNP
count matrix revealed genetic similarity of A. baumannii environmental and clinical isolates obtained
from the same ward.

Conclusion: This study confirmed that A. baumannii colonized in hospital environments were the main
reservoir of nosocomial infection and provides critical information guiding infection control of A.
baumannii infection.
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Abstract
Background: Acinetobacter baumannii is an important cause of nosocomial infection,

especially in intensive care units (ICUs). It has propensity to tolerate environments and
multiple classes of antibiotics. Our study aimed to characterize comparative genomic of
A. baumannii from hospital environments and clinical isolates.

Methods: Clinical and environmental A. baumannii isolates were collected from
university hospital. Antibiotic susceptibility testing was determined and antibiotic
resistance genes and repetitive element palindromic-PCR (rep-PCR) typing were
characterized. Eight representative A. baumannii environmental and clinical isolates
from the same wards were selected for whole-genome sequencing (WGS) using
lllumina platform.

Results: A total of 106 A. baumannii isolates were obtained from 312 hospital
environmental samples. A high prevalence samples with A. baumannii colonization was
detected from Ambu bag (77.9%) follow by air samples (60.0%). We found 93.4%
environmental isolates were multidrug-resistant A. baumannii (MDRAB). The most
acquired antibiotic resistance genes (ARGs) identified included blapxa-23 (80.2%), blanpm
(78.30%), and blapxa.ss (0.94%). Sixty-one A. baumannii isolates were collected from
patient specimens in the same ward. Among all A. baumannii clinical isolates, MDRAB
was found in 81.97% and extremely drug-resistant A.baumannii (XDRAB) in §5.74%.
The most ARGs identified was blapgxa-23 (80.33%) followed by blanpy (55.74%). Genetic
diversity of all isolates using rep-PCR could be divided into 33 genotypes. Genome size
of eight A. baumannii ranged from 3.78 - 4.01 Mb. We found six of eight isolates to be
blanpw-s -harboring A. baumannii. Mobile genetic elements (MGEs) such as integron1
(intl1) located upstream of blaypu.s was observed. Phylogenomic relationship of core
and pan genome as well as the SNP count matrix revealed genetic similarity of A.
baumannii environmental and clinical isolates obtained from the same ward.
Conclusion: This study confirmed that A. baumannii colonized in hospital environments
were the main reservoir of nosocomial infection and provides critical information guiding

infection control of A. baumannii infection.
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Introduction
Acinetobacter baumannii has emerged as an important pathogen related to hospital-

acquired infections worldwide. This pathogen is the major cause behind ventilator-
associated pneumonia (VAP), bacteremia, urinary tract infections, wound infections,
and meningitis (Nutman et al., 2016). The emergence of antibiotics-resistant A.
baumannii, especially multidrug resistant A. baumannii (MDRAB) and extensively drug-
resistant A. baumannii (XDRAB), has increased and seriously challenges the treatment
of these bacterial infections (Kyriakidis et al., 2021). National Antimicrobial Resistance
Surveillance Thailand (NARST) reports that the prevalence of carbapenem resistant
Acinetobacter baumannii-calcoaceticus complex infection in ICU of 51 hospitals in
Thailand was higher than 80% (NARST, 2021). The major mechanisms of carbapenem
resistance mechanisms among A. baumannii was the production of antibiotic-
hydrolysing enzymes that belong to Ambler class D, carbapenem-hydrolyzingclassD,
lactamases (CHDLs), and class B metallo-lactamases (MBLs) (/brahim et al., 2021).
Class D carbapenemases are encoded acquired blapxa.23, blaoxa-24, and blapxa.ss.
These genes have been reported in many countries all over Asia including China,
Korea, Thailand, Vietnam, and Malaysia (Hsu et al., 2017). Major MBLs in A. baumannii
are encoded by blaypy gene. This gene was reported in Thailand since 2017
(Leungtongkam et al., 2018).Till date, twenty-four NDM variants have been identified in
more than 60 bacterial species including Acinetobacter spp., and several variants have
the ability to enhance carbapenemase activity (Wu et al., 2019).

A. baumannii has the ability to survive on hospital surfaces and equipment for
long periods. Hospital surface contamination of A. baumannii is closely correlated with
the transmission of the bacteria to patients causing episodes of bacteremia and/or
sepsis (Markogiannakis et al., 2008). Carbapenem-resistant A. baumannii (CRAB)
found on the ICU surfaces and genome sequencing revealed that the CRAB isolates
from ICU environment were linked with those of clinical origin (Yasir et al., 2022). A.
baumannii isolates were recovered from surrounding ICU bed surfaces, which exhibits
multidrug resistance phenotype and that it belongs to some widely spread clonal

complexes of clinical A. baumannii isolates (Rocha et al., 2018).
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Comparative genomics research can help assess the bacterial evolution,
resistance mechanisms, and pathogenicity of bacterial pathogens at the genome-wide
level; it is also useful in the ensuing study of virulence factors involved with
pathogenicity (Wright et al., 2016). Whole-genome sequencing studies comparing
distinct clinical isolates and environments isolates have improved our understanding of
the evolution of A. baumannii. In this study, we aimed to investigate the resistance rates
and epidemiological characteristics of clinical and environmental A. baumannii isolates.
Then, we determined the draft genome sequence of eight clinical and eight
environment A. baumannii isolates in the same wards to perform comparative genomic

analysis.

Materials & Methods
Samples

Clinical and environmental A. baumannii isolates were collected from Naresuan
University hospital between December 2020 - April 2021. Naresuan University is level llI
Hospital with 400 beds located in the lower northern region of Thailand. Hospital
environment and clinical isolates were collected from five wards, which were two
medical wards: Medicine-man Ward (MED-1), Medicine-woman Ward (MED-2), and
three intensive care units: ICU Cardio-Vascular-Thoracic surgery (ICU-1), ICU Surgery
(ICU-2), and ICU Medicine (ICU-MED). The source of the samples included the staff
contact samples, which included stethoscope (n=15), chart (n=15), computer/keyboard
(n=15), counter (n=15), medical lab coats (n=15), restroom door handles (n=15),
telephone (n= 15), and dressing trolley (n= 15). Patient contact samples were bedrails
(n=15), bedsheet (n=15), suction tube (n=15), patient table (n=15), curtain (n=15),
humidifiers (n=15), intravenous bottle (IV) stand (n=15), ventilator (n=15), ventilator
monitor (n=9), water from ventilator (n=9), suction tube (n=9), and Ambu bag (n=9).
Other environmental samples were collected from air (n=15), sink (n=15), and water
from sink (n=15). The protocol was approved by the Naresuan University Institutional
Biosafety Committee, and the project number was NUIBC MI162-09-42.

Isolation and identification of A. baumannii from hospital environments
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The air samples were collected using Leeds Acinetobacter Medium (LAM) in 9 cm
diameter Petri dishes. Petri dishes were exposed for 24 hrs. The other environmental
surfaces were collected using cotton swab soaked in 0.85% normal saline, then placed
in the transfer media. The swab samples were enriched in Luria-Bertani Broth (LB) by
shaking at 160 rpm and 37°C for 18—24 hours and then cultured in Leed Acinetobacter
Media (LAM) Himedia;lndig at 37°C for 24—48 hours. Cultures with pink colonies were
selected for further evaluation using Gram'’s stain and biochemicaltesting. Molecular
identification of the bacterial isolates was confirmed by polymerase chain reaction
(PCR) using16SrRNA, rpoB, and blapgxa.s1 primers (Table S1).

Determination of antibiotic susceptibility

Antibiotic susceptibility testing was performed according to disk diffusion method using
fifteen antibiotics: amikacin (30 pg), cefepime (30 ug), cefotaxime (30 ug),
cefoperazone/sulbactam (75 and 30 ug), ceftazidime (30 pg), ceftriaxone (30 ug),
ciprofloxacin (5 pg), gentamicin (10 ug), imipenem (10 ug), meropenem (10 ug),
piperacillin/tazobactam (100 and 10 ug), tetracycline (30 ug), tigecycline (15 ug), colistin,
(10ug), and trimethoprim/sulfamethoxazole (1.25 and 23.75 ug). The plates were
incubated at 37°C for 24 hours. The zones of inhibition determined whether the
microorganism was susceptible, intermediately resistant, or resistant to each antibiotic
according to the Clinical and Laboratory Standards Institute (CLSI) guidelines {2017}
and Piewngam et al (2014) (Piewngam et al., 2014). All isolates were defined to be
NRAB, MDRAB, CRAB, and XDRAB as previously described by Magiorakos et al
(2012} (Magiorakos et al., 2012).

PCR amplification of antibiotic resistance genes and rep-PCR typing

As mentioned earlier, PCR assays to detect blapxa.23, blaoxa-24, blaoxa-ss, and blanpm
were performed using primers (Table S1). Genomic DNA of each isolate was extracted
from the overnight cultures using PureDirex Genomics DNA Isolation Kit (BIO-HELIX,
New Taipei City, Taiwan). Rep-PCR was performed by using genomic DNA as a
template for PCR amplification with the ERIC-2 primer (Table S1) with the condition
described by Leungtongkam {2048), PCR-banding patterns and rep-PCR types were
analyzed and interpreted as previously described (Leungtongkam et al., 2018).

Whole Genome Sequencing and bioinformatics analysis
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The whole genome-of eight representative-A. baumannii isolates from 4 wards; four
from hospital environments and four from clinical isolates (AE17, AC59, AC30, AC02,

AEG3, AE28, AE73, AE23, AE106, and ACQ09). Phylogenetic tree based antibiotic
resistance pattern and antibiotic resistance genes of A. baumannii isolated from the
same ward were performed (Figure S1-S5) and the bacteria presented similar ARG
pattern were selected for whole genome sequencing. All strains were cultured onto an
LB agar plate and incubated overnight at 37°C. Genomic DNA was extracted using
PureDire Genomics DNA Isolation Kit (BIO-HELIX, New Taipei City, Taiwan). The
extracted DNA was quantified by nanodrop (company, city, country). The purified
genomic DNA was used to construct libraries followed by sequencing with the lllumina
HiSeq 2500-PE125 platform at Macrogen, Korea. The nucleotide sequences of the eight
A. baumannii isolates have been deposited in NCBI's database under Sequence Read
Archive (SRA) with Bioproject PRINA862456
(https://www.ncbi.nim.nih.gov/sra/PRJNA862456).

Genome assembly and annotation

Raw sequencing reads were trimmed by using the Trim Galore v0.6.7 with default
settings and by using the Unicycler v0.4.8 with default parameters prior to assembly
(Krueger et al., 2012; Wick et al., 2017). The assembled contigs that were larger than
300 bp in length were selected and subjected to further bioinformatic analysis. The
remaining contigs were annotated by using the Prokka v1.14.6 with default options
(Seemann, 2014).

Identification of MLST, antimicrobial resistance, and virulence genes

The remaining contigs were subjected to detect drug-resistance and virulence genes by
using the Abricate v1.0.1 with default settings (Seemann, 2016) against the CARD and
VFDB databases (Alcock et al., 2020; Liu et al., 2022). MLST types were determined by
using the MLST v2.0 accessible from the Center for Genomic Epidemiology
(www.genomicepidemiology.org). The gene arrangement analysis of blaypw.s was
performed using Easyfig version 2.1 (Sullivan et al., 2011).

Phylogenomic relationships

The selected genomes of eight A. baumannii were subjected to Roary v3.13.0 with

default parameters to identify pan- and core-genes (Page et al., 2015). The resultant
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core-genes among eight genomes were concatenated and prior to construction of a
pan-genome tree in the CSI phylogeny accessible from the Center for Genomic
Epidemiology (www.genomicepidemiology.org) (Kaas et al., 2014). A core-genome tree
was constructed based on the presence/absence of identified core-genes and
visualized in the FigTree v1.4.4 (https://tree.bio.ed.ac.uk/software/figtree/). The SNP
count matrix of all selected genomes was calculated in the snp-dists v0.6.3 with default

settings (Seemann, 2019).

Results
A. baumannii strains isolated from hospital environment and clinical isolates

A total of 106 A. baumannii isolates were obtained from 312 hospital
environmental (HE) samples (33.97%). The isolates associated with patient contact
were Ambu bag (77.9%), bedrails (66.7%), suction tube (66.7%), water from ventilator
(55.6%), bedsheet (53.3%), patient table (33.3%), humidifiers (33.3%), ventilation
(33.3%), curtain (33.3%), and |V stand at 13.3%. The isolates involved staff contact and
other environments belonging to air (60.0%), keyboard (53.3%), counter (46.7%),
medical lab coats (42.9%), dressing trolley (33.3%), stethoscope (26.7%), chart
(26.7%), door handles (6.7%), and telephone (6.7%). However, we did not find A.
baumannii isolates on sink, water from sink, and ventilator monitor (Table S2). Of the
312 environmental samples collected from each ward, we found high A. baumannii
contamination from ICU Surgery to be 52.9% (36/38) followed by medicine-woman ward
to be 40.74% (22/54), ICU medicine 38.2% (26/68), medicine-man ward 27.8% (5/54),
and ICU cardio-vascular-thoracic surgery 10.3% (7/68) (Table S2). Among 106 A.
baumannii isolates from hospital environment, a high rate of A. baumannii was, obtained
from ICU Surgery (33.96%) followed by ICU medicine (24.5%) (Table 1). Sixty-one A.
baumannii isolates were collected from patient specimens in the same ward, which
were from ICU medicine (24.59%), medicine-man ward (24.59%), ICU surgery
(19.67%), medicine-woman ward (16.40%), and ICU cardio-vascular-thoracic surgery
ward (14.75%) (Table 1).

Antibiotic susceptibility patterns of A. Baumannii isolates
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All A. baumannii isolates were subjected to antimicrobial susceptibility testing and the
results are shown in Table 2. A. baumannii isolates from hospital environments were
highly resistant to meropenem (100%), cefotaxime (100%), ceftazidime (100%), and
ceftriaxone (100%), while A. Baumannii clinical isolates were highly resistant to
ceftazidime (90.16%) and ceftriaxone (90.16%). All isolates were sensitive, to colistin
and tigecycling, The prevalence of CRAB from the hospital environments was 100%.
MDRAB was found in 93.40%, and XDRAB was found in 44.34%. For A. baumanaifrom
clinical samples, CRAB was found in 81.97%, MDRAB in 81.97%, XDRAB in 55.74%,
and NRAB in 16.39% (Table S3).

Antibiotic resistance genes and rep-PCR typing

The intrinsic blapxa.s1 was detected in all A. baumannii environmental isolates (ABHE)
but 96.7% (59/61) of clinical isolates. Oxacillinase gene, blapgxa-23, was the most
detected at 80.20% (85/106) in ABHE and 80.33% (49/61) in clinical isolates. The
blapxa-ss gene was detected in one of ABHE (0.94%) and one of clinical isolates
(1.64%). The blanpy gene was detected in 78.3% (83/106) of ABHE and in 55.74%
(34/61) of clinical isolates. The blapxa-24 gene was not detected in any of the isolates
(Table S3). Rep-PCR typing was performed and fingerprinting represented 33 different
DNA patterns consisting of amplicon sizes ranging from 500 to 4,000 bp. The genotype
was named T1 to T33. The-high-prevalence-genotype of ABHE was T30 at 21.7%
(23/106) followed by T23 at 17% (18/106), and T2 at 15 % (15/106). The-high
prevalence genotype of AC was T4 at 34.4% (21/61) followed by T23 at 29.5 % (18/61).
Heat map representing antibiotic susceptibility patterns, antimicrobial resistance genes,
and rep-PCR typing from 5 wards is showed in Figure S1-S5. We found a genetic
similarity between ABHE and A. baumannii clinical isolates in each ward with antibiotic
susceptibility patterns and antimicrobial resistance genes since most A. baumannii
strains in the same ward showed similar profile. No association was found between rep-
PCR typing of ABHE and A. baumannii clinical isolates. Eight isolates of A. baumannii
with similar profiles from four wards were selected for genome sequencing.
Comparative genomic and phylogenomic analysis of A. baumannii from hospital

environmental isolates and clinical isolates
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Eight isolates of A. baumannii from clinical and ABHE isolates were analyzed.
The four ABHE isolates were AEQ3 (bedrail), AE17 (patient table), AE106 (Ambu bag),
and AE73 (dressing trolley). The four clinical isolates were AC02 (Blood-Hemoculture),
AC59 (sputum), AC09 (sputum), and AC23 (right hepatic drain). AC02 and AEO3 were
obtained from MED-1 ward. AC59 and AE17 were obtained from MED-2 ward. AC09
and AE106 were derived from ICU-1 ward. AC23 and AE73 were derived from |ICU-2
ward. The genome characterization of the isolates is summarized in Table 3. The
genome analysis revealed that AC02, AE30, AC09, AE106, AC23 and AE73 belong to
ST2 based on the Pasteur MLST scheme. However, AC59 and AE17 belong to ST164.
The predicted genome size of eight A. baumannii strains were ranging from 37.8 to 40.2
Mb and GC contents from 38.8 to 39%.

ARGs and virulence genes of eight A. baumannii isolates showed genetic
similarity of A. baumannii among hospital environments and clinical isolates (Figure
1AB). We found that thirty-eight antibiotic resistance genes belong to eleven antibiotic
classes in all A. baumannii strains. Glycylcycline/tetracycline (adeR, adeS, adeA, adeB),
fluoroquinolone/tetracycline (adeF, adeG, adeH, adel.), AdelJKmultidrug (adel, adeJ,
adeK, adeN), macrolide (abeS, amvA), fluoroquinolone (abaQ, abeM), fosfomycin
(abaF), and carbapenems (blapxa-23) were detected. ~ ditionally, tetracycline (tetB),
glycylcycline/tetracycline (adeC), macrolide (mphE, msrE, aadAS5, armA, ap 1.-")-lb,
aph(6)-1d ), carbapenems (blaape-7s, blaoxa-ss,blanom-s), sulfonamide (sul1), and
diaminopyrimidine (dfrA17) were detected in AE30, AE106, AE73, AC02, AC09, and
AC23 isolates. However, tet(39), blappc.-10, blaapc-s, and blapxa.g1 were detected only in
AE17 and AC59. Genetic contexts of blanpwu.s releveled mobile genetic elements
(MGEs) such as integron1 (intl1), IS91 family transposase, and transposase (ISAba125)
along with other AGRs, ant(3”)-la, gacEA1, and sul1 located upstream and downstream
of blanpm.s (Figure 1C).

Analysis of the virulence genes of eight A. baumannii isolates revealed that
genes were involved in biofilm formation (adeF, adeG, adeH, bap, csuA/B, csuA, csuB,
csuC, csuD, csuE, pgaA, pgaB, pgaC, pgaD), enzyme phospholipase (p/cC, plcD),
immune evasion (/psB, IpxA, IpxB, IpxD, IpxL, IpxM), iron uptake (barA, barB, basA,
basB, basC, basD, basF, basG, basl, basJ, bauA, bauB, bauC, bauD, bauE, bauF,
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entE), gene regulation (abal, abaR, bfmR, bfmS), serum resistance (pbpG), and host
cell adherence (ompA) (Figure 1B).

Phylogenomic relationship of core and pan genome showed in Figure 2AB
revealed two major clades. A. baumannii strains obtained from ICU-1, ICU-2, and Med-
1 wards were in the same clade, while A. baumannii strains obtained from Med-2 ward
were in different clades. The SNP count matrix of all selected genomes confirmed that
the high number of SNPs of AC59 and AE17 derived from Med-2 ward were

comparable with other A. baumannii strains (Figure 2C).

Discussion
A. baumannii is an opportunistic pathogen that causes hospital-acquired

infections in patients who have high risk factors such as patients in intensive care units
(ICUs). This bacterium is extremely capable of surviving, spreading, and developing
antibiotic resistance in the hospital ward (Vazquez-Lopez et al., 2020). In this study, we
investigated three ICUs and two Medicine wards from University hospital using a
culture-based technique to identify nosocomial infection-associated bacteria. A total of
106 isolates of A. baumannii were isolated from 312 samples, which were frequently
staff and patient contact. The highest number of staff and patient contact samples that
found A. baumannii was keyboard (53.3%) and Ambu bag (77.9%). The prevalence of
A. baumannii in the hospital environment was supported by previous studies
Shamsizadeh et al (2017) reported that A. baumannii was detected in environmental
samples with the highest recovery in intensive care units (ICUs) (Shamsizadeh et al.,
2017). This is in agreement with our study that we isolated the highest number of A.
baumannii from two ICUs. Previous study demonstrated that A. baumannii was isolated
from hospital sinks, bed rails, water systems, and medical equipment, particularly in
ICUs and surgical units (/brahim et al., 2021). We detected a high number of A.
baumannii from bedrails (66.7%). However, we did not obtain A. baumannii from
hospital sinks and water from sink. Airborne route also plays an important role in
transmission of A. baumannii infections in hospitals (Ayoub Moubareck et al., 2020).

Our study confirmed this since a high number of A. baumannii was isolated from air
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(60.0%). Our study demonstrated that A. baumannii may be associated with hospital-
acquired outbreaks due to its ability to spread and colonize in hospital environments.

A high prevalence rate of multidrug resistant A. baumannii was found in this
study. The resistant rate of A. baumannii isolated from hospital environments was
higher than that isolated from clinical samples. Our results also showed that a high
percentage of A. baumannii isolated from hospital environments were resistant to
meropenem, cefotaxime, ceftazidime, and ceftriaxone, and all isolates were CRAB. Our
results were higher than that reported in another Chinese study where resistance rates
approached 10% against many antibiotics among carbapenem resistant Acinetobacter,
isolates (Ying et al., 2015). However, 93.40% of A. baumannii isolated hospital
environments and 81.97% of A. baumannii isolated clinical isolates were multidrug
resistant. Multidrug resistant A. baumannii, carbapenem resistant in particular, has a
propensity to cause infections (/brahim et al., 2021).

Our data showed that A. baumannii isolated from hospital environments and
clinically isolated from the same ward possess similar antibiotic resistance patterns and
ARGs pattern represent the outbreak clone in each wards (Figure S1-S5). Among all
isolates, the results showed that blapxa23 was the most frequent gene detected. This
result suggests that the blapxa.2z Was the main cause of the resistance of A. baumannii
isolates from hospital environments and clinical samples in our hospitals. This result
was supported by Kongthai et al (2021) who revealed that the blapxa.oz Was detected in
all A. baumannii isolated from four tertiary hospitals in Thailand (Kongthai et al., 2021).
Jain et al (2019) reported that NDM-1 was the most frequent gene detected in A.
baumannii isolated among both the clinical and environments (Jain et al., 2019).
Interestingly, we found high prevalence of blaypy among both the hospital environment
and clinical sample isolates. As compared to the previous report from Thailand, low rate
of blanpy was detected in A. baumannii isolates from hospitals in Northern and Southern
Thailand (Leungtongkam et al., 2018; Chukamnerd et al., 2022).

Genomic analysis of eight representative MDRAB strains found that the major ST
type (AC02, AE30, AC09, AE106, AC23, and AE73) was ST2. It has been reported that
MDRAB sequencing type ST2 was determined to be the most prevalent in Thailand.

AC59 and AE17 strains were designated to be ST164, which was also reported in
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Thailand (Khuntayaporn et al., 2021). NDM-producing organisms have become
endemic in the Indian subcontinent and numerous transfers have been recorded
worldwide. Genomic analysis found that AC02, AE30, AC09, AE106, AC23, and AE73
isolates possess an NDM-5 metallo-B-lactamase gene. This is the first report regarding
the detection of an NDM-5-producing A. baumannii from hospital environments and
clinical samples in Thailand. The emergence of blaypum.s gene was mostly identified in
Enterobacteriaceas, especially in Escherichai coli. To date only one report by Khalid et
al. (2020) identified A. baumannii harbored blaypm.s from neonatal intensive care unit
(NICU) of an Indian Hospital, but it is not present in environmental isolates (Hamidian et
al., 2019). Our PCR study can identify the blaypy gene but cannot specifically identify
the NDM variant. The outbreak clone harbored blaypu.s was revealed using WGS.

Mobile genetic elements such as insertion sequences, transposons, and
integrons can mobilize the blaNpy.s (Wu et al., 2019). Our WGS analysis observed intl1
located upstream of blanpu.s (Figure1C). Previous report in E.coli detected blaypu.s to be
located in complex of class 1 integron together with aadA2, aac(3)-Ila, mph(A), suli,
tet(A), and dfrA12 (Alba et al., 2021). Compared to this study, we found ant(3”)-la,
qacEA1, and sulf.

WGS of eight isolates revealed a high number of ARGs in accordance with
previous reports of A. baumannii WGS isolated in Thailand (Kongthai et al., 2021;
Chukamnerd et al, 2022; Wareth et al, 2021). Among eight isolates, antibiotic resistance
gene patterns of A. baumannii were different; however, gene patterns from the same
ward were similar. Compared to the virulence genes, the patterns were not considerably
different. These findings indicated that horizontal gene transfer between A. baumannii
from environment and clinical isolates is important for the movement of ARGs among A.
baumannii strains. Phylogenomic relationship of core and pan genome as well as the
SNP count matrix revealed genetic similarity of A. baumannii strains obtained from the
same ward. This is in agreement with a previous study by Yasir et al. (2022) in which
genome sequencing revealed that the A. baumannii isolated from hospital environments

was linked with those of clinical origin (Yasir et al., 2022).
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Conclusions
In conclusion, in this study, we presented a whole-genome analysis of eight A.

baumannii isolated from hospital environment and clinical samples. Our data revealed
the epidemiological characteristics of similar antibiotic resistance patterns, antibiotic

resistance genes, virulence genes, clonal complex, core genes, pan genes, and single
nucleotide polymorphism among clinical and environmental A. baumannii isolated from

the same ward.
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Figure 1

Detections of antibiotic resistance, virulence genes, and genetic contexts A. baumannii
harbored blaNDM-5 among 8 representative isolates of A. baumannii.

(A) The pattern of acquired resistance genes, (B) virulence factors associated genes in theA.
baumanniigenomes, and (C) Genetic contexts and comparison of the gene arrangement of
six A. baumannii harbored bla,y,s Arrow indicate gene located upstream and downstream of
bla,usthat were Integronl(int/1), BsuBI-Pstl family restriction endonuclease (Bsu-Pstl),
Aminoglycoside 3"-nucleotidyltransferase (ant(3”)-la), Quaternary ammonium compound
efflux (qgacEA1), sulfonamide resistance (sull), IS91 family transposase, Cytochrome c-type
biogenesis protein (DsbD), N-(5'-phosphoribosyl)anthranilate isomerase (trpF), bleomycin

resistance protein (ble,; ), New Delhi metallo-beta-lactamase 5 (blayyy.s), and

Transposase(ISAbal25).
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Figure 2

Phylogenomic relationship among selected representative isolates of Acinetobacter
baumannii obtained from difference wards.

(A) A phylogeny reconstructed from 2,928 concatenated core-genes of all analyzed genomes
presented with metadata. Hierarchical tree based on the presence/absence of patterns of
4,778 pan-genome genes of 8 representative isolates. (C) SNPs matrix-based heatmap
illustrating the number of single nucleotide polymorphism in whole-genome between the

isolates studied.
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Table 1l(on next page)

A. baumannii isolated from hospital environments and clinical samples from various
hospital wards.
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1 Table 1: A. baumannii isolated from hospital environments and clinical samples from

2 various hospital wards.

Positive Positive

Ward Environment Clinical

n % n %
MED-1 Medicine-man Ward 15 14.15% 15 | 24.59%
MED-2 Medicine-woman Ward 22 20.76% | 10 16.40%
ICU-MED | ICU Medicine 26 24.53% | 15 | 24.59%
ICU-1 ICU Cardio-Vascular-Thoracic surgery 7 6.60% 9 14.75%
ICU-2 ICU Surgery 36 33.96% | 12 | 19.67%
Total 106 | 100.00% | 61 | 100.00%

Peer] reviewing PDF | (2022:09:78051:0:1:NEW 6 Oct 2022)



PeerJ Manuscript to be reviewed

Table 2(on next page)

Frequency of resistance to antimicrobial agents among A. baumannii isolates from
hospital environments and clinical samples.
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1 Table 2: Frequency of resistance to antimicrobial agents among A. baumannii isolates from

2 hospital environments and clinical samples.

Resistant
Antibiotics
Environment Clinical
Ciprofloxacin 79.24% 83.61%
Gentamicin 77.36% 70.49%
Imipenem 77.36% 55.74%
Meropenem 100.00% 83.61%
Trimethoprim/Sulphamethoxazole 88.68% 81.97%
Amikacin 62.26% 67.21%
Cefotaxime 100.00% 88.52%
Ceftazidime 100.00% 90.16%
Ceftriaxone 100.00% 90.16%
Cefepime 99.06% 85.25%
Tetracycline 74.53% 73.77%
Sulbactam/Cefoperazone 60.38% 54.10%
Piperacillin/Tazobactam 80.19% 81.97%
Colistin 0.00% 0.00%
Tigecycline 0.00% 0.00%
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1 Table 3: Medical and general genome features of 8 representatives isolated from various

2 hospital wards.
Strain ID/ ACO02 AE30 AC59 AE17 ACO09 AE106 AC23 AET73
Characteristics
Ward MED-1 MED-1 MED-2 MED-2 ICU-1 ICU-1 ICU-2 ICU-2
Specimen types | Blood- Bedrail Sputum Patient table | Sputum Ambubag | Right Hepatic | Dressing

hemoculture Drain trolley

MLST ST2 ST2 ST164 ST164 ST2 ST2 ST2 ST2
Genome size (bp) | 4,016,797 | 3,966,329 | 3,958,580 | 3,786,785 3,934,990 | 3,949,273 | 3,925,340 | 3,955,274
% GC 38.90 38.99 38.87 38.88 38.98 39.00 38.98 38.99
No. of contigs 86 71 96 63 68 76 72 81
Largest contig 340426 292477 481102 306399 303352 292477 360663 292477
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