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Objective: A wide array of methods exist for processing and analysing DNA methylation
data. We aimed to perform a systematic comparison of the behaviour of these methods,
using cord blood DNAm from the LIMIT RCT, in relation to detecting hypothesised effects of
interest (intervention and pre-pregnancy maternal BMI) as well as effects known to be
spurious, and known to be present. Methods: DNAm data, from 645 cord blood samples
analysed using Illumina 450K BeadChip arrays, were normalised using three different
methods (with probe filtering undertaken pre- or post- normalisation). Batch effects were
handled with a supervised algorithm, an unsupervised algorithm, or adjustment in the
analysis model. Analysis was undertaken with and without adjustment for estimated cell
type proportions. The effects estimated included intervention and BMI (effects of interest
in the original study), infant sex and randomly assigned groups. Data processing and
analysis methods were compared in relation to number and identity of differentially
methylated probes, rankings of probes by p value and log-fold-change, and distributions of
p values and log-fold-change estimates. Results: There were differences corresponding to
each of the processing and analysis choices. Importantly, some combinations of data
processing choices resulted in a substantial number of spurious ‘significant’ findings. We
recommend greater emphasis on replication and greater use of sensitivity analyses.
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26 Abstract
27 Objective: A wide array of methods exist for processing and analysing DNA methylation data. We aimed 

28 to perform a systematic comparison of the behaviour of these methods, using cord blood DNAm from 

29 the LIMIT RCT, in relation to detecting hypothesised effects of interest (intervention and pre-pregnancy 

30 maternal BMI) as well as effects known to be spurious, and known to be present.

31 Methods: DNAm data, from 645 cord blood samples analysed using Illumina 450K BeadChip arrays, 

32 were normalised using three different methods (with probe filtering undertaken pre- or post-

33 normalisation). Batch effects were handled with a supervised algorithm, an unsupervised algorithm, or 

34 adjustment in the analysis model. Analysis was undertaken with and without adjustment for estimated 

35 cell type proportions. The effects estimated included intervention and BMI (effects of interest in the 

36 original study), infant sex and randomly assigned groups. Data processing and analysis methods were 

37 compared in relation to number and identity of differentially methylated probes, rankings of probes by p 

38 value and log-fold-change, and distributions of p values and log-fold-change estimates.

39 Results: There were differences corresponding to each of the processing and analysis choices. 

40 Importantly, some combinations of data processing choices resulted in a substantial number of spurious 

41 �significant� findings. We recommend greater emphasis on replication and greater use of sensitivity 

42 analyses. 
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56 Introduction and Background

57

58 With the advent of high-throughput assays, epigenome-wide DNA methylation studies have become 

59 more popular, and researchers are now investigating the effects on DNA methylation (DNAm) of a wide 

60 range of environmental exposures and physiological conditions, with particular interest in the 

61 contribution of epigenetic mechanisms such as DNAm to the early life origins of health and disease. The 

62 ability to perform EWAS is particularly useful in relation to conditions where associated differences in 

63 DNAm are likely to be fairly modest (Marabita et al., 2013). However, DNAm data � as with high-

64 dimensional �omics� data generally � requires substantial pre-processing prior to analysis, including 

65 probe and sample filtering, normalisation to remove variation due to technological factors, and 

66 correction for other factors which may confound effects of interest, such as batch effects or differences 

67 in cell type proportions between samples. Numerous methods exist to perform these processing steps, 

68 and many articles have been published which provide useful guidance for the use of analysis 

69 pipelines(Marabita et al., 2013; Yousefi et al., 2013; Lehne et al., 2015; Morris & Beck, 2015; 

70 Maksimovic, Phipson & Oshlack, 2017), or comparing some alternatives for individual steps in the overall 

71 processing pipeline, including probe filtering (Heiss & Just, 2019), normalisation (Wang et al., 2012, 

72 2015; Fortin et al., 2014; Wu et al., 2014; Hicks & Irizarry, 2015), or correction for / avoidance of batch 

73 effects. These have led to some general conclusions regarding the need to account for batch effects, the 

74 importance of correcting for estimated cell type proportion, and perhaps the greater suitability of 

75 within-array normalisation methods compared to between-array methods when global methlation 

76 differences are not expected (Maksimovic, Phipson & Oshlack, 2017), but there is no clear overall 

77 consensus on the best processing or analysis approach (Price & Robinson, 2018; Zindler et al., 2020), or 

78 of the overall advantages and disadvantages of different combinations of processing choices.

79

80 We recently investigated the effect of an antenatal diet and lifestyle intervention, and of maternal early 

81 pregnancy BMI, on neonatal cord blood DNA methylation in infants of mothers who were overweight or 

82 obese in early pregnancy(Louise et al., 2022). We were unable to replicate findings from previous 

83 studies  which reported a range of loci to be significantly differentially methylated in relation to 

84 maternal BMI or diet and lifestyle in pregnancy (Gemma et al., 2009; Sharp et al., 2015, 2017; Thakali et 

85 al., 2017; Hjort et al., 2018)and indeed did not find any significant differences In methylation 

86 corresponding to either BMI or intervention effects. We were aware of literature suggesting that use of 

87 supervised batch-correction algorithms may produce spurious findings (Nygaard, Rødland & Hovig, 

88 2016a; Price & Robinson, 2018; Zindler et al., 2020), and that the number of statistically significant 

89 findings may differ according to normalisation method (Wu et al., 2014), adjustment for estimated cell 

90 type proportion (Sharp et al., 2017) or stringency of type I error control (Wu et al., 2014), which led to 

91 the hypothesis that the discrepancy in findings may be due in part to differences in data processing and 

92 analysis methods.  Following the common practice in clinical trials of conducting sensitivity analyses to 

93 assess robustness of results to various assumptions and decisions (Thabane et al., 2013), we performed 

94 several re-analyses with different normalisation methods, methods for batch effect handling, type I 

95 error control, and presence vs absence of adjustment for estimated cell type proportions. This 

96 confirmed that our findings indeed differed under different data-processing and analysis choices.

97

98 While previous studies comparing different methods have also produced different findings, these have 

99 tended to consider only one element of the processing and analysis pipeline (such as normalisation, or 

100 batch correction) in isolation. In addition, they have tended to concentrate on the tendency for some 

101 methods to produce results which are likely to be spurious (false positives), while often being unable to 
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102 definitively confirm this due to the lack of known truth regarding the presence and magnitude of 

103 differential methylation effects.

104

105 We therefore set out to investigate the impact of different data-processing choices in a more systematic 

106 way, looking at the effect of combinations of data processing choices on findings specifically regarding 

107 statistically significant differentially methylated probes (DMPs), and of the behaviour of these 

108 combinations in cases where effects are known to be either absent or present, as well as their behaviour 

109 in relation to our effects of interest (maternal BMI and lifestyle intervention).  We were able to create a 

110 scenario in which effects were known to be absent by randomly assigning samples to groupings.  We 

111 could not similarly ensure a scenario where effects were known to be present (as the truth regarding the 

112 existence, location and magnitude of any effects in our samples is not known); however we investigated 

113 effects of infant sex as a rough proxy, since infant sex is known to have substantial effects on DNAm 

114 which can be detected by the 450K array (Yousefi et al., 2015). 

115

116 Data and Methods

117 The LIMIT Randomised Controlled Trial
118

119 The LIMIT study was a randomised, controlled trial of an antenatal diet and lifestyle intervention for 

120 women with early pregnancy BMI 25.0 kg/m2.  The study, and its primary and main secondary 

121 outcomes, have been extensively reported elsewhere (Dodd et al., 2014b). Inclusion criteria were early 

122 pregnancy BMI 25.0 kg/m2 and pregnancy between 10+0 and 20+0 weeks� gestation, with exclusion 

123 criteria of multiple gestation or previously existing diabetes.  The study randomised 2212 women in total 

124 to one of two groups: a comprehensive diet and lifestyle intervention (Lifestyle Advice; n=1108) or 

125 antenatal care delivered according to local guidelines (Standard Care; n=1104) which did not include 

126 information on diet or physical activity.  The study was reviewed by the ethics committee of each 

127 participating institution including the Women�s and Children�s Health Network Human Research Ethics 

128 Committee (1839 & 2051); the Central and Northern Adelaide Health Network Human Research Ethics 

129 Committee (2008033) and the Southern Adelaide Local Health Network Human Research Ethics 

130 Committee (128/08).  Informed written consent was obtained for all participants to participate in the 

131 LIMIT study, and additional written consent was obtained to collect samples of umbilical cord blood at 

132 delivery for the purposes of gene expression research related to weight and to the diet and lifestyle 

133 intervention.

134

135 The primary outcome of the LIMIT study was birth of a Large for Gestational Age (LGA) infant. There 

136 were no significant differences observed between the groups in relation to this outcome; however, a 

137 significantly lower incidence of high birthweight (>4kg) was observed in the Lifestyle Advice group, with 

138 a Relative Risk of 0.82 (95% CI: 0.68, 0.99, p=0.04). Additionally, measures of diet quality and physical 

139 activity were improved in women in the Lifestyle Advice group compared to those in the Standard Care 

140 group (Dodd et al., 2014a).

141

142 As previously outlined in the companion paper (Louise et al., 2022), Cord Blood DNA for a range of 

143 secondary studies was collected at the time of birth from consenting participants, and was frozen as 

144 whole blood preserved with EDTA. Funding was available to perform DNA methylation analysis for a 

145 total of 649 samples, which were randomly selected from the total number of available samples, 

146 balanced between the Lifestyle Advice and Standard Care groups (Supplementary Table S1).  After DNA 
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147 extraction, genome-wide DNA methylation was performed using the Illumina Infinium 

148 HumanMethylation 450K Bead-Chip array. Results were supplied as raw probe intensities (IDAT files).

149

150 For the additional analyses investigating known spurious effects, artificial (fake) groups were created by 

151 assigning samples based on random draws from binomial distributions.  The first grouping 

152 (�Tortoiseshell� vs�Tabby�) was generated using a binomial distribution with 50% probability of 

153 assignment to each group. The second grouping (�Long�- vs �Short-Haired�) was created to mimic 

154 stratified randomisation as well as unequal proportions in each group: within each level of the first fake 

155 group, samples were assigned to Long-Haired with 40% probability and Short-Haired with 60% 

156 probability.

157

158 All data processing and analyses were undertaken using R version 4.0 (R Core Team, 2018).

159

160 Probe and Sample Filtering
161

162 The minfi package (Aryee et al., 2014) was used to read in the raw idats (without normalisation), and to 

163 calculate both probe-wise and sample-wise �detection p values�. Samples were identified as �faulty� if 

164 they had a detection p-value 0.05. 13 such samples were excluded; however these were due to a 

165 known chip failure, and had subsequently been rerun. A further four samples were excluded because 

166 the correct corresponding study identifier could not be ascertained, leaving 645 samples for analysis.

167

168 Probes were filtered using multiple criteria. Firstly, probes were excluded if they had a detection p-value 

169 0.001 in more than 25% of the 645 samples, indicating that their signal could not be accurately 

170 detected for a large proportion of samples (Dedeurwaerder et al., 2014; Maksimovic, Phipson & Oshlack, 

171 2017). Secondly, probes were excluded if they were on a list of those previously identified as cross-

172 reactive (Chen et al., 2013); i.e. there was a high probability they may hybridize to locations on the 

173 genome different to those for which the probe was designed (Dedeurwaerder et al., 2014; Naeem et al., 

174 2014). Thirdly, probes with an identified SNP within 3 nucleotides of the CpG site and minor allele 

175 frequency >1%, and probes on the X and Y chromosomes were excluded. This was done in order to avoid 

176 spurious methylation �differences� due either to SNPs within the CpG targets, or due to X and Y 

177 chromosomes (Dedeurwaerder et al., 2014; Naeem et al., 2014). Filtering of cross-reactive probes, 

178 probes with a nearby SNP and probes on the X and Y chromosomes was performed using the DMRCate 

179 package (Peters et al., 2015). This left 426,572 probes available for analysis.

180

181 Probe filtering was performed either after normalisation (post-filtered) or prior to normalisation (pre-

182 filtered). The one exception for pre-filtering was when normalising using the BMIQ method, where 

183 probes on the X and Y chromosome were retained as this was required in order for the function to run.

184

185

186 Normalisation
187

188 Normalisation involves making changes to the raw data in order to remove artifactual variation. In the 

189 case of Illumina 450K BeadChip arrays, this requires correcting for the presence of two different probe 

190 types. Infinium I probes use the same colour signal for methylated and unmethylated CpG and are often 

191 used for regions of high CpG density, while Infinium II probes use different colours to differentiate 

192 between methylated and unmethylated states (Pidsley et al., 2013; Wang et al., 2015).  Normalisation is 

193 performed on values, or the ratio of methylated to total intensity, defined as  .  Here, M � �� + � + ������
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194 is the methylated intensity and U is the unmethylated intensity; the offset is a constant added to 

195 regularize the value where both methylated and unmethylated intensities are low.  The distribution of �
196  values  is bimodal, with peaks corresponding to methylated and unmethylated states, but the �
197 distribution of Infinium II probes differs from that of Infinium I, being more compressed towards 0.5 

198 (Pidsley et al., 2013) and hence having a smaller �dynamic range� (Teschendorff et al., 2013; 

199 Dedeurwaerder et al., 2014).

200

201 Numerous methods exist for normalising Illumina BeadChip array data, but there is little consensus or 

202 guidance on which should be employed in a given context. The main advice is that �between-array� 

203 methods, which normalise across samples, are preferable when global differences between samples are 

204 expected, while �within-array� methods, which normalise probes within each sample, are better suited 

205 to effects in which the majority of genes will not be differentially expressed. (Maksimovic, Phipson & 

206 Oshlack, 2017) The latter is the context in which many EWAS studies, including the present one, are 

207 conducted; as noted above, only modest differences in a small proportion of genes are expected for 

208 most early-life exposures. The methods chosen for the present investigation have all been used in the 

209 context of studies such as this: Categorical-Subset Quantile Normalisation (SQN) (Wu et al., 2014; Wang 

210 et al., 2015), Beta-Mixture Quantile Normalisation (BMIQ) (Teschendorff et al., 2013), and Subset-

211 Quantile Within-Array Normalisation (SWAN) (Maksimovic, Gordon & Oshlack, 2012).  While numerous 

212 other methods exist, a comparison of all available normalisation methods was beyond the scope of this 

213 paper. Further details on the  methods are given in the Supplementary Information.

214

215 Both Subset Quantile Normalisation and Subset-Within-Array-Normalisation were performed using 

216 functions in the minfi package (preprocessQuantile and preprocessSWAN respectively), on raw intensity 

217 data. Beta-Mixture Quantile normalisation was performed using the champ.norm function in the ChAMP 

218 package after converting intensities to  values. �
219

220 Batch Effects
221

222 Batch effects arise when samples are processed in separate groups, creating unwanted variation due, 

223 for example, to different reagents, different plates or different scanner settings. (Morris & Beck, 2015; 

224 Nygaard, Rødland & Hovig, 2016a; Price & Robinson, 2018)

225 There are 12 Illumina 450K arrays (samples) per chip (this is reduced to 8 arrays per chip for the more 

226 recent 850K array); thus most studies involving large numbers of samples must be run on multiple chips. 

227 This introduces extra variability to the data, and may also confound the actual effects of interest, if 

228 samples from different groups are not evenly distributed between the batches. These effects must be 

229 accounted for in order to obtain valid estimates of the effects of interest.

230

231 Unlike probe filtering and normalisation, batch effects can be handled at the analysis stage, by adjusting 

232 for batch in the analysis model.  However, it is also common to address batch effects at the data-

233 processing stage, using a batch-correction algorithm, with the resulting data considered to be free of 

234 batch effects (Nygaard, Rødland & Hovig, 2016a). The ComBat algorithm has been widely used and 

235 considered the most effective method (Zindler et al., 2020) of removing batch effects in DNAm data; it 

236 has been incorporated into various analysis pipelines. Until recently, ComBat could be implemented only 

237 as a supervised method, in which the biological factors of interest had to be specified along with the 

238 batch variable (Price & Robinson, 2018) (Fortin, Triche & Hansen, 2016); it can now also be implemented 

239 as an unsupervised method, in which only the batch variable is specified.

240
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241 For each of the normalised datasets (i.e. SQN, BMIQ and SWAN normalised datasets, each with probes 

242 filtered either before or after normalisation), we handled batch effects in three ways: firstly, by 

243 adjusting for batch in the analysis model (BatchAdjust); secondly, implementing the supervised ComBat 

244 algorithm (sCB); and thirdly, implementing the unsupervised ComBat algorithm (uCB).  For the 

245 supervised ComBat algorithm, it was necessary to run the process twice: once with the effects of 

246 interest specified as maternal early pregnancy BMI, antenatal intervention group, and their interaction; 

247 and again with the effects of interest specified as Fake Group 1, Fake Group 2, their interaction, and 

248 infant sex.

249

250 Cell Type Proportions
251 Cord blood, like whole blood, contains a mixture of different cell types, which have different DNA 

252 methylation profiles.(Jaffe & Irizarry, 2014; Teschendorff & Zheng, 2017) If samples differ in the 

253 proportion of these different cell types, this may confound effects of interest, either hiding true 

254 differences in DNAm, or giving rise to spurious differences. Most studies of the effect of BMI, lifestyle 

255 interventions, or similar factors on cord blood DNA methylation have not attempted (or have not 

256 documented an attempt) to correct for potential differences in cell type composition, perhaps because 

257 reference profiles for cord blood were not available until more recently (Bakulski et al., 2016), and the 

258 mix of cell types and DNAm profiles may differ in cord blood compared to whole blood, making it 

259 inappropriate to apply reference profiles from whole blood to cord blood data.(Cardenas et al., 2016)

260

261 We estimated the proportion of B cells, CD4+T, CD8+T, granulocytes, monocytes, natural killer, and 

262 nucleated RBCs in the raw data using the estimateCellCounts() function in the minfi package, with the 

263 Cord Blood reference panel. The estimated proportions were then added to the metadata for use as 

264 adjustment variables in the analyses. We then undertook analyses either adjusted or not adjusted for 

265 estimated cell type proportion.

266

267 Figure 1 depicts the combinations of data-processing and analysis choices that were undertaken. In 

268 brief, there were six normalised datasets (three different normalisation methods, with probe filtering 

269 performed before normalisation or after normalisation). These datasets were either used immediately 

270 for analysis, or processed using the ComBat algorithm (in both supervised and unsupervised form) prior 

271 to analysis.  Non-ComBat-processed data were analysed with three different models: an unadjusted 

272 model (containing only the effects of interest), a model adjusted for batch, and a model adjusted for 

273 batch and estimated cell type proportions.  ComBat-processed data were analysed with two different 

274 models: one containing no other adjustment variables (but assumed to be �pre-adjusted� for batch), and 

275 one adjusted for cell type proportion.

276

277 Statistical Analysis
278

279 Differential methylation was investigated probe-wise using linear models with empirical Bayes variance 

280 correction as implemented in the limma package (Ritchie et al., 2015; Smyth).  For effects of BMI and 

281 intervention, models specified BMI (as continuous and mean-centred), intervention (Lifestyle Advice vs 

282 Standard Care), and their interaction. Contrasts were specified to estimate the effect of the intervention 

283 and of maternal BMI.  Because of the presence of the intervention-by-BMI interaction term, this 

284 required specification of the BMI values at which the intervention effect was to be estimated, and the 

285 intervention groups in which the effect of BMI was to be estimated.  For estimating intervention effects, 

286 we chose the mean BMI of the cohort (i.e. value of 0 for the mean-centred variable, corresponding to an 

287 actual BMI of approximately 33 kg/m2), and at 5 kg/m2 above the mean (a value of 5, corresponding to 
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288 an actual BMI of approximately 38 kg/m2.  For the effect of BMI, we estimated the effect of an increase 

289 of 5 kg/m2 in BMI in each of the intervention groups (Standard Care, Lifestyle Advice) respectively. For 

290 effects of fake groups and infant sex, the models specified sex (Female vs Male), Fake Group 1 

291 (Tortoiseshell vs Tabby), Fake Group 2 (Long-Haired vs Short-Haired), and their interaction. Contrasts 

292 were specified for infant sex, and for the effect of each fake group separately within levels of the other 

293 fake group (i.e. effect of Tortoiseshell in Long-Haired and in Short-Haired; and effect of Short-Haired in 

294 Tortoiseshell and Tabby). The model matrix and contrast matrices are shown in the Supplementary 

295 Table S4.

296

297 For each contrast in each model, the number and identity (where applicable) of any differentially 

298 methylated probes (DMPs) were obtained. For detection of DMPs, limma�s default method of multiple-

299 comparisons correction (Benjamini-Hochberg) and default alpha of 0.05 was used; this method controls 

300 the False Discovery Rate, or the proportion of statistically significant results not corresponding to true 

301 effects.  Where DMPs were obtained, a comparison was made using the Holm method (retaining alpha 

302 of 0.05), which controls the Family-Wise-Error Rate (the probability that at least one statistically 

303 significant result does not correspond to a true effect).  The Holm method can be considered more 

304 stringent than Benjamini-Hochberg, but is less stringent than Bonferroni correction, which is known to 

305 be too conservative even outside the context of high-dimensional data and is therefore not generally 

306 appropriate for EWAS studies (and has not been used in other studies investigating cord blood DNAm in 

307 relation to maternal BMI or diet and lifestyle).  The full set of p values and estimated log-fold-changes 

308 (for all 426572 probes) corresponding to each contrast were also obtained, in order to compare probe 

309 rankings and overall distributions. To make the comparison more tractable, probe rankings were 

310 investigated using only those probes ranked in the top 10 (i.e. the probes with the smallest p value, or 

311 largest estimated logFC, in a given model).

312

313 The findings from different data-processing choices were then compared along five dimensions:

314 1. Number and identity of differentially methylated probes (DMPs); for infant sex, the direction of 

315 differential methylation (�down�, corresponding to negative t-statistics or lower methylation in 

316 females, versus �up�, corresponding to higher methylation in females) was also examined.  For 

317 BMI and intervention effects, the number and identity of statistically significant DMPs allows us 

318 to see differences in detection of effects, and whether the different analysis pipelines produce 

319 consistent results regarding the identity of any DMPs, though the truth is not known.  For the 

320 fake groupings, the number of statistically significant DMPs is an indication of the tendency to 

321 produce spurious findings.  For infant sex, while we do not know the actual number and identity 

322 of truly differentially methylated sites, differences in the number and identity of DMPs 

323 demonstrate that there must be either false positives or false negatives.

324 2. Consistency of rankings by p value for �top 10� probes.  This gives an indication of whether 

325 different methods will give the same results for the probes with the largest differences.

326 3. Consistency of rankings by logFC for �top 10� probes, as well as the consistency of the logFC 

327 estimates. This gives an indication of whether the estimates of effect are similar between 

328 methods.

329 4. Overall distribution of p values. Under the null hypothesis of no effect, p values should have a 

330 uniform distribution between 0 and 1; if effects are present, there will be more p values at the 

331 lower end of the distribution, the extent of which will depend on how many DMPs there are and 

332 the strength of the effects.

333 5. Overall distribution of logFC estimates. Under the null hypothesis of no effect, logFC estimates 

334 should be roughly normally distributed around 0.  If effects are present, there will be more 

335 estimates far away from 0 (with the direction depending on whether the effect is one of 
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336 hypomethylation or hypermethylation, and the distance depending on the strength of the 

337 effect).

338

339 Results

340 All dimensions of data processing choices had some impact on downstream analysis results, in terms of 

341 the number (and identity) of differentially methylated probes, rankings of probes (by p value and logFC), 

342 estimates of logFC, and overall distribution of p values and logFC, corresponding to both real and 

343 spurious effects of interest. In some cases a consistent impact of a particular choice was observed, while 

344 in others there was no consistent pattern, or this pattern varied according to the other choices with 

345 which it was combined.

346

347 Tables 1-3 give information about the number of significantly differentially methylated probes in each of 

348 the models fitted for the combinations of filtering, normalisation, batch correction and cell adjustment 

349 approaches, for infant sex, maternal BMI (in the Standard Care group) and �Tortoiseshell� (in the �Tabby� 

350 group) respectively. Supplementary Figures S1-S4 show the degree of overlap in the actual probes found 

351 to be significantly differently methylated between models for infant sex, intervention (at the mean BMI 

352 of the cohort), BMI (in the Standard Care group), and the effect of �Short-Haired� in the �Tabby� group.  

353 Figures 2 and Figures 3-5 show the differences in ranking of probes (those which were in the top 10 in 

354 any model) by p value and log-Fold-Change for the same set of effects, and Supplementary Tables S4-S6 

355 gives Spearman Rank Correlation matrices for these rankings.  The overall distribution of p values, and of 

356 log-Fold-Change estimates, for the same set of effects is shown in Figures 6 and 7.

357

358 Below we discuss the effect of each dimension (probe filtering, normalisation, batch effects, cell type 

359 correction) on results.

360

361

362 Effect of probe filtering pre-normalisation vs post-normalisation
363

364 Filtering probes prior to normalisation, compared to filtering after normalisation, led to modest 

365 differences in number of DMPs, rankings of probes by logFC and p value, and overall distributions of p 

366 values and logFC estimates. Filtering pre-normalisation produced different numbers of DMPs for infant 

367 sex, but the nature of the effect differed by normalisation method: in SWAN data there was a consistent 

368 pattern of fewer significant probes both negative and positive, while in BMIQ data there were fewer 

369 negative but more positive probes, and in SQN data there were more negative but fewer positive 

370 probes. In relation to effects of BMI, intervention, and fake groups, differences were harder to discern 

371 due to the lack of any DMPs for many models; however, when DMPs were present for an effect, there 

372 was a tendency for there to be a greater number of them in the pre-filtered data.

373

374 Probe rankings, by logFC and p value, tended to be relatively consistent between pre-filtered and post-

375 filtered data, with some cases of larger discrepancies in rankings for individual probes. The discrepancies 

376 were more common, and larger, for fake group, BMI and intervention effects than for infant sex. 

377 Similarly, there were no dramatic differences in distributions of p values or logFC estimates for infant 

378 sex; there were differences in distribution between pre- and post-filtered data for fake group, 

379 intervention and BMI effects, but there was no consistent pattern to these differences.

380
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381 The question of whether probe filtering should be carried out before or after normalisation is one which 

382 has received surprisingly little attention in the literature, but our results suggest that it can make a 

383 difference to findings in some contexts.  In particular there may be a higher risk of spurious findings in 

384 pre-filtered data, but there may also be a risk of failing to detect true differences � either any 

385 differences, or specifically hypomethylated or hypermethylated loci, depending upon the normalisation 

386 method employed.

387

388 Effect of Normalisation Method
389 Normalisation method had a substantial influence on number and identity of DMPs, rankings of probes 

390 and p values, and distributions of p values and logFC estimates. For infant sex, SQN data consistently 

391 had the highest number of significant negative probes and the lowest number of significant positive 

392 probes, while SWAN data always had the lowest number of significant positive probes. For BMI and 

393 intervention effects, only BMIQ data produced DMPs where no ComBat processing was used; in data 

394 processed using supervised ComBat, all three normalisation methods resulted in some DMPs, but the 

395 number and identity of these probes differed. In fake group data, SQN data produced a large number of 

396 significant probes in non-ComBat-processed and supervised-ComBat data, while BMIQ and SWAN data 

397 produced a small number of probes in supervised-ComBat data only; again, the number of significant 

398 probes differed between the normalisation methods (see Tables 1-3 and Supplementary Figures S1-S4).

399

400 There was a fair degree of consistency in rankings of probes by p value for infant sex, but some large 

401 discrepancies in rankings for BMI, intervention, and fake group effects.  The rankings were less 

402 consistent for highest-ranked probes by logFC, with some quite large differences in both rankings and 

403 effect estimates (including different directions of effect) for infant sex, BMI, intervention and fake 

404 groups. BMIQ estimates tended to be more extreme (further from 0) than the other two methods.

405

406 Distributions of p values and logFC estimates also differed between normalisation methods. For p values 

407 the differences were not consistent across models and effects, but for logFC there was a clear difference 

408 between BMIQ and the other two methods, with the range of estimates in BMIQ data being much more 

409 widely dispersed; SQN and SWAN data had more similar distributions, but SQN was moderately 

410 narrower than SWAN across all effects and models.

411

412 Overall, there was little difference between SQN and SWAN methods when adjusting for batch in the 

413 model.  There is some evidence that SQN would result in fewer significant DMPs than SWAN for known 

414 effects (particularly when using supervised ComBat), but (many) more spuriously significant DMPs than 

415 either SWAN or BMIQ where effects are absent. The behaviour of BMIQ was more variable depending 

416 on other dimensions of the pipeline, but had a wider dispersion of logFC estimates than the other 

417 methods, particularly when adjusting for batch in the model.  This tended to result in more DMPs in 

418 some scenarios, but in general will lead effect estimates derived from BMIQ data to be more extreme 

419 (and probably overestimates of the true effect).

420

421 Effect of Batch Correction Method
422 There were clear differences in all dimensions between batch correction methods. For all effects (infant 

423 sex, BMI, intervention and fake groups), supervised ComBat processing produced a larger number of 

424 DMPs compared to either unsupervised ComBat processing or adjustment for batch in the analysis 

425 model. The difference between unsupervised ComBat and batch-adjustment was less consistent for 

426 infant sex effects, but for BMI, intervention and fake group effects, there were no DMPs in unsupervised 

427 ComBat models, whereas there were a few for batch-adjusted models.
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428

429 Rankings of top probes by p value were relatively consistent between batch-adjustment methods for 

430 infant sex, but there were some large discrepancies particularly for BMI and intervention effects, and 

431 especially in BMIQ data.  The same phenomenon was observed for logFC rankings, which also showed a 

432 tendency for logFC estimates in unsupervised-ComBat data to be smaller in absolute magnitude (closer 

433 to 0).

434

435 The distribution of p values showed clear and consistent differences between batch-correction methods, 

436 with the distribution in supervised ComBat data shifted substantially towards 0 relative to both 

437 unsupervised ComBat and batch-adjusted models, for all effects. For logFC estimates, supervised 

438 ComBat and batch-adjusted data were generally fairly similar, but unsupervised ComBat data generally 

439 resulted in a narrower range.  This means that supervised ComBat will tend to produce more statistically 

440 significant probes, regardless of the presence or absence of an effect.  Conversely, effect estimates from 

441 unsupervised ComBat may be underestimated; at least, they will tend to be smaller in magnitude than 

442 those derived from data where batch is handled differently.

443

444 Of particular note is the combination of SQN normalisation and either adjustment for batch in the 

445 model, or use of supervised ComBat.  These combinations produced an extremely large number of 

446 significant DMPs for fake group effects; this was more extreme in the case of supervised ComBat 

447 (producing over 6000 DMPs) than when adjusting for batch (somewhat over 2000 DMPs).  Additional 

448 adjustment for cell type proportion ameliorated this effect, as discussed below, but in the case of 

449 supervised ComBat data, did not eliminate spurious findings. This suggests that batch adjustment may 

450 be particularly ill-advised in the context of SQN normalisation; since SQN involves between-array as well 

451 as within-array normalisation, additional adjustment for batch may be over-correcting.

452

453

454 Effect of Adjustment for Estimated Cell Type Proportion
455 Adjustment for cell type proportion affected results, but the impact was not consistent across the 

456 different types of effects studied. Adjustment for batch resulted in a substantially larger number of 

457 DMPs (both negative and positive) for infant sex, but reduced the number of DMPs for fake groups (for 

458 models where there were DMPs for fake groups effects). For BMI and intervention, the effect of cell 

459 type adjustment was mostly but not entirely to produce more DMPs.  

460

461 The effect of cell type adjustment on top probe rankings was fairly modest, although some quite large 

462 discrepancies were observed for p value rankings, logFC rankings, and logFC estimates. The effect on 

463 distribution of p values depended on the effect: for infant sex, adjustment for cell type proportion 

464 consistently (for all normalisation and batch-correction methods) shifted the distribution downwards 

465 towards 0 (i.e. more statistically significant probes), whereas the differences were less consistent and 

466 smaller in BMI, intervention and fake group effects.  There were no large or consistent differences in 

467 distribution of logFC estimates between cell-type-adjusted and non-adjusted models.

468

469 Overall, adjustment for cell type proportion tended to improve model behaviour regarding spurious 

470 results: the number of significantly differentially methylated probes decreased with adjustment for cell 

471 type proportion, though they were not always eliminated.  The number of differentially methylated 

472 probes for infant sex was increased, which may reflect either improvement (greater ability to detect 

473 true effects due to removal of noise due to cell type differences) or harm (greater number of spurious 

474 effects) depending on whether the extra probes are in fact differentially methylated between males and 

475 females; without knowing the true number and identity of DMPs, we cannot be certain.  Similarly, 
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476 adjustment for cell type proportion increased the number of DMPs for BMI effects in BMIQ and SWAN 

477 data, in one scenario (BMIQ with Supervised ComBat) by a substantial amount (from 99 to 2017 DMPs) 

478 and these are most likely to be false positives.   

479

480

481 Discussion

482 Different choices in probe filtering, normalisation, batch handling, and adjustment for cell types resulted 

483 in different findings regarding the presence and identity of differentially methylated probes, rankings of 

484 probes by p value and log-fold-change, and different overall distributions of p values and log-fold-

485 change estimates. While some of these differences were relatively modest, our results nevertheless 

486 show that particular combinations of data processing and analysis choices may result in spurious false 

487 positive findings, and/or potentially the failure to detect true effects. Additionally, while the magnitude 

488 of effect estimates is often not considered in differential methylation studies, some pipelines may result 

489 in an overestimate or underestimate of the true effect.  Importantly, the results tended to depend on 

490 combinations of choices rather than individual elements of the analysis pipeline. 

491

492 The results of our analyses are consistent with other investigations which have been undertaken into 

493 different data-processing and analysis choices. As noted above, the potential for �false positives� to 

494 result from supervised batch-correction methods specifying effects of interest has been previously 

495 identified by a number of authors.(Nygaard, Rødland & Hovig, 2016a; Price & Robinson, 2018; Zindler et 

496 al., 2020).  Our finding that the distribution of p values in the supervised ComBat algorithm tends to shift 

497 the p value distribution downward is consistent with the finding of Nygaard et al that, in contexts where 

498 the effects of interest are not evenly spread between batches, the distribution of F-statistics will be 

499 biased upwards (Nygaard, Rødland & Hovig, 2016a).  While implementation as an unsupervised method 

500 may be preferable, our findings suggest that this may create a different problem, with the estimates of 

501 log-fold-change corresponding to effects of interest biased towards zero.

502

503 Wu et al�s study (Wu et al., 2014) comparing a variety of normalisation approaches noted a tendency for 

504 more statistically significant differences to arise in SQN data, which they hypothesise may be due to 

505 reduced overall variance.  In our investigation, the main context in which SQN data produced a large 

506 number of spurious differentially methylated probes was when supervised ComBat, or adjustment for 

507 batch in the model, was used; we additionally found that adjustment for cell type proportion reduced 

508 the number of spurious findings (while not necessarily eliminating them).  Thus, SQN is not universally 

509 more prone to producing spurious findings than other normalisation methods.  

510

511 Our findings do not suggest that there is one particular combination of methods which can be 

512 guaranteed to �work� in all contexts, and some of the recommendations which have been made by 

513 others may need to be modified somewhat.  For example, Nygaard et al conclude that adjustment for 

514 batch in the model is preferable to the use of batch-correction algorithms,(Nygaard, Rødland & Hovig, 

515 2016b), but our results suggest that this is inadvisable for data that have been normalised using SQN; in 

516 our data, this combination resulted in a large number of spurious findings. In general, while our results 

517 support others� findings that supervised bach-correction algorithms should not be used,  there does not 

518 appear to be much difference between unsupervised batch-correction and adjustment for batch in the 

519 model.  The only caveat here is that some of our results (particularly regarding effects of infant sex) 

520 suggest that unsupervised ComBat may underestimate the magnitude of effects, as the distribution of 

521 logFC estimates was substantially narrower than other methods. The use of a more stringent method of 

522 Type I error control may also help to reduce the number of spurious findings: the use of FDR correction 
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523 methods such as Benjamini-Hochberg, while very common (Maksimovic, Phipson & Oshlack, 2017), may 

524 not be sufficient to deal with higher rates of spurious results (Nygaard, Rødland & Hovig, 2016a). In our 

525 data, the use of the Holm method (which controls the Family-Wise Error Rate) reduced, but did not 

526 eliminate, spurious findings associated with fake group effects. Investigation of DNA regions, rather than 

527 probe-wise analysis, may also help to differentiate true methylation differences from spurious ones 

528 (Wang et al., 2015): the statistically significant DMPs for fake group effects (as well  as for BMI and 

529 intervention effects) tended to be isolated rather than being grouped in the same region, and in our 

530 companion paper, we found no significant differences in methylation for groups of probes on candidate 

531 genes (Louise et al., 2022).

532

533 One limitation of our study is our inability to compare model behaviour in relation to known effects.  It 

534 was relatively simple to create fake groups to study behaviour of models for effects which were known 

535 not to exist, but as we do not know the truth about which effects actually exist in our data, we could not 

536 compare behaviour of models in their ability to detect these known effects.  Simulated data could 

537 potentially be used for this purpose; however, the effects in the simulated data would have to be 

538 biologically plausible.  This was beyond the scope of our study; however, it is a good subject for future 

539 research.  We used infant sex as the nearest proxy to a known effect, as we knew at least that some 

540 effects existed. However, we cannot say whether, and to what extent, the differences observed in 

541 relation to infant sex reflect spurious findings versus the failure to detect true effects.

542

543 Overall, as many other authors have noted, researchers working with DNAm data should better 

544 understand the methods built into standard pipelines (Price & Robinson, 2018; Zindler et al., 2020), and 

545 should better document the specific data-processing methods used (Nygaard, Rødland & Hovig, 2016a; 

546 Zindler et al., 2020).  It is also important, in our view, to pay more attention to the context in which a 

547 particular epigenome-wide analysis is performed. For example, a less stringent method of Type I error 

548 control may often be chosen because the study is exploratory (hypothesis-generating) rather than 

549 confirmatory, and it is considered more important not to miss potential findings than to rule out 

550 spurious ones. In this case, the results from such studies should be interpreted accordingly: as 

551 suggestive findings which cannot be confidently accepted until they are validated in new data. The 

552 validation of existing findings should be treated as a high priority in epigenetics research (Price & 

553 Robinson, 2018).

554

555 Additionally, the degree of confidence that can be placed in any new discoveries could be enhanced by 

556 performing sensitivity analyses � re-performing analyses using different normalisation methods, batch 

557 correction methods, or models -  which we believe should become standard in this area.
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Figure 1
Flowchart of Data Processing and Analysis

Combinations of data-processing and analysis choices, consisting of six normalised datasets
(SQN, BMIQ or SWAN, with probe filering before or afterwards), use or non-use of ComBat
processing (supervised or unsupervised), and analysis with either an unadjusted model, a
model adjusted for batch, and a model adjusted for batch and cell type proportion.
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Figure 2
Probes ranked in top 10 by p-value in Batch+Cell Adjusted Model, for (a) Infant Sex, (b)
BMI in Standard Care, (c) Short-Haired in Tabby

For each probe the rank is given by pre- vs post-filtering, normalisation method, and batch-
handling method. The model is one adjusting for batch (either explicitly in the model or via
batch-correction algorithm) and cell type proportion. Adjust=adjusted for batch in the model;
SCB=Supervised ComBat; UCB=Unsupervised ComBat.
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Figure 3
Top 10 Probes by LogFC: Infant Sex

Largest LogFC for Infant Sex (female), by normalisation and batch correction method

PeerJ reviewing PDF | (2022:09:77923:1:2:NEW 24 Dec 2022)

Manuscript to be reviewed



Figure 4
Top 10 Probes by LogFC: BMI in Standard Care

Largest LogFC for effect of BMI in Standard Care group, by normalisation and batch
correction method
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Figure 5
Top 10 Probes by LogFC: 'Short-Haired' in 'Tabby'

Largest LogFC for effect of 'Short-Haired' in 'Tabby' group, by normalisation and batch
correction method.
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Figure 6
Distribution of Unadjusted P Values by Normalisation and Batch Correction Method, for
Batch and Cell Adjusted Models

Only models from data where probe filtering was performed post-normalisation are included.
The model is one adjusting for batch (either explicitly in the model or via batch-correction
algorithm) and cell type proportion.
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Figure 7
Distribution of Log-Fold-Change Estimates by Normalisation and Batch Correction
Method, for Batch and Cell Adjusted Models

Only models from data where probe filtering was performed post-normalisation are included.
The model is one adjusting for batch (either explicitly in the model or via batch-correction
algorithm) and cell type proportion.
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Table 1(on next page)

Number of DMPs for Infant Sex (Female), by Probe Filtering Method, Batch Correction
Method, Normalisation Method and Cell Type Method

* No adjustment beyond the correction for batch as implemented in the ComBat algorithm
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1 Table 1. Number of DMPs for Infant Sex (Female), by Probe Filtering Method, Batch Correction Method, Normalisation Method and Cell Type 

2 Method

3

SQN BMIQ SWANModel

Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat

- Unadjusted Down

Up

15088

20587

14878

20441

7935

28004

7554

30741

7581

25784

6890

25962

 - Adjusted for Batch Down

Up

13132

20225

13215

19956

6602

39482

6112

34408

7100

30362

6140

29780

- Adjusted for Batch + Cell Down

Up

28406

31973

28633

32204

15855

39719

14900

45255

14239

43155

10408

40709

Supervised ComBat

- Unadjusted* Down

Up

20967

25690

21230

25320

11235

41518

10180

48191

10772

45193

9252

43237

- Adjusted for Cell Down

Up

35559

37068

36022

36972

18036

56521

16512

64851

16423

68769

12198

65109

UnSupervised ComBat

- Unadjusted* Down

Up

14603

21336

14763

21041

7634

30961

6836

34882

7344

31892

6377

31170

- Adjusted for Cell Down

Up

28012

32478

28286

32447

14060

43370

12916

49520

13030

52037

9560

49102

4 * No adjustment beyond the correction for batch as implemented in the ComBat algorithm
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Table 2(on next page)

DMPs for Intervention and BMI Effects

PeerJ reviewing PDF | (2022:09:77923:1:2:NEW 24 Dec 2022)

Manuscript to be reviewed



1 Table 2 DMPs for E����� of Maternal BMI in the Standard Care group

2

SQN BMIQ SWAN

Model Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat

- Unadjusted 0 0 5 6 0 0

- Adjusted for Batch 0 0 6 0 0 0

- Adjusted for Batch + Cell 0 0 8 0 6 0

Supervised ComBat

- Unadjusted 0 0 0 10 0 0

- Adjusted for Cell 0 0 99 207 0 0

UnSupervised ComBat

- Unadjusted 0 0 0 0 0 0

- Adjusted for Cell 0 0 0 0 0 6
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Table 3(on next page)

DMPs for Fake Groups
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1 Table 3 DMPs for FaF� G����	
 �����
�������� in �������

2

SS� BMBS S���

Model Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

�N ComBat

- Unadjusted 0 0 0 0 0 0

 - Adjusted for Batch 2180 2574 0 0 0 0

- Adjusted for Batch + Cell 0 0 0 0 0 0

Supervised ComBat

- Unadjusted 6768 7007 3 6 8 8

- Adjusted for Cell 123 133 1 1 0 0

UnSupervised ComBat

- Unadjusted 0 0 0 0 0 0

- Adjusted for Cell 0 0 0 0 0 0
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