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ABSTRACT
The rising interest in quinoa (Chenopodium quinoa Willd.) is due to its high protein
content and gluten-free condition; nonetheless, the presence of foreign bodies in quinoa
processing facilities is an issue that must be addressed. As a result, convolutional neural
networks have been adopted, mostly because of their data extraction capabilities, which
had not been utilized before for this purpose. Consequently, the main objective of this
work is to evaluate convolutional neural networks with a learning transfer for foreign
bodies identification in quinoa samples. For experimentation, quinoa samples were
collected and manually split into 17 classes: quinoa grains and 16 foreign bodies. Then,
one thousand images were obtained from each class in RGB space and transformed
into four different color spaces (L*a*b*, HSV, YCbCr, and Gray). Three convolutional
neural networks (AlexNet, MobileNetv2, and DenseNet-201) were trained using the
five color spaces, and the evaluation results were expressed in terms of accuracy and
F-score. All the CNN approaches compared showed an F-score ranging from 98% to
99%; both color space and CNN structure were found to have significant effects on the
F-score. Also, DenseNet-201 was the most robust architecture and, at the same time,
the most time-consuming. These results evidence the capacity of CNN architectures to
be used for the discrimination of foreign bodies in quinoa processing facilities.

Subjects Food Science and Technology, Plant Science, Data Mining and Machine Learning
Keywords Quinoa, Post-harvest, Deep learning, Image processing, Discrimination, Transfer
learning, Convolutional neural networks, AlexNet, MobileNetv2, DenseNet-201

INTRODUCTION
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal seed crop traditionally grown in
the Andean region (Shi et al., 2020; Nascimento et al., 2014). According to the Food and
Agriculture Organization of the United Nations (FAO), this grain is one of the superfoods
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that could provide food security in the 21st century (Nowak, Du & Charrondière, 2016).
However, it is necessary to ensure adequate quality levels to enter new markets. In this
respect, one of the most important criteria for commercialization, which establishes the
national and international prices, is the percentage of foreign bodies (FB) (Lecca-Pino et al.,
2021). FB refers to pits and pit fragments, unwanted seeds, bones, bone fragments, sticks,
rocks, metals, plastics, and all unwanted objects in the food (Toyofuku & Haff, 2012); these
elements can be a food safety hazard and affect a company’s brand reputation (Demaurex
& Sall, 2014).

Because of the variable nature of FB, a wide range of solutions have been devised to detect
and remove them (Toyofuku & Haff, 2012); these solutions use the differences between FB
and product, e.g., (a) size or weight, (b) shape or color analysis, and (c) interaction with
some part of the electromagnetic spectrum (Graves, Smith & Batchelor, 1998). According
to Edwards (2014), the principal techniques are those based on optical inspection, which
uses forms, color, and shapes for discrimination. However, as explained byWu et al. (2019)
andMoses et al. (2022), using a human expert for visual analysis in discrimination analysis
is highly time-consuming, error-prone, and difficult to automate (due to that features
require manual extraction).

In this context, new image analysis methods based on deep learning techniques,
particularly convolutional neural networks (CNNs), are quickly becoming the preferred
methods to address application-specific challenges such as image processing or classification
tasks (Too et al., 2019; Furtado, Caldeira & Martins, 2020). Unlike traditional patterns
recognition techniques, CNNs extract higher-level features progressively from the input
(image, video, text, or sound) and incorporate feature selection into the learning process
by updating their parameters and connections as a function of the error on a set of training
data (Han & Kuo, 2018; Wu et al., 2019).

In the agricultural field, CNNs have been successfully applied in crop variety
identification (Too et al., 2019), haploid and diploid seeds (Altuntaş, Cömert &
Kocamaz, 2019), nematodes (Abade et al., 2022), plant disease recognition (Too et
al., 2019), damage in milled rice grains (Moses et al., 2022), broccoli head quality
discrimination (Blok et al., 2022), crop pest (Ayan, Erbay & Varçın, 2020), microstructural
elements discrimination (Castro et al., 2019b), characterization of emulsions (Lu et al.,
2021), among others. Using different common CNNs architectures (AlexNet, resNet,
MobileNet, Inception, VGG16, DenseNet, among others), new architectures, and-or
training approaches.

However, CNNs have not been widely used for foreign bodies’ discrimination in food
materials, being the work presented by Rong, Xie & Ying (2019), the newest one focused on
peanut crops. Consequently, in this article, it was evaluated three common CNNs under
the learning transfer approach for foreign body discrimination in quinoa grains; then, we
can summarize the contribution of this article as follows: (1) A primary images dataset of
quinoa grains and different classes of foreign bodies was built, developing else a chart for
visual discrimination of the main elements in quinoa grains; (2) augmented images dataset
of quinoa grain and their foreign bodies were generated from the original dataset, and
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different color spaces were obtained; and (3) three frequently used CNNwere trained using
training transfer methodology, and their statistical metrics were calculated and compared.

METHODOLOGY
Figure 1 summarizes the methodology followed in the present work, which consists of
the following steps: (a) manual selection of quinoa grains and foreign bodies, (b) images
acquisition, (c) preprocessing, (d) CNNs training, and (e) models comparison.

Quinoa sample
The quinoa grains were provided for the Quinuanchis cooperatives from the Caminaca
district, Puno, Peru, corresponding to the 2018-2019 agricultural season. The grains
covered the commercial white medium quinoa (1.5 to 2 mm). A sample of five kilograms
was picked up and stored in polypropylene bags of capacity and transported to Universidad
Peruana Unión facilities, where the selection of impurities and image acquisition was made.

Manual selection
Different elements were manually separated and classified from the sample according to the
Peruvian Technical Norm 205.062-2014 and the Codex Alimentarius Standard 333-2019.
To make the classification easy, a chart based on the previously mentioned standards was
developed to make this process (see Fig. 2).

This chart divides the possible elements into five main groups:
1. Good grains. According to the norms, those grains are complete and represent the

quinoa variety’s representative color.
2. Contrast grains. In this case, the color does not correspond to the variety.
3. Faulty grains. These grains correspond to the variety that presents some anomalies as

broken, covered, and others.
4. Organic material. There are materials generated in the grain harvest and those due to

biological agents (insect, rodent excrement, among others).
5. Inorganic materials. stones and clods picking join to the grain during the harvest

process are present in this class.
Then, one thousand elements covering each class were selected from the sample and

stored for the next steps.

Images acquisition
An image of the thousand elements of the previously selected class was acquired using
a digital microscope model PCE-MM 800 from PCE America, Inc., Jupiter, FL, USA.
It was connected to a laptop with a processor Intel I5, 128 MB RAM, and an Interface
Card: USB 2.0 controlled by the AMCap software, version 9.016 from Genesys Logic,
Inc. (San Jose, CA, USA). The lens was placed at 15 mm from the sample, acquiring one
element per time and saving it in JPG format. The dataset is available at Zenodo, DOI:
10.5281/zenodo.7384664.
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Figure 1 The proposed methodology.
Full-size DOI: 10.7717/peerj.14808/fig-1

Preprocessing
The images in the dataset were pretreated, according to the proposals of Altuntaş, Cömert &
Kocamaz (2019) and Castro et al. (2019a), in order to be used as input in the CNN training;
the steps are detailed below:

(a) Image resizing. Images in the dataset were resized to [224×224] and [227×227]
pixels per channel using the bi-cubic interpolation method.

(b) Color space conversion. The original dataset, whose format was RGB of eight bits,
was converted into four color spaces, details in Table 1. For color space conversion, the
functions rgb2lab, rgb2hsv, rgb2ycbcr, and rgb2gray of the Image Processing Toolbox of
MATLAB 2019a were used.

CNNs building and training
General structure of CNNs
CNNs are defined by Abade et al. (2022) as a class of machine learning models that are
currently state-of-the-art in many computer vision tasks, applied to different kinds of
images. To manage its applications, CNNs consist of a set of layers known as convolution,
pooling, dropout, and fully connected layers and, in some cases softmax layers, see Fig. 3.
About basis structure of CNN, Chen et al. (2020) explains that the convolution layer is

the basic brick, which allows discrimination among classes by extracting a small subset of
spatially connected pixels in the input image channels by mean of convolution kernels, see
Eq. (1).

Hi=ϕ(Hi−1Wi+bi), (1)

where Hi is the feature map of the ith layer, Hi−1 is the convolution feature of the previous
layer (H0 is the original image), Wi is the weight of the ith layer, bi is the displacement
vector of the ith layer, and ϕ(·) represents the rectified linear unit (ReLU) function.
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Figure 2 Possible material classes present in quinoa sample according to the normative. (A) Good
quinoa grain, (B) image contrasts, (C) faulty grains, (D) foreign bodies (organic material), and (E) foreign
bodies (inorganic material).

Full-size DOI: 10.7717/peerj.14808/fig-2
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Table 1 Color spaces used in the study.

Space Parameter Range

R Red in the digital image [0, 255]
G Green in the digital image [0, 255]RGB

B Blue in the digital image [0, 255]
L* Luminosity derived from RGB [0, 100]
a* Red/green opposing colors [−128, 128]L*a*b*

b* Yellow/blue opposing colors [−128, 127]
H Hue derived from RGB [0, 360]
S Saturation derived from RGB [0, 100]HSV

V Value derived from RGB [0, 100]
Y Luminance derived from RGB [16, 235]
Cb Blue minus luma derived from RGB [16, 240]YCbCr

Cr Red minus luma derived from RGB [16, 240]
I Intensity derived from RGB [0, 255]
I Intensity derived from RGB [0, 255]GGG*

I Intensity derived from RGB [0, 255]

Notes.
*GGG space is a pseudo color space in which each channel contains intensity values.

Figure 3 Typical layers in a CNN.
Full-size DOI: 10.7717/peerj.14808/fig-3

Due to that, convolution tasks increase the computational needs pool, and layers simplify
the spatial dimensions of the information, averaging, normalizing, or extracting maximum
values, see Eq. (2) (Chen et al., 2020).

x lj = down(x l−1j ,s), (2)

where down(·) is the down-sampling function, x l−1j represents the feature vector in the
previous layer, and s is the pooling size. Another common layer is the fully connected (FC),
which uses the extracted features for image classification. This task is usually performed by
means of the softmax function; see Eq. (3).

softmax(z)j =
ezj∑K
k=1

ezk (for j = 1,...,k), (3)

where K = dimension of the z vector.
In our study, three commonly used CNNs were selected, which ones are commented on

below:

• AlexNet. Maybe the most known CNN, it has five convolution layers and three fully
connected layers and introduced the use ofReLu function as an improvement to common
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sigmoid or tanh functions, and 62.3 Millions of parameters (Krizhevsky, Sutskever &
Hinton, 2012; Altuntaş, Cömert & Kocamaz, 2019; Furtado, Caldeira & Martins, 2020; Lu
et al., 2021).
• MobileNet-V2. It is one of the most optimal networks with a small volume and few
parameters (4.2 million parameters); this improves the accuracy of learning of spatial
point inter-channel relationship (Sandler et al., 2018; Chen et al., 2021b; Chen et al.,
2021a).
• DenseNet-201. Its architecture is composed of three types of blocks; a convolution
block, a dense block, and a transition block, which connects two contiguous dense
blocks; this produces a structure with 40 million of parameters (Huang et al., 2017;
Abade et al., 2022; Too et al., 2019).

Transfer learning
One of the advantages of CNNs is their ease of retraining to perform new specific tasks; the
most frequent forms of CNN training are the following (a) Training from scratch and (b)
Transfer learning. Training from scratch requires a considerable number of samples (images
in our case) and a lot of time to perform the process (Chen et al., 2021a). On the other
hand, transfer learning is a family of methods commonly referred to as fine-tuning; one of
the most popular transfer learning approaches is to fine-tune all weights of a pre-trained
model, with the last fully connected layer being replaced and randomly initialized in a new
classification task. In fact, it is possible to fine-tune only a few layers, which are usually the
last layers corresponding to a higher abstraction level, which turns out to be less costly in
time and number of samples to use (Ayan, Erbay & Varçın, 2020; Koklu, Cinar & Taspinar,
2021; Lu et al., 2021; Duong et al., 2020), see Fig. 4.

According to Chen et al. (2020), Chen et al. (2021b) and Altuntaş, Cömert & Kocamaz
(2019) transfer learning method could be divided into the following steps:
1. Transfer the weight (W1,...,Wn) and parameters of a trained CNN; in our case, the

Deep Network Designer toolbox provides the well-trained CNNs for the next steps.
2. New CNN structure establishing, modifying (replacing or inserting) the last layers

where classification tasks are done, according to the specific task we want.
3. Fine-tuning with the images dataset correctly labeled, the new CNN is trained to

minimize the loss function ζ mentioned in (4).

ζ =
1
|X |

|X |∑
i

ln(P(y i|X i)), (4)

where |X | is the number of training images, X i is the ith training image in the class y i,
P(y i|X i) is the probability to be accurately labeled.

Classifiers comparison
According to Abade et al. (2022), the performance of classifiers was evaluated based on a
[17 ×17] confusion matrix (CM) of real and predicted classes.

In a first step, in concordance with Castro et al. (2019a), where determined the number
of elements correctly and incorrectly classified; then, the following four measures were
determined: (TPi) true positives, (TNi) true negatives, (FPi) false positives, and (FNi) false

Avila-George et al. (2023), PeerJ, DOI 10.7717/peerj.14808 7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.14808


Figure 4 General scheme of CNN transfer learning.
Full-size DOI: 10.7717/peerj.14808/fig-4

negatives. Next, performance metrics were calculated, where n represents the dataset size;
see Eqs. (5) to (9). Then, the model’s performance was summarised in F-Score value, being
used to compare models.

Accuracy (ACC)=
n∑

i=1

TPi+TNi

TPi+TNi+FPi+TNi
, (5)

Precision(PRE)=
∑n

i=1TPi∑n
i=1TPi+FPi

, (6)

Recall (REC)=
∑n

i=1TPi∑n
i=1TPi+FNi

, (7)

Especificity (ESP)=
∑n

i=1TNi∑n
i=1TNi+FNi

, (8)

F−Score (FSC)= 2×
(
PRE×REC
PRE+REC

)
. (9)

Finally, each combination CNN—color space was trained thirty times, in a hold-out
cross-validation strategy, and F-score saved in concordance with the performed by Chen et
al. (2020) dividing 70% for training and 30% for validation. According to Miraei Ashtiani
et al. (2021), the reason for splitting the dataset into two subsets is that in small datasets, the
additional split might lead to a smaller training set which may be exposed to over-fitting.
The effect of variables in F-score was considered when Pvalue < 0.05, comparing it through
Tukey-test.

Software and hardware system description
The experiments were implemented in a workstation with Windows 11 Pro 64 bits, and
Intel R©Xeon R©Gold 5218 processor, and an NVIDIA R©Quatro RTX 6000 and 128 GB of
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Table 2 Parameters for transfer learning training in the study.

Parameters Values

Back-propagation algorithm SGDM
Max epochs 6
Mini batch size 80
Initial learn rate 0.0005
Weight learn rate factor 10
Bias learn rate factor 10
Learn rate drop period Piecewise

DDR4 RAM. The procedures for image transformation, model implementation, and
validation were developed in MATLAB 2019a (MathWorks, Inc., Natick, MA, USA); the
coding scripts are available at Zenodo, DOI: 10.5281/zenodo.7384664. Table 2 details the
transfer learning training parameters used in this work, which were obtained fromAltuntaş,
Cömert & Kocamaz (2019) and Chen et al. (2021b) and manually adjusted.

RESULTS AND DISCUSSIONS
Image dataset
We created a dataset containing seventeen thousand images, one thousand per class, in
JPG format and derived from these an augmented dataset of sixty-eight thousand images
containing converted images to the four previously commented color spaces. Other works
have been developing efforts to implement databases according to the objectives of each
particular investigation, such as food databases (Ciocca, Napoletano & Schettini, 2018) and
seeds (Espejo-Garcia et al., 2020); however, these databases are far from generalized. This
could be due to the semantic difficulties of organizing classes in a table that mean the same
thing for different classifiers (Ciocca, Napoletano & Schettini, 2018). As an example, Fig. 5
shows the first element for each class in the five-color spaces used for training.
The pretreatment focused on conversions of full image datasets from RGB to four color

spaces, preserving details and maintaining a balanced number of elements per group,
which helps in the proper training of the neural network (Ciocca, Napoletano & Schettini,
2018; Blok et al., 2022). This is similar to what was performed by Castro et al. (2019a) who,
using RGB images, extracted mean values and converted them to another L*a*b* and
HSV in a previous stage of classifiers training, obtaining that the best combination was
supported vector machine and RGB color space. Although it is clearly different from works
such as those followed by Abade et al. (2022), Lin et al. (2018), Chen et al. (2020) and Chen
et al. (2021b), which increased the dataset by image manipulation, or Moses et al. (2022)
who used high-magnification images datasets of damaged rice grains in order to evaluate
classifiers performance; who explains that pixel information could be limited, and another
way to increase it should be studied.

Training transfer
In order to follow the training progress using the image dataset in different color spaces
for each metric, their main statistical metrics accuracy and loss are plotted; see Fig. 6.
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Figure 5 (A–B) Examples of images per class and color space.
Full-size DOI: 10.7717/peerj.14808/fig-5

The accuracy reached for all models during training was over 95%, results comparatively
similar to other works adMiraei Ashtiani et al. (2021) when reduced size products or their
contaminants are discriminated. In the same figure, it is observed, with the exception of
AlexNet, that there was no effect of color space on the statistical metric of model training;
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this could be due to improvements in the generalization capacity of new models such as
Movilenet-V2 and DenseNet-201 as a comment (Espejo-Garcia et al., 2020). On the other
hand, AlexNet model metrics showed better results when the RGB color space dataset was
used. This is contrary to the results reported by Castro et al. (2019a), who trained classifiers
with different color spaces and obtained better the low results with dataset in L*a*b* color
space; however, this could be because the models were trained from scratch and pre-trained
models based on RGB images were used in the present study.
Likewise, according to the graphs of the average values, it is observed that the DenseNet-

201 network is significantly better than the MobileNet and AlexNet. The latter is slightly
better in training with less than 300 epochs, subsequently equaling his training metrics.
What is more, according to the convergence of the precision and loss curves, it follows
that they are inversely related to the complexity of the model, consistent with the proposed
by Too et al. (2019), Chen et al. (2021b), Ciocca, Napoletano & Schettini (2018) and Miraei
Ashtiani et al. (2021).

Secondly, the number of iterations required to find stability in our work, approximately
five hundred, is significantly high compared to that reported by Abade et al. (2022) one
hundred, Altuntaş, Cömert & Kocamaz (2019) sixty, or Too et al. (2019) thirty iterations.
This is likely related to the number of categories involved in the experiments, five, two, or
eight classes, respectively.

Figure 7 shows the mean confusion matrices for each combination of convolutional
neural network and color space. It is observed, in all cases, that discrimination capacities
were above 95%. Also, it is observed that the use of image databases in different color spaces
did not strongly influence the accuracy of the convolutional neural networks. By another
hand, classification errors were grouped mainly in contrast and faulty grain, organic and
inorganic materials, according to previously done in Fig. 2.

Although recent research focuses on evaluating new architectures, prioritizing features
such as generalization ability and lower complexity, among others, Espejo-Garcia et al.
(2020); some examples are the works of Duong et al. (2020) for fruit recognition, Ciocca,
Napoletano & Schettini (2018) for food in general. Nevertheless, the main critique for this
kind of work in machine learning application is clarity and lack of the criteria to establish
structural elements Castro et al. (2017), a problem that has been adequately explained and
addressed by Dsouza, Huang & Yeh (2020) using combinatorial experiments.

In our case, to compare the computational cost for training transfer of three well-known
structures, from less complex (AlexNet) to more complex (DenseNet-201) and one
optimized for mobile applications (MobileNetV2), the consumed-time was determined
and plotted in Fig. 8.

The comparing base was the training-transfer time for the combination of AlexNet-RGB
color space; so it was noticed that in the mean MobileNetV2 and DenseNet-201 required
over 1.43 and 8.57 times the used by AlexNet, concordant with their rising structural
complexity.
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Figure 6 Progress of the training stage.
Full-size DOI: 10.7717/peerj.14808/fig-6
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Figure 7 Mean confusionmatrices of combinations CNN—color space.
Full-size DOI: 10.7717/peerj.14808/fig-7

Statistical metrics
Figure 9 and Table 3 show the F-score values for each CNN - Color Space combination.
Other studies have focused on grain discrimination using some well-known networks and
RGB images (Li et al., 2021; Javanmardi et al., 2021; Huang et al., 2022, among others) or
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Figure 9 F-score for each convolutional neural network and color space.
Full-size DOI: 10.7717/peerj.14808/fig-9

more recentlyTHz images (Shen et al., 2021). Nevertheless, the F-score obtainedwas similar
in both types of images above 95%. Therefore, the use of complex technologies such as THz
images would not significantly improve the classifiers. Consequently, at this level, it could
be considered that the use of RGB images or their variants combined with convolutional
neural networks is the most technically appropriate approach for discriminating visibly
different elements.

Secondly, investigations such as that of Li et al. (2021) and Huang et al. (2022), among
others, have compared different convolutional neural network structures in grain
discrimination showing that the complexity of the networks can improve their adaptability
to different data in training transfer. In addition, despite not finding reports of the use of
color spaces other than RGB to train networks by the previously mentioned method, so
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Table 3 F-scores per combination of CNN and color space.

Color space CNN

AlexNet MobileNetV2 DenseNet-201

RGB 0.991± 0.002 0.981± 0.003 0.992± 0.001
LAB 0.985± 0.002 0.975± 0.003 0.991± 0.002
HSV 0.984± 0.002 0.972± 0.002 0.989± 0.002
YCC 0.984± 0.003 0.972± 0.003 0.990± 0.002
Gray 0.984± 0.002 0.975± 0.003 0.989± 0.001

Table 4 Summary of multiple range test for the CNNs.

Source Squared sum DoF Mean square F-score P-value

Main effects
A-CNN 0.0124 2 0.0062 1163.79 0.0000
B-Color space 0.0160 4 0.0004 75.06 0.0000

Interaction
AB 0.0004 8 0.0001 9.37 0.0000

Residues 0.0015 285 0.0000
Total (corrected) 0.0159 299

Notes.
F-scores are based on mean square of residual error.

the adaptability of networks of greater complexity reduces the effect of changing the color
space during training.

The results show how the architectures used in this study were capable of being trained
using not only RGB images but, at the same time, a reduction in F-score was observed
when other color spaces were used. In this sense, the results of the multi-factorial ANOVA
test are summarized in Table 4, it is according to P-value < 0.01 explain that either CNN
and color space have a statistical effect on F-score with a 99% of confidence level.

Likewise, by mean the Tukey’s test of multiple the F-score was grouped according to
color space influence on it, these groups are (a) RGB, (b) HSV, YCC, and GRAY, (c) LAB,
GRAY. Initially, these architectures were created and trained using RGB images for specific
cases and extended to other case studies (Abade et al., 2022; Ciocca, Napoletano & Schettini,
2018). Nevertheless, as it is being demonstrated, only in the case that the images to be
used are images in the RGB color space would it be expected to obtain the maximum
discrimination efficiency. Also, it can be seen that when networks optimized for specific
purposes, such as the MobileNetV2 network, are used, the loss of efficiency due to training
with other color spaces is more pronounced compared to the DenseNet-201 network.
This is coherent with Ciocca, Napoletano & Schettini (2018), who commented that when
databases are compared for CNN training, the accuracy depends on the representativeness
of the database.
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CONCLUSIONS
All tested CNNs showed an F-score from 98 to 99% for quinoa grains and foreign bodies
discrimination. Statistically, both color space and CNN structure produce significant
effects over F-score for discrimination of foreign bodies in quinoa grains. In this study,
DenseNet-201 was the most robust, with a reduced effect of color space on its performance.
But, at the same time, this CNN requires more than eight times the time for training
transference than AlexNet. Although, for all the cases, these slight differences in accuracy
among the studied CNNs would not affect its practical applications for foreign bodies’
discrimination in quinoa grains. Regarding the color spaces, in general, the RGB provided
the means to obtain the highest F-scores regardless of the method; this may follow the
models’ hyperparameter tuning, which usually considers the most common color space.
Considering further research directions, and given the expected small proportion of foreign
bodies compared to the true quinoa grains, it may be relevant to employ adaptive and
skew-sensitive techniques to reduce the bias towards the positive class.
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