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ABSTRACT
The gastrointestinal (GI) tract can be affected by different diseases or lesions such as
esophagitis, ulcers, hemorrhoids, and polyps, among others. Some of them can be
precursors of cancer such as polyps. Endoscopy is the standard procedure for the
detection of these lesions. The main drawback of this procedure is that the diagnosis
depends on the expertise of the doctor. This means that some important findings
may be missed. In recent years, this problem has been addressed by deep learning
(DL) techniques. Endoscopic studies use digital images. The most widely used DL
technique for image processing is the convolutional neural network (CNN) due to its
high accuracy for modeling complex phenomena. There are different CNNs that are
characterized by their architecture. In this article, four architectures are compared:
AlexNet, DenseNet-201, Inception-v3, and ResNet-101. To determine which
architecture best classifies GI tract lesions, a set of metrics; accuracy, precision,
sensitivity, specificity, F1-score, and area under the curve (AUC) were used. These
architectures were trained and tested on the HyperKvasir dataset. From this dataset, a
total of 6,792 images corresponding to 10 findings were used. A transfer learning
approach and a data augmentation technique were applied. The best performing
architecture was DenseNet-201, whose results were: 97.11% of accuracy, 96.3%
sensitivity, 99.67% specificity, and 95% AUC.

Subjects Gastroenterology and Hepatology, Radiology and Medical Imaging, Computational
Science, Data Mining and Machine Learning, Data Science
Keywords Convolutional neural network, Gastrointestinal lesions, Classification, Deep learning,
Endoscopy, Gastrointestinal, Computer-aided diagnostic

INTRODUCTION
The human gastrointestinal (GI) tract is susceptible to different types of lesions ranging
from minor annoyances to highly lethal diseases. Colorectal cancer (CRC) ranks third in
cancer incidence and second in mortality (Borgli et al., 2020).

According to the World Health Organization (WHO), there are approximately
19.2 million new cases of cancer worldwide, of which 10% is colorectal cancer. Esophageal
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cancer is the eighth most common and sixth in causes of death (Bray et al., 2018; Sung
et al., 2021; Zhao et al., 2019).

Today, endoscopy is the diagnostic technique of choice for CRC and other lesions of the
gastrointestinal tract; nonetheless, its results can sometimes be falsely negative, leading to a
delay in the diagnosis of CRC (Levin et al., 2008). During endoscopic procedures, there are
deficiencies in the detection of cancers and adenomatous polyps, as they are not easy to
observe due to the different blind spots that exist in the colon (Choi et al., 2014; Kaminski
et al., 2010; Komeda et al., 2013; Yu et al., 2021), with an error rate of up to 26%
(Gómez-Zuleta et al., 2021; Zhao et al., 2019). In addition, approximately 50–60% of
undetected lesions develop into interval cancer (Pohl & Robertson, 2010). Examining
endoscopy videos takes quite a long time and increases the workload of expert doctors
(Öztürk & Özkaya, 2021). Therefore, it is essential to develop computerized approaches
that can assist the experts in effective diagnosis and treatment (Owais et al., 2019).

In Mexico, CRC represents 8.6% of cancer fatalities, just after breast cancer and a
16.35% increase is expected in 2025, according to the International Agency for Research on
Cancer (IARC). The exact cause of CRC is not known, however, different risk factors
increase the probability of developing it, such as changes in lifestyle and diet, i.e., a higher
intake of animal-based foods, excessive alcohol consumption, smoking, and a more
sedentary lifestyle, leading to decreased physical activity and increased body weight (Bray
et al., 2018; Gómez-Zuleta et al., 2021).

Taking into account that the diagnosis of gastrointestinal conditions is through digital
images, a scenario arises in which technology and Artificial Intelligence (AI), specifically
deep learning (DL) begin to show good results, the use of convolutional neural networks
(CNNs) has become popular due to the ease of classifying images (Agrawa et al., 2017;
Chang et al., 2019; Hoang et al., 2018; Lonseko et al., 2021).

A CNN is a neural network architecture inspired by the biological visual cortex of
animals. The algorithm works with convolutional layers with shared sets of
two-dimensional weights and recognizes spatial information and layer clustering to filter
out comparatively more important knowledge and transmit only concentrated features
(Hiriyannaiah et al., 2020; Kwak & Hui, 2019; Song & Cai, 2021; Subasi, 2020). Nowadays,
there is a variety of CNN architectures (Pacal et al., 2020; Alzubaidi et al., 2021), with very
different characteristics, therefore, a correct choice of architectures becomes important to
perform the task of image classification of GI tract lesions. Nevertheless, these classifiers
suffer from a lack of interpretability due to the fact that they are considered as “black
boxes” that give good results, but without any explanation (Gutiérrez & Tejada, 2020).
Thus, is necessary to implement a set of metrics to evaluate the performance of the
architectures to comprehend the behavior of the models. Performance metrics should
always be interpreted together rather than relying on a single metric (Thambawita et al.,
2020).

However, image classification of gastrointestinal tract lesions remains a complex
problem to solve because there are a limited number of databases (Cogan, Cogan & Tamil,
2019; Pogorelov et al., 2017a, 2017b), and until recently, the databases had very few images
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to train the models, another factor was the quality of the images, which limited the
implementation of CNNs models (Yu et al., 2021).

The present study proposes the implementation of four different CNNs models such as
AlexNet, DenseNet-201, Inception-v3 and ResNet-101 to classify GI tract lesions and
compare their performance by using a set of metrics, which are: accuracy, precision,
sensitivity, specificity, F1-score, and AUC to select the architecture that best models the GI
lesions classification problem.

This article is structured as follows: Section 2 describes related work of major relevance
to the study. Section 3 discusses the methodology of the research work, detailing the
techniques, tools, and resources used. Section 4 contains the discussion of the results
obtained. Section 5 presents the conclusions of the research. Section 6 describes the future
work, and finally, Section 7 reports the acknowledgments.

RELATED WORK
In the last few years, the number of AI applications has increased exponentially. Proof of
this is the remarkable advances in the field of computational image recognition, especially
in the medical area, where different DL techniques have been implemented for the
automatic classification of gastrointestinal lesions.

The work of Pogorelov et al. (2017a) presents a multiclass classification using Kvasir
dataset. The dataset contains 4,000 images and eight different classes annotated and
verified by expert physicians, including anatomic sites, pathologic findings, and
endoscopic procedures. It uses three different approaches, the first approach uses random
forest (Macaulay et al., 2021) and logistic model tree (Landwehr, Hall & Frank, 2005).
The second approach uses CNNs with a rectified linear unit (ReLU) activation function
and maximal clustering. The third approach is based on transfer learning, with the
implementation of stochastic gradient descent (SGD) (Hong et al., 2020) to achieve the best
performance in terms of speed and accuracy. It is worth mentioning that no data
augmentation scheme was used, however, double cross-validation is implemented as a
strategy to evaluate its results. The best performing approach was the logistic model tree
with an accuracy of 93.70%, which combined all extracted features, resulting in a vector of
1,186 features.

Petscharnig, Schoffmann & Lux (2017) proposes two variations of CNN architectures
with the particular feature of using an “inception” module to decrease the computational
cost. The basic idea of the inception module is that the network can select at training
time whether clustering, small convolution, or wider convolution is best suited to the
underlying data. Kvasir is used as the dataset, a GoogLeNet-based architecture (CNN with
22 layers deep), and a data augmentation scheme (Monshi et al., 2021) to increase the
number of images. In general, the architecture provides acceptable results even with little
training data, however, the authors conclude that the model where they use 2,048 neurons
in the deep layers suffers from overfitting and produces lower performance, the opposite is
the case with the model where they used 1,024 neurons, obtaining an overall accuracy of
93.90%.
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Likewise, Agrawa et al. (2017) uses Kvasir and implements a combination of pre-trained
CNNs with ImageNet (Russakovsky et al., 2015). Employs the 16-layer configuration of
VGGNet (Simonyan & Zisserman, 2015) as a feature extractor, using the outputs of the
first fully connected layer as features for classification. An Inception-v3 network is used to
extract the features and finally, a support vector machine (SVM) (Badr et al., 2021) is
implemented for multiclass classification employing different configurations.

The hyperparameters of the SVM classifier were tuned using a five-fold cross-validation
framework on the training dataset. The result was an overall accuracy of 96.10% using a
combination of all features and with a data partition of 80–20% for training and testing
respectively.

Hoang et al. (2018) combines Kvasir and Nerthus to classify 16 different classes. A
ResNet with 101 layers is implemented to extract features from the original dataset, but
extended with instruments. After passing through ResNet 101, the output images classified
as special classes become the input to the Faster R-CNN network (Chen et al., 2021) that is
trained to detect instruments in the images. Finally, this configuration obtained an
accuracy of 99.33% and an F1-score of 94.6%, demonstrating that the use of pre-trained
CNNs and a data augmentation scheme achieve good results in endoscopic image
classification of the GI tract.

On the other hand, Chang et al. (2019) was based on learning different feature
representations for multi-label images using models based on CNNs, including ResNet-34,
SE-ReNeXt (Xie et al., 2017), and attention-Inception-v3 (Szegedy, Vanhoucke & Shlens,
2014). The models were trained using multi-epoch fusion and adaptive thresholding
techniques with an automatic data augmentation scheme. According to the above
configuration, an accuracy of 99.46%, an F1 score of 90.07%, and a Matthews correlation
coefficient (MCC) of 95.20% were obtained.

The proposal of Igarashi et al. (2020) employs an AlexNet architecture to classify a total
of 85,246 raw images obtained from Hirosaki University Hospital. The images were
manually classified into 14 categories according to major pattern classification by
anatomical organs. To train the model, 49,174 images of gastric cancer patients who
underwent upper GI tract endoscopies were used, and 36,072 images were used to evaluate
the model performance. Finally, the model obtained an overall accuracy of 96.5% and,
according to the authors, the system can be used in routine endoscopy for image
classification.

Borgli et al. (2020) presents HyperKvasir, a free-to-use database, the database has a total
of 110,079 images and 374 videos of different GI tract examinations. The files are labeled
images, segmented images, unlabeled images, and labeled videos with a total of 40 classes,
16 classes for the upper GI tract and 24 for the lower GI tract. To test the technical quality
of the dataset, different experiments were performed with CNNs models to classify the
images and the performance was measured with different metrics to give insight into the
statistical qualities of the dataset. The best performing approach was the combination
between ResNet-50 and DenseNet-161 both pre-trained, the average of both models was
used to classify the labeled image set, which has 23 classes and 10,662 images. Both CNNs
were trained with 50 epochs and a batch size of 32, and SGD was used as the optimization
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method. Finally, the micro and macro averages were used to evaluate the models, and
standardized classification metrics were used, resulting in an accuracy of 91% for the micro
and 63.3% for the macro average.

The work of Gómez-Zuleta et al. (2021) presents a DL methodology for the automatic
detection of polyps in colonoscopy procedures, Inception-v3, ResNet-50 and VGG-16
were the models assigned for this task. For classification, a transfer learning approach is
used, and the resulting weights are used to start the new training process with colonoscopy
images using the fine-tuning technique. The training scheme was a data split of 70% for
training and 30% for validation, in which five different databases were combined, with a
total of 23,831 and 47,013 frames with and without polyps for validation. Different metrics
were implemented to measure the results, accuracy, F1-score, and ROC curve, are some of
them. Finally, the Inception-v3, ResNet-50, and VGG-16 models obtained an accuracy of
81%, 77%, and 73% respectively. According to the authors, it is remarkable that these
models generalize well the high variability of colonoscopy videos, moreover, this method
can serve as a support for future generations of gastroenterologists.

Similarly, Al-Adhaileh et al. (2021) uses three networks to evaluate their potential in the
classification of medical images using Kvasir as a database. First, a preprocessing is applied
to remove noise from the images and improve their quality, as well as a data augmentation
technique to improve the training process and a dropout technique to avoid overfitting;
however, the authors mention that with this technique the training time doubled. Also,
Adam is used as an optimizer to reduce loss or error, as well as a transfer learning
technique and fine tuning. Finally, they are implemented to classify a total of 5,000 images
with a total of five classes and a division of 80% of the database for training and 20% for
validation. The models obtained an accuracy of 96.7%, 95%, and 97% for GoogLeNet,
ResNet-50 and AlexNet, respectively.

Finally, Smedsrud et al. (2021) presents Kvasir-Capsule, a video-capsule endoscopy
(VCE) dataset, which consists of 117 videos collected from endoscopic examinations with
a total of 14 different classes of findings and 47,238 labeled images. A VCE is composed of
a small capsule containing a wide-angle camera, light sources, batteries and other
electronic components. Two CNNs, DenseNet-161 and ResNet-152 were trained to
perform the technical validation of the labeled dataset, a cross-validation was implemented
using categorical cross-entropy loss with and without class weighting, and weighted
sampling, which balances the dataset by adding and removing images for each class.
The best result was the average of both CNNs with 73.66% and 29.94% accuracy for the
micro and macro average.

DL techniques are used for gastric lesion classification, as well as the diversity of
approaches that exist to address classification, however, results also vary from one
approach to another. CNNs show robust results and great adaptability to extract important
features from gastric lesion images, moreover, with the implementation of optimization
techniques the performance can be significantly improved. In this sense, the present
work presents a comparative study between AlexNet, DenseNet-201, Inception-v3, and
ResNet-101, selected according to the significant behavior and their reported results.
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MATERIALS AND METHODS
In this section is presented the description of the research model. The research model
shown in Fig. 1, consists of three stages, the first stage consists of data acquisition, here is
described the construction and elements of the database, as well as its validation.
The second stage is the training of the CNNs, it describes the details of the different
architectures proposed for the classification of the GI tract, it contains the configuration of
the hyperparameters, such as the optimizer, the learning rate, the batch size and the
number of epochs, the training approach and the image classification process are also
described. The third stage is the evaluation of the models, where the performance is
measured through the application of the different metrics.

Data acquisition
One of the great challenges of AI in the medical field is the availability of data, as retrieving
information from health care systems is a difficult task, as well as getting approvals from
medical committees. In this regard, the HyperKvasir database aims to facilitate the
development of AI in medical applications. The database is available at the following link:
https://datasets.simula.no/hyper-kvasir/. HyperKvasir contains a total of 110,079 images
(10,662 labeled and 99,417 unlabeled) and 374 videos of different gastrointestinal
examinations.

In total, the dataset contains 10,662 images labeled with a JPEG format, of which 23
different classes are structured according to location in the GI tract and type of finding.
In general, the 23 classes are separated into four main categories: anatomical locations,
quality of mucosal views, pathological findings and therapeutic interventions. However,
for research purposes only 10 different classes are used, selected with respect to the highest
number of examples per class, as they are usually the most frequently encountered in
endoscopy processes according to Borgli et al. (2020).

Figure 2 shows an example of each class of the data set used, labeled as: (1) Cecum,
(2) Dyed-lifted-polyps, (3) Esophagitis grade a, (4) Impacted stool, (5) Polyps, (6) Pylorus,
(7) Retroflex-rectum, (8) Retroflex-stomach, (9) Ulcerative-colitis-grade-3, (10) Z-line.

Some images have a green box in the lower left corner, which is actually the topographic
representation of the colon. Also, the number of images per class is not balanced due to the
fact that some lesions are presented more than others, which is a challenge in the medical
field. Figure 3 represents as a graph the number of images per class of the dataset. In total,
6,792 images are used to test the performance of CNNs, most of the images have a

Figure 1 Diagram of the proposed methodology. Full-size DOI: 10.7717/peerj-14806/fig-1
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resolution of 768� 576 pixels. However, the image input of the CNNs has another size so a
resizing is applied to adjust the image to the input size of the neural network, this is
achieved by means of a bilinear interpolation (Assad & Kiczales, 2020). For the
classification of the images, a partition of 70% was performed for training and 30% for
model testing according to the review of the related work.

Training of convolutional neural networks
According to the literature review, four models of CNNs were selected to evaluate their
performance in classifying images of the GI tract, which are: AlexNet, DenseNet-201,
Inception-v3 and ResNet-101. The general structure of a CNN is shown in Fig. 4.

Figure 2 Diferent classes of the dataset. (1) Cecum, (2) Dyed-lifted-polyps, (3) Esophagitis grade a, (4) Impacted stool, (5) Polyps, (6) Pylorus, (7)
Retroflex-rectum, (8) Retroflex-stomach, (9) Ulcerative-colitis-grade-3, (10) Z-line. Full-size DOI: 10.7717/peerj-14806/fig-2

Figure 3 Number of images per class. Full-size DOI: 10.7717/peerj-14806/fig-3
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AlexNet
AlexNet was proposed by Krizhevsky, Sutskever & Hinton (2012), the architecture was
presented to the ImageNet Large Scale Visual Recognition (ILSVRC) and won the
competition. The network has 61 million of parameters, and consists of eight layers with
weights, the first five are convolutional layers and the remaining three layers are fully
connected. The main feature of this network is the implementation of “dropout” as a
regularization method and the use of ReLU as an activation function (Kazemi, 2017).

DenseNet-201
The DenseNet model consists of many blocks and one dense block contains the
convolutional layer, ReLU layer, and batch normalization. On the other hand, two dense
blocks are connected to the convolutional and max-pooling layer and the last dense block
is connected to the global average pooling and Softmax classifier (Bohmrah & Kaur, 2021).
This architecture has 201 layers of deep, and works with 20 million of parameters. It needs
fewer parameters than conventional CNNs because they do not need non-essential feature
maps, because they are narrow and introduce new feature maps in a negligible amount
(Chauhan, Palivela & Tiwari, 2021). To preserve the feed-forward nature each layer
obtains additional inputs from all preceding layers and passes its own feature maps to all
subsequent layers (Mocsari & Stone, 2017).

Inception-v3
Inception-v3 is a convolutional neural network that is 48 layers deep and consists of a total
of 23.9 million parameters. An Inception network is a network consisting of modules
stacked on top of each other, with multiple symmetric and asymmetric building blocks,
where each block has several branches of convolutions, average-pooling, max-pooling,
concatenated, dropouts, and fully-connected layers to reduce the network resolution
(Szegedy, Vanhoucke & Shlens, 2014).

ResNet-101
ResNet models were developed by He et al. (2016), they emerged as a family of deep
architectures. These models obtained the first place in ILSVRC and common objects in

Figure 4 Architecture of a convolutional neural network.
Full-size DOI: 10.7717/peerj-14806/fig-4
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Context (COCO), they differ from other architectures in terms of omission of connections
and excessive use of ReLU layers (Kazemi, 2017). ResNet was built by several stacked
residual units and developed with many different numbers of layers: 18, 34, 50, 101, 152,
and 1,202. In this case, the 101-layer configuration is used, because it presents a significant
increase in accuracy compared to other architectures with fewer layers. This setting works
with 44.6 million of parameters.

The characteristics of each architecture are shown in Table 1.
These architectures present advanced optimization techniques that have been shown to

improve training time and performance, e.g., regularization methods, parameter
initialization, optimizers, improved activation functions, and normalization techniques
(Johnson & Khoshgoftaar, 2019). To compare the performance of CNNs, hyperparameters
are standardized for each of the models, a good selection of these values directly affects the
performance of the models, so a good choice of hyperparameters is crucial. Table 2
describes these parameters, which were selected from the review of related work and to the
capability of the hardware used.

The learning rate is the speed at which an optimization function moves through the
search space to converge. The batch size defines the number of data to train the models.
The number of epochs refers to the backward and forward propagation correction cycle to
reduce the loss. The optimizer is an algorithm used to update the network parameters at
each training epoch. And finally, the loss function is used in the output layer to calculate
the predicted error over the training samples, this error reveals the difference between the
actual and expected output, subsequently, it is optimized through the training process of
the network (Alzubaidi et al., 2021).

There are many reasons for using a pre-trained model. First, training models on large
data sets has a high computational cost. Second, training models with many layers can be

Table 1 Summary of the implemented architectures.

Network Depth Size (MB) Parameters (Millions)

AlexNet 8 227 61

DenseNet-201 201 77 20

Inception-v3 48 89 23.9

ResNet-101 101 167 44.6

Table 2 Hyperparameters employed.

Hyperparameters Value

Learning rate 0.001

Batch size 16

Epochs 50

Optimizer SGDM*

Loss function Softmax

Note:
* SGDM, Stochastic gradient descent with momentum.
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time consuming, even taking weeks. Finally, a pre-trained model can help network
generalization and accelerate convergence (Al-Adhaileh et al., 2021).

The models have been pre-trained in ImageNet (Krizhevsky, Sutskever & Hinton, 2012),
a database with more than 15 million high resolution images. This approach consists of
training the network using a large volume of data, where it learns the bias and weights
during the training process. These weights are transferred to different networks to retrain
or test a model, in this way, the new model can pre-train the weights instead of having to
train from scratch, the use of these weights is done by a process called fine tuning (Fig. 5),
in which the entire pre-trained network is taken and the last fully connected layer is
removed. This layer is replaced by a new one, where the number of neurons is equal to the
number of classes in the classification task (Gómez-Zuleta et al., 2021), in this case it was
replaced by a fully connected layer of 10 neurons, which represents the 10 classes to be
classified.

Finally, in the classification stage, a loss function is used in the output layer and
calculates the predicted error over the training samples. This error reveals the difference
between the actual and expected output. The Softmax function estimates the probability of
belonging to a class, this function is widely used to measure CNN performance, its output
is the probability p 2 f0; 1g. In addition, it is commonly used as a replacement for the
mean squared error function in multiclass classification problems. In the output layer,
softmax activations are used to generate the output with a probability distribution
(Alzubaidi et al., 2021).

The mathematical representation of the output class probability is the Eq. (1).

pi ¼ eai
PN

k¼1 e
a
k

(1)

where eai represents the unnormalized output of the previous layer, while N represents the
number of neurons in the output layer.

Evaluation of model performance
When talking about the data sets used to train CNNs, skewed data distributions arise
naturally in many applications, which produces an intrinsic imbalance due to the natural
frequencies of the data where the positive class occurs at a reduced frequency, including

Figure 5 Representation of transfer learning process. Full-size DOI: 10.7717/peerj-14806/fig-5
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data found in disease diagnosis (Johnson & Khoshgoftaar, 2019). Thus, it is necessary to
properly select those metrics that best represent the performance of the models.

A metric is used to measure performance, i.e., it judges the performance of the models.
Currently, there is a wide variety of metrics, each of which provides specific information
about a characteristic within the classifier performance. For the calculation of these
metrics, it is necessary to know the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN).

In medical terms, positive means that the patient has abnormal lesions or has the virus,
while TP means that patients with abnormal lesions are tested, and correctly labeled as
abnormal lesions. Whereas FP is defined as a medical misdiagnosis of a patient with no
abnormal lesions. Negative means the patient is healthy or has no abnormal lesion, and TN
is the patient with no lesions and is diagnosed as normal. FN is defined as the condition
where the patient with an abnormal lesion is labeled as healthy, which is a condition that
causes misdiagnosis (Wang et al., 2019). According to the above, a more detailed analysis
can be achieved based on the combination of the parameters to obtain different metrics.

The confusion matrix is a mechanism to visualize the performance of a classifier
containing the four parameters defined above, the rows represent the prediction of the
classifier, while the columns represent the actual value of each class (Al-Adhaileh et al.,
2021). A more detailed analysis can be achieved by combining the parameters of the
confusion matrix to obtain different metrics.

Accuracy refers to the ratio of the number of correct predictions to the total number of
predictions made, and it can be calculated with Eq. (2).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(2)

Precision measures the percentage of positively labeled samples that are actually
positive, and is sensitive to class imbalance because it considers the number of negative
instances incorrectly labeled as positive, its mathematical representation is the Eq. (3).

Precision ¼ TP
TP þ FP

(3)

Sensitivity or recall is calculated with the Eq. (4), which allows to know the probability
that a positive case is correctly classified.

Sensitivity ¼ TP
TP þ FN

(4)

Specificity is calculated with Eq. (5), which gives the probability that a negative case will
be correctly classified.

Specificity ¼ TN
TN þ FP

(5)

F1-score combines accuracy and sensitivity using the weighted harmonic mean, where
the coefficient b is used to adjust the relative importance between accuracy and sensitivity,
is calculated with Eq. (6).
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F1� score ¼ ð1þ b2Þ � recall � precision
b2 � recall þ precision

(6)

Finally, the area under the ROC curve is a two-dimensional graphical representation of
the performance of a classifier. It is used to make comparisons between learning models
and build a learning model that best models the data. In contrast to probability and
metrics, the AUC exposes the classifier’s overall performance.

RESULTS AND DISCUSSION
The DL approach has been shown to enhance the performance of GI disease classification
tasks significantly. This section presents and discusses the results obtained for each of the
architectures. Table 3 shows the results obtained for each metric.

In general, the four architectures present a statistically acceptable overall performance,
however, DenseNet-201 excels in most of the metrics, for example, it obtained 97% of
accuracy, which indicates that it has a high degree of reliability in terms of the number of
correctly classified predictions concerning the total number of predictions made.

In the medical field, precision is a very important parameter, since it measures the
percentage of positive samples correctly classified. DenseNet-201 obtained 96.4%, while
Inception-v3 and ResNet-101 obtained 95.1%, and lastly, AlexNet obtained 94.1% of
precision.

Similarly, DenseNet-201 obtained 96.3% of sensitivity, ResNet-101 scored 94.9%,
Inception-v3 achieved 94.8%, while the lowest performance was for AlexNet, which scored
92.1%.

In terms of specificity, all the architectures have more than 99%, which indicates how
well they correctly classify negative cases.

In terms of F1 score, DenseNet-201 scored 96.3%, which indicates a good ratio between
accuracy and recall, so we can say that DenseNet-201 architecture has a good balance to
correctly classify positive samples. ResNet-101 achieved 95.3%, and Inception-v3 obtained
94.9%, but AlexNet scored 92.4%.

Figure 6 shows a summary of the architectures performance. It is observed how the
AlexNet architecture had a lower performance than the rest of the architectures, except
in specificity, where all architectures classify without problems the negative cases.

Table 3 Comparison of the results of each architecture.

Metrics AlexNet DenseNet-201 Inception-v3 ResNet-101

Accuracy 0.949 0.971 0.959 0.964

Precision 0.941 0.964 0.951 0.951

Sensitivity 0.921 0.963 0.948 0.949

Specificity 0.994 0.997 0.995 0.996

F1-score 0.924 0.963 0.949 0.953

AUC 0.902 0.949 0.929 0.945

Time (min) 99 1,005 389 338
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Inception-v3 and ResNet-101 almost have the same performance, but in terms of AUC,
ResNet-101 is superior.

DenseNet-201, the architecture with the highest number of layers, obtained the best
performance in general, however, a disadvantage of using architectures with many layers is
that they consume a lot of training time. DenseNet-201 was the architecture that
consumed the most time, it took 1,005 min in total. Nevertheless, the experiment of the
present work consisted of a single implementation of the CNNs for the classification of GI
tract lesions. Therefore, training time carries less weight as a metric for model evaluation.
What would be interesting would be to analyze the response time of the models when a
new image is introduced.

Figure 7 shows the AlexNet confusion matrix in which a more detailed analysis of the
number of instances correctly classified by architecture can be observed. It is clear how the
AlexNet architecture had complications when classifying class three, which corresponds to
esophagitis grade a, being able to classify only 56.19% of the instances correctly.

The confusion matrix of the DenseNet-201 model shows its ability to classify instances
correctly; seven out of 10 classes were classified at 100%. The main diagonal shows the
number of correctly classified samples. It can be seen in Fig. 8 that the classes with the
greatest conflict were class three identified as esophagitis grade a and class 10 which
corresponds to the z line. If we look at Fig. 2 it is difficult to distinguish one class from the

Figure 6 Model performance summary. (A) AlexNet model. (B) DenseNet-201 model. (C) Inception-
v3 model. (D) ResNet-101 model. Full-size DOI: 10.7717/peerj-14806/fig-6
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other. Added to the fact that class three contains very few samples and this implies that the
model has to learn a limited number of examples, which complicates the classification.

On the other hand, Inception-v3 correctly classified all instances of only three classes.
However, it obtained good percentages in the remaining classes. It can be observed in Fig. 9
that class three is still the class that generates the most conflict in the architectures.

Figure 7 AlexNet confusion matrix. Full-size DOI: 10.7717/peerj-14806/fig-7

Figure 8 DenseNet-201 confusion matrix. Full-size DOI: 10.7717/peerj-14806/fig-8
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Figure 10 shows the confusion matrix of ResNet-101. The architecture shows good
results in the classification of the instances of each class, there is a good balance between
reference and prediction. However, it only correctly classified all instances of two classes,
which are: impacted stool and ulcerative-colitis-grade-3.

Figure 9 Inception-v3 confusion matrix. Full-size DOI: 10.7717/peerj-14806/fig-9

Figure 10 ResNet-101 confusion matrix. Full-size DOI: 10.7717/peerj-14806/fig-10

Cuevas-Rodriguez et al. (2023), PeerJ, DOI 10.7717/peerj.14806 15/21

http://dx.doi.org/10.7717/peerj-14806/fig-9
http://dx.doi.org/10.7717/peerj-14806/fig-10
http://dx.doi.org/10.7717/peerj.14806
https://peerj.com/


In terms of AUC, DenseNet-201 achieved 94.9%. Fig. 11 shows the high classification
ability of the real values. Therefore, the performance of the model is statistically reliable, as
the trade-off between sensitivity and specificity is close to unity.

CONCLUSIONS
In the present research, four architectures were selected to compare their performance in
the classification of gastrointestinal lesions. These architectures were selected based on a
literature review and their significant results. Each architecture has very different
characteristics, from the number of layers to the type of techniques used to filter the
information through the entire network. However, when evaluating their performance, the
differences are minimal, so it is worth highlighting the appropriate selection of the
implemented metrics and thus be able to discriminate one architecture from another.

There is no doubt that convolutional neural networks model very well the high
variability that exists in images of gastrointestinal lesions. The proposed methodology
demonstrates that the architectures can classify more than 90% of the samples correctly,
even when working with an unbalanced database. DenseNet-201 was the best performing
architecture, where seven out of 10 classes were correctly classified. This architecture excels
in most metrics as we can see in Table 3 and Fig. 6. Nonetheless, it can be observed in Fig. 8
that DenseNet also had problems classifying class number three, classifying only 71.07% of
the instances correctly. Affecting the overall performance of the model.

The main contribution of this work is to show the potential of four different CNNs
architectures, by comparing their performance through the implementation of different
metrics.The results demonstrate that the DenseNet-201 model can outstandingly

Figure 11 DenseNet-201 multiclass ROC curve. Full-size DOI: 10.7717/peerj-14806/fig-11
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differentiate images with different lesions of the GI tract. We strongly believe that the
model could be used as a computer-aided diagnostic tool, allowing more accurate
diagnosis in a shorter amount of time.

One of the limitations encountered in the implementation of convolutional neural
networks was the lack of images for certain classes. It was observed that the behavior of
CNNs is much better when there is a large number of images to train the models.

FUTURE WORK
A proposal for future work would be the implementation of the DenseNet-201 neural
network as a support system in the endoscopy process for the identification of lesions of
the GI tract.
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